Investigating the Link between STAT4 Genetic Variants, STAT4 Protein Concentrations, and Laryngeal Squamous Cell Carcinoma: A Comprehensive Analysis of Clinical Manifestations
Abstract
:1. Introduction
2. Results
2.1. Influence of STAT4 rs10181656, rs7574865, rs7601754, and rs10168266 Variants on the Occurrence of LSCC
2.2. Associations of STAT4 rs10181656, rs7574865, rs7601754, and rs10168266 Variants with LSCC Stages
2.3. Associations of STAT4 rs10181656, rs7574865, rs7601754, and rs10168266 Variants with LSCC Size
2.4. Associations of STAT4 rs10181656, rs7574865, rs7601754, and rs10168266 Variants with LSCC Metastasis to the Neck Lymph Nodes
2.5. Associations of STAT4 rs10181656, rs7574865, rs7601754, and rs10168266 Variants with LSCC Differentiation Grade
2.6. Influence of STAT4 Protein Concentration on the Occurrence of LSCC
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Study Population
4.3. Selection of the Study
4.4. SNV Selection
4.5. Deoxyribonucleic Acid (DNA) Extraction
4.6. Genotyping
- DNA denaturation—the reaction is carried out at a temperature of 90–95 °C. At this stage, the hydrogen bonds between the nitrogenous bases are broken, and the double-stranded DNA is separated.
- Primer hybridization—the reaction is carried out at a temperature of 40–60 °C. In this stage, the primers bind to their complementary fragments of the DNA being propagated by hydrogen bonds.
- Elongation—the reaction is carried out at a temperature of 60–72 °C. At this stage, the reaction is catalyzed by the enzyme Taq polymerase, which synthesizes the complementary strand of the DNA being tested by joining the mononucleotides in the PCR mixture.
4.7. Protein Concentration Measurement
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, H. Role and Research Progress of Hematological Markers in Laryngeal Squamous Cell Carcinoma. Diagn. Pathol. 2023, 18, 50. [Google Scholar] [CrossRef] [PubMed]
- Ciolofan, M.S.; Vlăescu, A.N.; Mogoantă, C.A.; Ioniță, E.; Ioniță, I.; Căpitănescu, A.N.; Mitroi, M.R.; Anghelina, F. Clinical, Histological and Immunohistochemical Evaluation of Larynx Cancer. Curr. Health Sci. J. 2017, 43, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, M.; Bisogno, A.; Scarpa, A.; D’Urso, A.; Marra, P.; Colacurcio, V.; De Luca, P.; Ralli, M.; Cassandro, E.; Cassandro, C. Biomarkers of Laryngeal Squamous Cell Carcinoma: A Review. Ann. Diagn. Pathol. 2021, 54, 151787. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer. J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Broseghini, E.; Filippini, D.M.; Fabbri, L.; Leonardi, R.; Abeshi, A.; Dal Molin, D.; Fermi, M.; Ferracin, M.; Fernandez, I.J. Diagnostic and Prognostic Value of MicroRNAs in Patients with Laryngeal Cancer: A Systematic Review. Noncoding RNA 2023, 9, 9. [Google Scholar] [CrossRef]
- Li, R.; Yu, S.; Zhu, W.; Wang, S.; Yan, L. Studying the Impact of Young Age on Prognosis and Treatment in Laryngeal Squamous Cell Carcinomas Using the SEER Database. PeerJ 2019, 7, e7368. [Google Scholar] [CrossRef]
- Nachalon, Y.; Cohen, O.; Alkan, U.; Shvero, J.; Popovtzer, A. Characteristics and Outcome of Laryngeal Squamous Cell Carcinoma in Young Adults. Oncol. Lett. 2017, 13, 1393–1397. [Google Scholar] [CrossRef]
- Tumban, E.A. Current Update on Human Papillomavirus-Associated Head and Neck Cancers. Viruses 2019, 11, 922. [Google Scholar] [CrossRef]
- Patel, T.D.; Echanique, K.A.; Yip, C.; Hsueh, W.D.; Baredes, S.; Park, R.C.W.; Eloy, J.A. Supraglottic Squamous Cell Carcinoma: A Population-Based Study of 22,675 Cases. Laryngoscope 2019, 129, 1822–1827. [Google Scholar] [CrossRef]
- Koroulakis, A.; Agarwal, M. Laryngeal Cancer; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Huang, Q.; Guo, Y.; Shen, Y.; Hsueh, C.Y.; Tao, L.; Zhang, M.; Wu, C.; Gong, H.; Zhou, L. Epidemiological, Clinical, and Oncological Outcomes of non-Alcohol Drinking and non-Smoking Laryngeal Squamous Cell Carcinoma Patients: A Distinct Entity. Technol. Cancer Res. Treat. 2022, 21, 1–14. [Google Scholar] [CrossRef]
- Pagano, M.; Mosca, L.; Vitiello, F.; Ilisso, C.P.; Coppola, A.; Borzacchiello, L.; Mele, L.; Caruso, F.P.; Ceccarelli, M.; Caraglia, M.; et al. Mi-RNA-888-5p Is Involved in S-Adenosylmethionine Antitumor Effects in Laryngeal Squamous Cancer Cells. Cancers 2020, 12, 3665. [Google Scholar] [CrossRef] [PubMed]
- Mastronikolis, N.; Ragos, V.; Fotiades, P.; Papanikolaou, V.; Kyrodimos, E.; Chrysovergis, A.; Mastronikolis, S.; Tsiambas, E. Mdm2 Oncogene in Laryngeal Squamous Cell Carcinoma. J. BUON 2020, 25, 594–596. [Google Scholar] [PubMed]
- Obid, R.; Redlich, M.; Tomeh, C. The Treatment of Laryngeal Cancer. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, M.; Wang, Y.; Zhang, M.; He, J.Q. Polymorphisms of the STAT4 Gene in The Pathogenesis of Tuberculosis. Biosci. Rep. 2018, 38, BSR20180498. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Q.; Chen, H.; Lian, Z.; Liu, J.; Feng, H.; Miao, X.; Du, Q.; Zhou, H. STAT4 Polymorphisms are Associated with Neuromyelitis Optica Spectrum Disorders. Neuromolecular Med. 2017, 19, 493–500. [Google Scholar] [CrossRef]
- Mehrpouya-Bahrami, P.; Moriarty, A.K.; De Melo, P.; Keeter, W.C.; Alakhras, N.S.; Nelson, A.S.; Hoover, M.; Barrios, M.S.; Nadler, J.L.; Serezani, C.H.; et al. STAT4 is Expressed in Neutrophils and Promotes Antimicrobial Immunity. JCI Insight 2021, 6, e141326. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, H.; Yang, Y.; Zhou, J.; Zhao, L.; Chen, H.; Fei, Y.; Zhang, W.; Li, M.; Zhao, Y.; et al. The Five Major Autoimmune Diseases Increase the Risk of Cancer: Epidemiological Data from A Large-Scale Cohort Study in China. Cancer Commun. 2022, 42, 435–446. [Google Scholar] [CrossRef]
- Sakowska, J.; Arcimowicz, Ł.; Jankowiak, M.; Papak, I.; Markiewicz, A.; Dziubek, K.; Kurkowiak, M.; Kote, S.; Kaźmierczak-Siedlecka, K.; Połom, K.; et al. Autoimmunity and Cancer-Two Sides of the Same Coin. Front. Immunol. 2022, 13, 793234. [Google Scholar] [CrossRef]
- Alhmoud, J.F.; Woolley, J.F.; Al Moustafa, A.E.; Malki, M.I. DNA Damage/Repair Management in Cancers. Cancers 2020, 12, 1050. [Google Scholar] [CrossRef]
- Bromberg, J. Stat Proteins and Oncogenesis. J. Clin. Investig. 2002, 109, 1139–1142. [Google Scholar] [CrossRef]
- Bravo-Villagra, K.M.; Muñoz-Valle, J.F.; Baños-Hernández, C.J.; Cerpa-Cruz, S.; Navarro-Zarza, J.E.; Parra-Rojas, I.; Aguilar-Velázquez, J.A.; García-Arellano, S.; López-Quintero, A. STAT4 Gene Variant rs7574865 Is Associated with Rheumatoid Arthritis Activity and Anti-CCP Levels in the Western but Not in the Southern Population of Mexico. Genes 2024, 15, 241. [Google Scholar] [CrossRef] [PubMed]
- Korman, B.D.; Kastner, D.L.; Gregersen, P.K.; Remmers, E.F. STAT4: Genetics, Mechanisms, and Implications for Autoimmunity. Curr. Allergy Asthma. Rep. 2008, 8, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pardoll, D.; Jove, R. STATs in Cancer Inflammation and Immunity: A Leading Role for STAT3. Nat. Rev. Cancer. 2009, 9, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Ryan, N.; Volpedo, G.; Varikuti, S.; Satoskar, A.R.; Oghumu, S. Immune Suppression Mediated by STAT4 Deficiency Promotes Lymphatic Metastasis in HNSCC. Front. Immunol. 2020, 10, 3095. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhou, Y.; Zhang, H.; Su, X. Immune Response-Related Genes—STAT4, IL8RA and CCR7 Polymorphisms in Lung Cancer: A Case-Control Study in China. Pharmgenomics Pers. Med. 2020, 13, 511–519. [Google Scholar] [CrossRef]
- Verhoeven, Y.; Tilborghs, S.; Jacobs, J.; De Waele, J.; Quatannens, D.; Deben, C.; Prenen, H.; Pauwels, P.; Trinh, X.B.; Wouters, A.; et al. The Potential and Controversy of Targeting STAT Family Members in Cancer. Semin Cancer Biol. 2020, 60, 41–56. [Google Scholar] [CrossRef]
- Núñez-Marrero, A.; Arroyo, N.; Godoy, L.; Rahman, M.Z.; Matta, J.L.; Dutil, J. SNPs in the Interleukin-12 Signaling Pathway Are Associated with Breast Cancer Risk in Puerto Rican Women. Oncotarget 2020, 11, 3420–3431. [Google Scholar] [CrossRef]
- Cheng, J.M.; Yao, M.R.; Zhu, Q.; Wu, X.Y.; Zhou, J.; Tan, W.L.; Zhan, S.H. Silencing of Stat4 Gene Inhibits Cell Proliferation and Invasion of Colorectal Cancer Cells. J. Biol. Regul. Homeost. Agents 2015, 29, 85–92. [Google Scholar]
- Wang, C.; Gao, N.; Yang, L.; Guo, Y.; Fang, Y.; Wang, T.; Xu, C.; Li, G.F.; Zhou, J.; Zhang, Y.; et al. Stat4 rs7574865 Polymorphism Promotes the Occurrence and Progression of Hepatocellular Carcinoma via the Stat4/CYP2E1/FGL2 Pathway. Cell Death Dis. 2022, 13, 130. [Google Scholar] [CrossRef]
- Yang, C.; Mai, H.; Peng, J.; Zhou, B.; Hou, J.; Jiang, D. STAT4: An Immunoregulator Contributing to Diverse Human Diseases. Int. J. Biol. Sci. 2020, 16, 1575–1585. [Google Scholar] [CrossRef]
- Yang, J.; Trépo, E.; Nahon, P.; Cao, Q.; Moreno, C.; Letouzé, E.; Imbeaud, S.; Gustot, T.; Deviere, J.; Debette, S.; et al. PNPLA3 and TM6SF2 Variants as Risk Factors of Hepatocellular Carcinoma Across Various Etiologies and Severity of Underlying Liver Diseases. Int. J. Cancer. 2019, 144, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Luo, M.; Wu, Y.; Zhou, X.; Yu, X.; Liu, L. Genetic Variants in STAT4 and Their Interactions with Environmental Factors for the Incidence of Hepatocellular Carcinoma. Cancer Biomark. 2021, 32, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Slattery, M.L.; Lundgreen, A.; Kadlubar, S.A.; Bondurant, K.L.; Wolff, R.K. JAK/STAT/SOCS-Signaling Pathway and Colon and Rectal Cancer. Mol. Carcinog. 2013, 52, 155–166. [Google Scholar] [CrossRef] [PubMed]
- He, M.M.; Lo, C.H.; Wang, K.; Polychronidis, G.; Wang, L.; Zhong, R.; Knudsen, M.D.; Fang, Z.; Song, M. Immune-Mediated Diseases Associated with Cancer Risks. JAMA Oncol. 2022, 8, 209–219. [Google Scholar] [CrossRef]
- Kumar, N.; Chugh, H.; Tomar, R.; Tomar, V.; Singh, V.K.; Chandra, R. Exploring the Interplay Between Autoimmunity and Cancer to Find the Target Therapeutic Hotspots. Artif. Cells Nanomed. Biotechnol. 2018, 46, 658–668. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. SNP Database, rs7574865. Available online: https://www.ncbi.nlm.nih.gov/snp/rs7574865 (accessed on 24 July 2024).
- Esparza Guerrero, Y.; Vazquez Villegas, M.L.; Nava Valdivia, C.A.; Ponce Guarneros, J.M.; Perez Guerrero, E.E.; Gomez Ramirez, E.E.; Ramirez Villafaña, M.; Contreras Haro, B.; Martinez Hernandez, A.; Cardona Muñoz, E.G.; et al. Association of the STAT4 Gene rs7574865 Polymorphism with IFN-γ Levels in Patients with Systemic Lupus Erythematosus. Genes 2023, 14, 537. [Google Scholar] [CrossRef]
- Bianco, B.; Fernandes, R.F.M.; Trevisan, C.M.; Christofolini, D.M.; Sanz-Lomana, C.M.; de Bernabe, J.V.; Barbosa, C.P. Influence of STAT4 gene polymorphisms in the pathogenesis of endometriosis. Ann. Hum. Genet. 2019, 83, 249–255. [Google Scholar] [CrossRef]
- Robert, F.; Pelletier, J. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Front. Genet. 2018, 9, 507. [Google Scholar] [CrossRef]
- Yabas, M.; Elliott, H.; Hoyne, G.F. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation. Int. J. Mol. Sci. 2015, 17, 3. [Google Scholar] [CrossRef]
- Ho, S.M.; Johnson, A.; Tarapore, P.; Janakiram, V.; Zhang, X.; Leung, Y.K. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J. 2012, 53, 289–305. [Google Scholar] [CrossRef]
- Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Anzai, Y.; Brizel, D.M.; Bruce, J.Y.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; et al. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 873–898. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kim, E.S.; Moon, C.M.; Kim, T.I.; Kim, W.H.; Cheon, J.H. Abnormal genetic and epigenetic changes in signal transducer and activator of transcription 4 in the pathogenesis of inflammatory bowel diseases. Dig. Dis. Sci. 2012, 57, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef] [PubMed]
- Shokrzadeh, M.; Mohammadpour, A. Evaluation of a modified salt-out method for DNA extraction from whole blood lymphocytes: A simple and economical method for gene polymorphism. Pharm. Biomed. Res. 2018, 4, 28–32. [Google Scholar] [CrossRef]
Genotype/Allele | LSCC Group, n (%) | Control Group, n (%) | HWE p-Value | p-Value |
---|---|---|---|---|
STAT4 rs10181656 | ||||
CC | 123 (38.0) | 208 (61.5) | 0.859 | <0.001 |
CG | 149 (46.0) | 115 (34.0) | ||
GG | 52 (16.0) | 15 (4.4) | ||
C | 395 (61.0) | 531 (78.6) | <0.001 | |
G | 253 (39.0) | 145 (21.4) | ||
STAT4 rs7574865 | ||||
GG | 171 (52.8) | 209 (61.8) | 0.913 | 0.015 |
GT | 124 (38.3) | 114 (33.7) | ||
TT | 29 (9.0) | 15 (4.4) | ||
G | 466 (71.9) | 532 (78.7) | 0.004 | |
T | 182 (28.1) | 144 (21.3) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 2.191 (1.575–3.048) 5.862 (3.166–10.856) | <0.001 <0.001 | 873.638 |
Dominant | CG + GG vs. CC | 2.615 (1.911–3.578) | <0.001 | 882.304 |
Recessive | GG vs. CG + CC | 4.117 (2.267–7.476) | <0.001 | 893.726 |
Overdominant | CG vs. GG + CC | 1.651 (1.207–2.259) | 0.002 | 909.533 |
Additive | G | 2.316 (1.806–2.970) | <0.001 | 871.889 |
STAT4 rs7574865 | ||||
Codominant | GT vs. GG TT vs. GG | 1.329 (0.961–1.840) 2.363 (1.227–4.550) | 0.086 0.010 | 912.967 |
Dominant | GT + TT vs. GG | 1.450 (1.064–1.975) | 0.019 | 913.875 |
Recessive | TT vs. GT + GG | 2.117 (1.113–4.027) | 0.022 | 913.925 |
Overdominant | GT vs. TT + GG | 1.218 (0.887–1.674) | 0.223 | 917.947 |
Additive | T | 1.430 (1.114–1.836) | 0.005 | 911.442 |
Characteristic | LSCC Group n = 324 | Control Group n = 338 | p-Value |
---|---|---|---|
Age, median (IQR) | 62 (10) | 64 (10) | 0.067 * |
Stages, n (%) | |||
I | 113 (34.9) | ||
II | 68 (21.0) | ||
III | 55 (17.0) | ||
IV | 88 (27.1) | ||
Tumor size (T), n (%) | |||
1 | 117 (36.1) | ||
2 | 68 (21.0) | ||
3 | 63 (19.4) | ||
4 | 76 (23.5) | ||
Metastasis to the neck lymph nodes (N), n (%) | |||
0 | 259 (79.9) | ||
1 | 20 (6.2) | ||
2 | 41 (12.7) | ||
3 | 4 (1.2) | ||
Distant metastasis (M), n (%) | |||
0 | 320 (98.8) | ||
1 | 4 (1.2) | ||
Tumor differentiation grade (G), n (%) | |||
1 | 91 (28.1) | ||
2 | 207 (63.9) | ||
3 | 26 (8.0) |
Genotype/Allele | Control Group, n (%) | Early-Stage LSCC n (%) | p-Value | Advanced-Stage LSCC n (%) | p-Value |
---|---|---|---|---|---|
STAT4 rs10181656 | |||||
CC | 208 (61.5) | 59 (32.6) | <0.001 | 64 (44.8) | <0.001 |
CG | 115 (34.0) | 89 (49.2) | 60 (42.0) | ||
GG | 15 (4.4) | 33 (18.2) | 19 (13.2) | ||
C | 531 (78.6) | 207 (57.2) | <0.001 | 188 (65.7) | <0.001 |
G | 145 (21.4) | 155 (42.8) | 98 (34.3) | ||
STAT4 rs7574865 | |||||
GG | 209 (61.8) | 94 (51.9) | 0.016 | 77 (53.8) | 0.158 |
GT | 114 (33.7) | 69 (38.1) | 55 (38.5) | ||
TT | 15 (4.4) | 18 (9.9) | 11 (7.7) | ||
G | 532 (78.7) | 257 (71.0) | 0.006 | 209 (73.1) | 0.058 |
T | 144 (21.3) | 105 (29.0) | 77 (26.9) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 2.728 (1.829–4.071) 7.756 (3.948–15.238) | <0.001 <0.001 | 625.131 |
Dominant | CG + GG vs. CC | 3.308 (2.262–4.839) | <0.001 | 633.118 |
Recessive | GG vs. CG + CC | 4.801 (2.530–9.111) | <0.001 | 647.962 |
Overdominant | CG vs. GG + CC | 1.876 (1.298–2.711) | <0.001 | 661.994 |
Additive | G | 2.763 (2.059–3.708) | <0.001 | 623.140 |
STAT4 rs7574865 | ||||
Codominant | GT vs. GG TT vs. GG | 1.346 (0.915–1.979) 2.668 (1.289–5.521) | 0.131 0.008 | 667.274 |
Dominant | GT + TT vs. GG | 1.500 (1.041–2.160) | 0.030 | 667.508 |
Recessive | TT vs. GT + GG | 2.378 (1.168–4.840) | 0.017 | 667.543 |
Overdominant | GT vs. TT + GG | 1.211 (0.832–1.762) | 0.318 | 672.250 |
Additive | T | 1.493 (1.117–1.997) | 0.007 | 665.927 |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 1.696 (1.115–2.579) 4.117 (1.979–8.565) | 0.014 <0.001 | 572.485 |
Dominant | CG + GG vs. CC | 1.975 (1.329–2.934) | <0.001 | 575.967 |
Recessive | GG vs. CG + CC | 3.299 (1.626–6.697) | <0.001 | 576.556 |
Overdominant | CG vs. GG + CC | 1.402 (0.939–2.094) | 0.099 | 584.727 |
Additive | G | 1.886 (1.385–2.566) | <0.001 | 571.022 |
Genotype/Allele | Control Group, n (%) | T1 n (%) | p-Value | T2 n (%) | p-Value |
---|---|---|---|---|---|
STAT4 rs10181656 | |||||
CC | 208 (61.5) | 42 (35.9) | <0.001 | 19 (27.9) | <0.001 |
CG | 115 (34.0) | 56 (47.9) | 38 (55.9) | ||
GG | 15 (4.4) | 19 (16.2) | 11 (16.2) | ||
C | 531 (78.6) | 140 (59.8) | <0.001 | 76 (55.9) | <0.001 |
G | 145 (21.4) | 94 (40.2) | 50 (44.1) | ||
STAT4 rs7574865 | |||||
GG | 209 (61.8) | 60 (51.3) | 0.016 | 33 (48.5) | 0.046 |
GT | 114 (33.7) | 44 (37.6) | 28 (41.2) | ||
TT | 15 (4.4) | 13 (11.1) | 7 (10.3) | ||
G | 532 (78.7) | 164 (70.1) | 0.007 | 94 (69.1) | 0.015 |
T | 144 (21.3) | 70 (29.9) | 42 (30.9) | ||
STAT4 rs7601754 | |||||
AA | 239 (70.7) | 82 (70.1) | 0.870 | 61 (89.7) | 0.004 |
AG | 93 (27.5) | 32 (27.4) | 6 (8.8) | ||
GG | 6 (1.8) | 3 (2.6) | 1 (1.5) | ||
A | 571 (84.5) | 196 (83.8) | 0.798 | 128 (94.1) | 0.003 |
G | 105 (15.5) | 38 (16.2) | 8 (5.9) |
Genotype/Allele | Control Group, n (%) | T3 n (%) | p-Value | T4 n (%) | p-Value |
---|---|---|---|---|---|
STAT4 rs10181656 | |||||
CC | 208 (61.5) | 27 (42.9) | 0.002 | 35 (46.1) | <0.001 |
CG | 115 (34.0) | 27 (42.9) | 28 (36.8) | ||
GG | 15 (4.4) | 9 (14.2) | 13 (17.1) | ||
C | 531 (78.6) | 81 (64.2) | <0.001 | 98 (64.5) | <0.001 |
G | 145 (21.4) | 45 (35.8) | 54 (35.5) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 2.412 (1.522–3.822) 6.273 (2.952–13.331) | <0.001 <0.001 | 493.288 |
Dominant | CG + GG vs. CC | 2.857 (1.846–4.422) | <0.001 | 497.602 |
Recessive | GG vs. CG + CC | 4.175 (2.045–8.523) | <0.001 | 505.542 |
Overdominant | CG vs. GG + CC | 1.780 (1.162–2.728) | 0.008 | 513.767 |
Additive | G | 2.471 (1.771–3.448) | <0.001 | 491.310 |
STAT4 rs7574865 | ||||
Codominant | GT vs. GG TT vs. GG | 1.344 (0.856–2.111) 3.019 (1.362–6.693) | 0.198 0.007 | 515.129 |
Dominant | GT + TT vs. GG | 1.539 (1.007–2.351) | 0.046 | 516.776 |
Recessive | TT vs. GT + GG | 2.692 (1.240–5.842) | 0.012 | 514.770 |
Overdominant | GT vs. TT + GG | 1.184 (0.765–1.833) | 0.448 | 520.170 |
Additive | T | 1.557 (1.116–2.172) | 0.009 | 514.035 |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 3.617 (1.993–6.565) 8.028 (3.235–19.921) | <0.001 <0.001 | 341.572 |
Dominant | CG + GG vs. CC | 4.126 (2.326–7.320) | <0.001 | 342.750 |
Recessive | GG vs. CG + CC | 4.156 (1.817–9.505) | <0.001 | 358.685 |
Overdominant | CG vs. GG + CC | 2.456 (1.447–4.169) | <0.001 | 357.748 |
Additive | G | 3.035 (2.003–4.599) | <0.001 | 340.244 |
STAT4 rs7601754 | ||||
Codominant | AG vs. AA GG vs. AA | 0.253 (0.106–0.605) 0.653 (0.077–5.526) | 0.002 0.696 | 358.004 |
Dominant | AG + GG vs. AA | 0.277 (0.122–0.627) | 0.002 | 356.566 |
Recessive | GG vs. AG + AA | 0.826 (0.098–6.972) | 0.860 | 368.894 |
Overdominant | AG vs. CC + AA | 0.255 (0.107–0.609) | 0.002 | 356.172 |
Additive | G | 0.332 (0.157–0.706) | 0.004 | 358.231 |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 1.809 (1.013–3.230) 4.622 (1.845–11.581) | 0.045 0.001 | 341.514 |
Dominant | CG + GG vs. CC | 2.133 (1.237–3.679) | 0.006 | 343.222 |
Recessive | GG vs. CG + CC | 3.589 (1.496–8.611) | 0.004 | 343.494 |
Overdominant | CG vs. GG + CC | 1.454 (0.841–2.514) | 0.180 | 348.970 |
Additive | G | 2.025 (1.339–3.064) | <0.001 | 339.811 |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 1.447 (0.838–2.500) 5.150 (2.258–11.747) | 0.185 <0.001 | 384.447 |
Dominant | CG + GG vs. CC | 1.874 (1.135–3.095) | 0.014 | 390.715 |
Recessive | GG vs. CG + CC | 4.443 (2.016–9.793) | <0.001 | 384.181 |
Overdominant | CG vs. GG + CC | 1.131 (0.674–1.898) | 0.641 | 396.550 |
Additive | G | 1.962 (1.344–2.862) | <0.001 | 384.762 |
Genotype/Allele | Control Group, n (%) | Without Metastasis to the Neck Lymph Nodes n (%) | p-Value | With Metastasis to the Neck Lymph Nodes n (%) | p-Value |
---|---|---|---|---|---|
STAT4 rs10181656 | |||||
CC | 208 (61.5) | 93 (35.9) | <0.001 | 30 (46.2) | 0.061 |
CG | 115 (34.0) | 119 (45.9) | 30 (46.2) | ||
GG | 15 (4.5) | 47 (18.1) | 5 (7.7) | ||
C | 531 (78.6) | 305 (58.9) | <0.001 | 90 (69.2) | 0.021 |
G | 145 (21.4) | 213 (41.1) | 40 (30.8) | ||
STAT4 rs7574865 | |||||
GG | 209 (61.8) | 136 (52.5) | 0.006 | 35 (53.8) | 0.339 |
GT | 114 (33.7) | 96 (37.1) | 28 (43.1) | ||
TT | 15 (4.5) | 27 (10.4) | 2 (3.1) | ||
G | 532 (78.7) | 368 (71.0) | 0.002 | 98 (75.4) | 0.402 |
T | 144 (21.3) | 150 (29.0) | 32 (24.6) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 2.314 (1.624–3.298) 7.008 (3.730–13.165) | <0.001 <0.001 | 769.135 |
Dominant | CG + GG vs. CC | 2.856 (2.042–3.994) | <0.001 | 780.155 |
Recessive | GG vs. CG + CC | 4.774 (2.603–8.755) | <0.001 | 789.079 |
Overdominant | CG vs. GG + CC | 1.648 (1.182–2.298) | 0.003 | 810.402 |
Additive | G | 2.505 (1.928–3.255) | <0.001 | 767.560 |
STAT4 rs7574865 | ||||
Codominant | GT vs. GG TT vs. GG | 1.294 (0.915–1.831) 2.766 (1.420–5.390) | 0.145 0.003 | 811.032 |
Dominant | GT + TT vs. GG | 1.465 (1.005–2.034) | 0.022 | 813.911 |
Recessive | TT vs. GT + GG | 2.506 (1.304–4.816) | 0.006 | 811.153 |
Overdominant | GT vs. TT + GG | 1.157 (0.825–1.623) | 0.397 | 818.418 |
Additive | T | 1.479 (1.140–1.920) | 0.003 | 810.357 |
Genotype/Allele | Control Group, n (%) | Well-Differentiated LSCC n (%) | p-Value | Poorly Differentiated n (%) | p-Value |
---|---|---|---|---|---|
STAT4 rs10181656 | |||||
CC | 208 (61.5) | 28 (30.8) | <0.001 | 95 (40.8) | <0.001 |
CG | 115 (34.0) | 42 (46.2) | 107 (45.9) | ||
GG | 15 (4.5) | 21 (23.0) | 31 (13.3) | ||
C | 531 (78.6) | 98 (53.8) | <0.001 | 297 (63.7) | <0.001 |
G | 145 (21.4) | 84 (46.2) | 169 (36.3) | ||
STAT4 rs7574865 | |||||
GG | 209 (61.8) | 45 (49.5) | 0.004 | 126 (54.1) | 0.114 |
GT | 114 (33.7) | 34 (37.4) | 90 (38.6) | ||
TT | 15 (4.5) | 12 (13.1) | 17 (7.3) | ||
G | 532 (78.7) | 124 (68.1) | 0.003 | 342 (73.4) | 0.038 |
T | 144 (21.3) | 58 (31.9) | 124 (26.6) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 2.713 (1.597–4.608) 10.400 (4.810–22.488) | <0.001 <0.001 | 407.174 |
Dominant | CG + GG vs. CC | 3.600 (2.192–5.913) | <0.001 | 417.714 |
Recessive | GG vs. CG + CC | 6.460 (3.172–13.155) | <0.001 | 419.164 |
Overdominant | CG vs. GG + CC | 1.662 (1.039–2.658) | 0.034 | 440.922 |
Additive | G | 3.086 (2.148–4.434) | <0.001 | 405.596 |
STAT4 rs7574865 | ||||
Codominant | GT vs. GG TT vs. GG | 1.385 (0.840–2.285) 3.716 (1.629–8.475) | 0.202 0.002 | 437.895 |
Dominant | GT + TT vs. GG | 1.656 (1.039–2.639) | 0.034 | 440.879 |
Recessive | TT vs. GT + GG | 3.271 (1.473–7.265) | 0.004 | 437.507 |
Overdominant | GT vs. TT + GG | 1.172 (0.725–1.896) | 0.518 | 444.959 |
Additive | T | 1.697 (1.185–2.432) | 0.004 | 437.225 |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Codominant | CG vs. CC GG vs. CC | 2.037 (1.424–2.914) 4.525 (2.333–8.777) | <0.001 <0.001 | 746.425 |
Dominant | CG + GG vs. CC | 2.324 (1.653–3.269) | <0.001 | 750.158 |
Recessive | GG vs. CG + CC | 3.305 (1.741–6.274) | <0.001 | 759.751 |
Overdominant | CG vs. GG + CC | 1.647 (1.170–2.318) | 0.004 | 765.968 |
Additive | G | 2.087 (1.591–2.736) | <0.001 | 744.465 |
SNV | rs925847 | rs1400656 | rs10168266 | rs7601754 | rs11889341 | rs4274624 | rs7574865 | rs8179673 | rs10181656 | rs7582694 | rs6752770 | rs11685878 |
rs925847 | 1.0 | 0.816 | 0.556 | 0.15 | 0.285 | 0.276 | 0.282 | 0.274 | 0.271 | 0.271 | 0.286 | 0.283 |
rs1400656 | 0.816 | 1.0 | 0.896 | 0.954 | 0.835 | 0.837 | 0.836 | 0.759 | 0.838 | 0.838 | 0.323 | 0.438 |
rs10168266 | 0.556 | 0.896 | 1.0 | 1.0 | 0.872 | 0.871 | 0.872 | 0.871 | 0.871 | 0.871 | 0.409 | 0.055 |
rs7601754 | 0.15 | 0.954 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.953 | 0.976 | 0.976 | 0.162 | 0.273 |
rs11889341 | 0.285 | 0.835 | 0.872 | 1.0 | 1.0 | 1.0 | 0.994 | 1.0 | 1.0 | 1.0 | 0.508 | 0.209 |
rs4274624 | 0.276 | 0.837 | 0.871 | 1.0 | 1.0 | 1.0 | 0.994 | 1.0 | 1.0 | 1.0 | 0.508 | 0.212 |
rs7574865 | 0.282 | 0.836 | 0.872 | 1.0 | 0.994 | 0.994 | 1.0 | 1.0 | 1.0 | 1.0 | 0.504 | 0.205 |
rs8179673 | 0.274 | 0.759 | 0.871 | 0.953 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.509 | 0.215 |
rs10181656 | 0.271 | 0.838 | 0.871 | 0.976 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.507 | 0.211 |
rs7582694 | 0.271 | 0.838 | 0.871 | 0.976 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.507 | 0.211 |
rs6752770 | 0.286 | 0.323 | 0.409 | 0.162 | 0.508 | 0.508 | 0.504 | 0.509 | 0.507 | 0.507 | 1.0 | 0.253 |
rs11685878 | 0.283 | 0.438 | 0.055 | 0.273 | 0.209 | 0.212 | 0.205 | 0.215 | 0.211 | 0.211 | 0.253 | 1.0 |
SNV | rs925847 | rs1400656 | rs10168266 | rs7601754 | rs11889341 | rs4274624 | rs7574865 | rs8179673 | rs10181656 | rs7582694 | rs6752770 | rs11685878 |
rs925847 | 1.0 | 0.094 | 0.174 | 0.013 | 0.061 | 0.059 | 0.06 | 0.058 | 0.057 | 0.057 | 0.079 | 0.048 |
rs1400656 | 0.094 | 1.0 | 0.01 | 0.229 | 0.011 | 0.012 | 0.012 | 0.01 | 0.012 | 0.012 | 0.015 | 0.016 |
rs10168266 | 0.174 | 0.01 | 1.0 | 0.049 | 0.566 | 0.556 | 0.563 | 0.546 | 0.55 | 0.55 | 0.097 | 0.001 |
rs7601754 | 0.013 | 0.229 | 0.049 | 1.0 | 0.065 | 0.067 | 0.066 | 0.062 | 0.064 | 0.064 | 0.002 | 0.025 |
rs11889341 | 0.061 | 0.011 | 0.566 | 0.065 | 1.0 | 0.983 | 0.983 | 0.967 | 0.972 | 0.972 | 0.201 | 0.02 |
rs4274624 | 0.059 | 0.012 | 0.556 | 0.067 | 0.983 | 1.0 | 0.978 | 0.983 | 0.989 | 0.989 | 0.205 | 0.021 |
rs7574865 | 0.06 | 0.012 | 0.563 | 0.066 | 0.983 | 0.978 | 1.0 | 0.972 | 0.978 | 0.978 | 0.199 | 0.019 |
rs8179673 | 0.058 | 0.01 | 0.546 | 0.062 | 0.967 | 0.983 | 0.972 | 1.0 | 0.994 | 0.994 | 0.209 | 0.022 |
rs10181656 | 0.057 | 0.012 | 0.55 | 0.064 | 0.972 | 0.989 | 0.978 | 0.994 | 1.0 | 1.0 | 0.206 | 0.021 |
rs7582694 | 0.057 | 0.012 | 0.55 | 0.064 | 0.972 | 0.989 | 0.978 | 0.994 | 1.0 | 1.0 | 0.206 | 0.021 |
rs6752770 | 0.079 | 0.015 | 0.097 | 0.002 | 0.201 | 0.205 | 0.199 | 0.209 | 0.206 | 0.206 | 1.0 | 0.037 |
rs11685878 | 0.048 | 0.016 | 0.001 | 0.025 | 0.02 | 0.021 | 0.019 | 0.022 | 0.021 | 0.021 | 0.037 | 1.0 |
SNV | Primer Sequence |
---|---|
rs10181656 | ACT AGC TGG AAT CCA ACT CTT CTC A[C/G]C CCT TGT ACC ACT ACC CTC CTT TGT |
rs7574865 | TAT GAA AAG TTG GTG ACC AAA ATG T[G/T]A ATA GTG GTT ATC TTA TTT CAG TGG |
rs7601754 | CAT GGG GGT GAA GAA AAG GAA CTA C[G/A]C AAA GAT GAT ACT AAG ACC TTG ATT |
rs10168266 | AGT AGT AGC TAT TGA CTA CAT GAT A[C/T]A CTG TCT ACC CAC CCG TAG TAA TAA |
Reagents | Volume for 1 Sample, µL | Volume for 96 Samples, µL |
---|---|---|
TaqMan Universal Master Mix II (”Applied Biosystems by Thermofisher Scientific”, Vilnius, Lithuania) | 5 | 480 |
Water without nucleases (“Invitrogen by ThermoFisher Scientific”, Paisley, UK) | 3.5 | 336 |
Primer (20×) (“Applied Biosystems by Thermofisher Scientifics”, Foster City, CA, USA) | 0.5 | 48 |
Full volume: | 9 | 864 |
Steps | Cycle Quantity | RT-PCR Conditions | |
---|---|---|---|
DNA polymerase activation | 1 | 95 °C | 10 min |
Denaturation | 45 | 95 °C | 15 s |
Primer hybridization and elongation | 60 °C | 60 s | |
Incubation | 1 | 4 °C | ∞ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pileckaite, E.; Vilkeviciute, A.; Kriauciuniene, L.; Liutkevicius, V.; Liutkeviciene, R. Investigating the Link between STAT4 Genetic Variants, STAT4 Protein Concentrations, and Laryngeal Squamous Cell Carcinoma: A Comprehensive Analysis of Clinical Manifestations. Int. J. Mol. Sci. 2024, 25, 10180. https://doi.org/10.3390/ijms251810180
Pileckaite E, Vilkeviciute A, Kriauciuniene L, Liutkevicius V, Liutkeviciene R. Investigating the Link between STAT4 Genetic Variants, STAT4 Protein Concentrations, and Laryngeal Squamous Cell Carcinoma: A Comprehensive Analysis of Clinical Manifestations. International Journal of Molecular Sciences. 2024; 25(18):10180. https://doi.org/10.3390/ijms251810180
Chicago/Turabian StylePileckaite, Enrika, Alvita Vilkeviciute, Loresa Kriauciuniene, Vykintas Liutkevicius, and Rasa Liutkeviciene. 2024. "Investigating the Link between STAT4 Genetic Variants, STAT4 Protein Concentrations, and Laryngeal Squamous Cell Carcinoma: A Comprehensive Analysis of Clinical Manifestations" International Journal of Molecular Sciences 25, no. 18: 10180. https://doi.org/10.3390/ijms251810180
APA StylePileckaite, E., Vilkeviciute, A., Kriauciuniene, L., Liutkevicius, V., & Liutkeviciene, R. (2024). Investigating the Link between STAT4 Genetic Variants, STAT4 Protein Concentrations, and Laryngeal Squamous Cell Carcinoma: A Comprehensive Analysis of Clinical Manifestations. International Journal of Molecular Sciences, 25(18), 10180. https://doi.org/10.3390/ijms251810180