Aerobic Exercise Training Protects Against Insulin Resistance, Despite Low-Sodium Diet-Induced Increased Inflammation and Visceral Adiposity
Abstract
:1. Introduction
2. Results
2.1. Baseline Parameters
2.2. Effects of Dietary Sodium Restriction and Aerobic Exercise Training on Plasma Lipids, Hematocrit, and Body Mass of LDLR KO Mice
2.3. Normal and Low Sodium Diet Consumption
2.4. Aerobic Exercise Training Protected against Peripheral Insulin Resistance Induced by Low-Sodium Diet
2.5. Low-Sodium Diet Induced an Atherogenic Lipoprotein Profile
2.6. Low-Sodium Diet Increased Periepididymal Adipose Tissue Mass
2.7. Low-Sodium Diet Increased TG and TC Content in Periepididymal Adipose Tissue
2.8. Low-Sodium Diet Increases Individual Adipocyte Area in Periepididymal Adipose Tissue
2.9. Low-Sodium Diet Decreased the Expression of Genes Related to Insulin Sensitivity in Periepididymal Adipose Tissue
2.10. Aerobic Exercise Training Protected against Reduction of GLUT4 Content in Periepididymal Adipose Tissue Induced by the Low-Sodium Diet
2.11. Low-Sodium Diet Promoted Inflammation in Periepididymal Adipose Tissue
2.12. Low-Sodium Diet Increased AT1 Content in Periepididymal Adipose Tissue
3. Discussion
4. Materials and Methods
4.1. Animal
4.2. Experimental Protocols
4.3. Blood Sampling, Glucose, and Biochemical Analyses of Plasma
4.4. Lipoprotein Profile
4.5. Blood Pressure Measurement
4.6. Insulin Tolerance Test
4.7. Aerobic Exercise Training
4.8. Adipose Tissue Analysis
4.9. Western Blotting
4.10. Gene Expression
4.11. Biochemical Analysis of Adipose Tissue
4.12. Immunohistochemistry
4.13. Immunofluorescence Staining
4.14. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, Y.; Joseph, J. Sodium Intake and Heart Failure. Int. J. Mol. Sci. 2020, 21, 9474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Yeh, T.L.; Shih, M.C.; Tu, Y.K.; Chien, K.L. Dietary Sodium Intake and Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef] [PubMed]
- Graudal, N.A.; Hubeck-Graudal, T.; Jurgens, G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst. Rev. 2020, 12, Cd004022. [Google Scholar] [PubMed]
- Cappuccio, F.P.; Beer, M.; Strazzullo, P. Population dietary salt reduction and the risk of cardiovascular disease. A scientific statement from the European Salt Action Network. Nutr. Metab. Cardiovasc. Dis. 2018, 29, 107–114. [Google Scholar] [CrossRef]
- Garg, R.; Williams, G.H.; Hurwitz, S.; Brown, N.J.; Hopkins, P.N.; Adler, G.K. Low-salt diet increases insulin resistance in healthy subjects. Metabolism 2011, 60, 965–968. [Google Scholar] [CrossRef]
- Catanozi, S.; Rocha, J.C.; Nakandakare, E.R.; Passarelli, M.; Mesquita, C.H.; Silva, A.A.; Dolnikoff, M.S.; Harada, L.M.; Quintão, E.C.; Heimann, J.C. The rise of the plasma lipid concentration elicited by dietary sodium chloride restriction in Wistar rats is due to an impairment of the plasma triacylglycerol removal rate. Atherosclerosis 2001, 158, 81–86. [Google Scholar] [CrossRef]
- Nakandakare, E.R.; Charf, A.M.; Santos, F.C.; Nunes, V.S.; Ortega, K.; Lottenberg, A.M.; Mion, D., Jr.; Nakano, T.; Nakajima, K.; D’Amico, E.A.; et al. Dietary salt restriction increases plasma lipoprotein and inflammatory marker concentrations in hypertensive patients. Atherosclerosis 2008, 200, 410–416. [Google Scholar] [CrossRef]
- Alderman, M.H. Presidential Address: 21st Scientific Meeting of the International Society of Hypertension: Dietary sodium and cardiovascular disease: The ‘J’-shaped relation. J. Hypertens. 2007, 25, 903–907. [Google Scholar] [CrossRef]
- Pfister, R.; Michels, G.; Sharp, S.J.; Luben, R.; Wareham, N.J.; Khaw, K.T. Estimated urinary sodium excretion and risk of heart failure in men and women in the EPIC-Norfolk study. Eur. J. Heart Fail. 2014, 16, 394–402. [Google Scholar] [CrossRef]
- Ruppert, M.; Overlack, A.; Kolloch, R.; Kraft, K.; Lennarz, M.; Stumpe, K.O. Effects of severe and moderate salt restriction on serum lipids in nonobese normotensive adults. Am. J. Med. Sci. 1994, 307 (Suppl. S1), S87–S90. [Google Scholar]
- Catanozi, S.; Rocha, J.C.; Passarelli, M.; Guzzo, M.L.; Alves, C.; Furukawa, L.N.; Nunes, V.S.; Nakandakare, E.R.; Heimann, J.C.; Quintão, E.C. Dietary sodium chloride restriction enhances aortic wall lipid storage and raises plasma lipid concentration in LDL receptor knockout mice. J. Lipid Res. 2003, 44, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Ivanovski, O.; Szumilak, D.; Nguyen-Khoa, T.; Dechaux, M.; Massy, Z.A.; Phan, O.; Mothu, N.; Lacour, B.; Drueke, T.B.; Muntzel, M. Dietary salt restriction accelerates atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2005, 180, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Tikellis, C.; Pickering, R.J.; Tsorotes, D.; Huet, O.; Chin-Dusting, J.; Cooper, M.E.; Thomas, M.C. Activation of the Renin-Angiotensin system mediates the effects of dietary salt intake on atherogenesis in the apolipoprotein E knockout mouse. Hypertension 2012, 60, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Fusco, F.B.; Gomes, D.J.; Bispo, K.C.S.; Toledo, V.P.; Barbeiro, D.F.; Capelozzi, V.L.; Furukawa, L.N.S.; Velosa, A.P.P.; Teodoro, W.R.; Heimann, J.C.; et al. Low-sodium diet induces atherogenesis regardless of lowering blood pressure in hypertensive hyperlipidemic mice. PLoS ONE 2017, 12, e0177086. [Google Scholar] [CrossRef]
- Pinto, P.R.; Yoshinaga, M.Y.; Del Bianco, V.; Bochi, A.P.; Ferreira, G.S.; Pinto, I.F.D.; Rodrigues, L.G.; Nakandakare, E.R.; Okamoto, M.M.; Machado, U.F.; et al. Dietary sodium restriction alters muscle lipidomics that relates to insulin resistance in mice. J. Biol. Chem. 2021, 296, 100344. [Google Scholar] [CrossRef]
- da Silva Ferreira, G.; Bochi, A.P.G.; Pinto, P.R.; Del Bianco, V.; Rodrigues, L.G.; Morais, M.R.P.T.; Nakandakare, E.R.; Machado, U.F.; Catanozi, S.; Passarelli, M. Aerobic Exercise Training Prevents Insulin Resistance and Hepatic Lipid Accumulation in LDL Receptor Knockout Mice Chronically Fed a Low-Sodium Diet. Nutrients 2021, 13, 2174. [Google Scholar] [CrossRef]
- Bochi, A.P.G.; Ferreira, G.D.S.; Del Bianco, V.; Pinto, P.R.; Rodrigues, L.G.; Trevisani, M.D.S.; Furukawa, L.N.S.; Bispo, K.C.S.; da Silva, A.A.; Velosa, A.P.P.; et al. Aerobic Exercise Training Reduces Atherogenesis Induced by Low-Sodium Diet in LDL Receptor Knockout Mice. Antioxidants 2022, 11, 2023. [Google Scholar] [CrossRef]
- Prada, P.O.; Coelho, M.S.; Zecchin, H.G.; Dolnikoff, M.S.; Gasparetti, A.L.; Furukawa, L.N.; Saad, M.J.; Heimann, J.C. Low salt intake modulates insulin signaling, JNK activity and IRS-1ser307 phosphorylation in rat tissues. J. Endocrinol. 2005, 185, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Slentz, C.A.; Duscha, B.D.; Johnson, J.L.; Ketchum, K.; Aiken, L.B.; Samsa, G.P.; Houmard, J.A.; Bales, C.W.; Kraus, W.E. Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE—A randomized controlled study. Arch. Intern. Med. 2004, 164, 31–39. [Google Scholar] [CrossRef]
- Woudberg, N.J.; Mendham, A.E.; Katz, A.A.; Goedecke, J.H.; Lecour, S. Exercise intervention alters HDL subclass distribution and function in obese women. Lipids Health Dis. 2018, 17, 232. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Aravani, D.; Kassi, E.; Chatzigeorgiou, A.; Vakrou, S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb. Haemost. 2021, 121, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Brown, M.S.; Goldstein, J.L.; Gerard, R.D.; Hammer, R.E.; Herz, J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Investg. 1993, 92, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Goldstein, J.L.; Brown, M.S.; Herz, J.; Burns, D.K. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J. Clin. Investg. 1994, 93, 1885–1893. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Herz, J.; Maeda, N.; Goldstein, J.L.; Brown, M.S. The two-receptor model of lipoprotein clearance: Tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc. Natl. Acad. Sci. USA 1994, 91, 4431–4435. [Google Scholar] [CrossRef]
- Graudal, N.A.; Hubeck-Graudal, T.; Jürgens, G. Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane Review). Am. J. Hypertens. 2012, 25, 1–15. [Google Scholar] [CrossRef]
- Fazeli, G.; Stopper, H.; Schinzel, R.; Ni, C.W.; Jo, H.; Schupp, N. Angiotensin II induces DNA damage via AT1 receptor and NADPH oxidase isoform Nox4. Mutagenesis 2012, 27, 673–681. [Google Scholar] [CrossRef]
- Andreozzi, F.; Laratta, E.; Sciacqua, A.; Perticone, F.; Sesti, G. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ. Res. 2004, 94, 1211–1218. [Google Scholar] [CrossRef]
- Xavier, A.R.; Garófalo, M.A.; Migliorini, R.H.; Kettelhut, I.C. Dietary sodium restriction exacerbates age-related changes in rat adipose tissue and liver lipogenesis. Metabolism 2003, 52, 1072–1077. [Google Scholar] [CrossRef]
- Coelho, M.S.; Passadore, M.D.; Gasparetti, A.L.; Bibancos, T.; Prada, P.O.; Furukawa, L.L.; Furukawa, L.N.; Fukui, R.T.; Casarini, D.E.; Saad, M.J.; et al. High- or low-salt diet from weaning to adulthood: Effect on body weight, food intake and energy balance in rats. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 148–155. [Google Scholar] [CrossRef]
- Fuentes, P.; Acuña, M.J.; Cifuentes, M.; Rojas, C.V. The anti-adipogenic effect of angiotensin II on human preadipose cells involves ERK1,2 activation and PPARG phosphorylation. J. Endocrinol. 2010, 206, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Brücher, R.; Cifuentes, M.; Acuña, M.J.; Albala, C.; Rojas, C.V. Larger anti-adipogenic effect of angiotensin II on omental preadipose cells of obese humans. Obesity 2007, 15, 1643–1646. [Google Scholar] [CrossRef] [PubMed]
- Graus-Nunes, F.; Rachid, T.L.; de Oliveira Santos, F.; Barbosa-da-Silva, S.; Souza-Mello, V. AT1 receptor antagonist induces thermogenic beige adipocytes in the inguinal white adipose tissue of obese mice. Endocrine 2017, 55, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Rodelo, C.; Arellano-Plancarte, A.; Hernandez-Aranda, J.; Landa-Galvan, H.V.; Parra-Mercado, G.K.; Moreno-Licona, N.J.; Hernandez-Gonzalez, K.D.; Catt, K.J.; Villalobos-Molina, R.; Olivares-Reyes, J.A. Angiotensin II Inhibits Insulin Receptor Signaling in Adipose Cells. Int. J. Mol. Sci. 2022, 23, 6048. [Google Scholar] [CrossRef]
- Li, A.; Shi, W.; Wang, J.; Wang, X.; Zhang, Y.; Lei, Z.; Jiao, X.Y. The gene knockout of angiotensin II type 1a receptor improves high-fat diet-induced obesity in rat via promoting adipose lipolysis. PLoS ONE 2022, 17, e0267331. [Google Scholar] [CrossRef]
- Socha, M.J.; Manhiani, M.; Said, N.; Imig, J.D.; Motamed, K. Secreted protein acidic and rich in cysteine deficiency ameliorates renal inflammation and fibrosis in angiotensin hypertension. Am. J. Pathol. 2007, 171, 1104–1112. [Google Scholar] [CrossRef]
- Toba, H.; Ikemoto, M.J.; Kobara, M.; Nakata, T. Secreted protein acidic and rich in cysteine (SPARC) and a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1) increments by the renin-angiotensin system induce renal fibrosis in deoxycorticosterone acetate-salt hypertensive rats. Eur. J. Pharmacol. 2022, 914, 174681. [Google Scholar] [CrossRef] [PubMed]
- Atorrasagasti, C.; Onorato, A.M.; Mazzolini, G. The role of SPARC (secreted protein acidic and rich in cysteine) in the pathogenesis of obesity, type 2 diabetes, and non-alcoholic fatty liver disease. J. Physiol. Biochem. 2023, 79, 815–831. [Google Scholar] [CrossRef]
- Liang, X.; Sun, J.; Guan, H.; Zhu, Q.; Yao, W. Angiotensin II Inhibits Adipogenic Differentiation and Promotes Mature Adipocyte Browning through the Corepressor CtBP1. Biomedicines 2022, 10, 3131. [Google Scholar] [CrossRef]
- Arner, E.; Westermark, P.O.; Spalding, K.L.; Britton, T.; Rydén, M.; Frisén, J.; Bernard, S.; Arner, P. Adipocyte turnover: Relevance to human adipose tissue morphology. Diabetes 2010, 59, 105–109. [Google Scholar] [CrossRef]
- Weyer, C.; Foley, J.E.; Bogardus, C.; Tataranni, P.A.; Pratley, R.E. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000, 43, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Forrester, T.; Ogunbiyi, O.; Muffinda, J. Angiotensinogen levels and obesity in four black populations. ICSHIB Investigators. J. Hypertens. 1998, 16, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Harte, A.; McTernan, P.; Chetty, R.; Coppack, S.; Katz, J.; Smith, S.; Kumar, S. Insulin-mediated upregulation of the renin angiotensin system in human subcutaneous adipocytes is reduced by rosiglitazone. Circulation 2005, 111, 1954–1961. [Google Scholar] [CrossRef] [PubMed]
- Acton, S.; Rigotti, A.; Landschulz, K.T.; Xu, S.; Hobbs, H.H.; Krieger, M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996, 271, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Yvan-Charvet, L.; Bobard, A.; Bossard, P.; Massiéra, F.; Rousset, X.; Ailhaud, G.; Teboul, M.; Ferré, P.; Dagher, G.; Quignard-Boulangé, A. In vivo evidence for a role of adipose tissue SR-BI in the nutritional and hormonal regulation of adiposity and cholesterol homeostasis. Arter. Thromb. Vasc. Biol. 2007, 27, 1340–1345. [Google Scholar] [CrossRef]
- Lu, H.; Boustany-Kari, C.M.; Daugherty, A.; Cassis, L.A. Angiotensin II increases adipose angiotensinogen expression. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1280–E1287. [Google Scholar] [CrossRef]
- Sechi, L.A.; Griffin, C.A.; Giacchetti, G.; Valentin, J.P.; Llorens-Cortes, C.; Corvol, P.; Schambelan, M. Tissue-specific regulation of type 1 angiotensin II receptor mRNA levels in the rat. Hypertension 1996, 28, 403–408. [Google Scholar] [CrossRef]
- Greenbaum, D.; Colangelo, C.; Williams, K.; Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003, 4, 117. [Google Scholar] [CrossRef]
- Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef]
- Maier, T.; Güell, M.; Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009, 583, 3966–3973. [Google Scholar] [CrossRef]
- Schwärzler, J.; Mayr, L.; Radlinger, B.; Grabherr, F.; Philipp, M.; Texler, B.; Grander, C.; Ritsch, A.; Hunjadi, M.; Enrich, B.; et al. Adipocyte GPX4 protects against inflammation, hepatic insulin resistance and metabolic dysregulation. Int. J. Obes. 2022, 46, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H. Obese visceral fat tissue inflammation: From protective to detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef]
- Varra, F.N.; Varras, M.; Varra, V.K.; Theodosis-Nobelos, P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation-mediating treatment options (Review). Mol. Med. Rep. 2024, 29, 95. [Google Scholar] [CrossRef]
- McLaughlin, T.; Sherman, A.; Tsao, P.; Gonzalez, O.; Yee, G.; Lamendola, C.; Reaven, G.M.; Cushman, S.W. Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 2007, 50, 1707–1715. [Google Scholar] [CrossRef]
- Brensilver, J.M.; Daniels, F.H.; Lefavour, G.S.; Malseptic, R.M.; Lorch, J.A.; Ponte, M.L.; Cortell, S. Effect of variations in dietary sodium intake on sodium excretion in mature rats. Kidney Int. 1985, 27, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Zhang, S.; Lu, W.; Wu, F.; Yin, X.; Yu, D.; Pan, Q.; Li, H. Regulation of insulin resistance and adiponectin signaling in adipose tissue by liver X receptor activation highlights a cross-talk with PPARγ. PLoS ONE 2014, 9, e101269. [Google Scholar] [CrossRef] [PubMed]
- Campello, R.S.; Alves-Wagner, A.B.; Abdulkader, F.; Mori, R.C.; Machado, U.F. Carbohydrate- and lipid-enriched meals acutely disrupt glycemic homeostasis by inducing transient insulin resistance in rats. Can. J. Physiol. Pharmacol. 2012, 90, 537–545. [Google Scholar] [CrossRef]
- Kadoglou, N.P.; Moustardas, P.; Kapelouzou, A.; Katsimpoulas, M.; Giagini, A.; Dede, E.; Kostomitsopoulos, N.; Karayannacos, P.E.; Kostakis, A.; Liapis, C.D. The anti-inflammatory effects of exercise training promote atherosclerotic plaque stabilization in apolipoprotein E knockout mice with diabetic atherosclerosis. Eur. J. Histochem. 2013, 57, e3. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.C.; Rolim, N.P.; Bartholomeu, J.B.; Gobatto, C.A.; Kokubun, E.; Brum, P.C. Maximal lactate steady state in running mice: Effect of exercise training. Clin. Exp. Pharmacol. Physiol. 2007, 34, 760–765. [Google Scholar] [CrossRef]
- Thieme, K.; Da Silva, K.S.; Fabre, N.T.; Catanozi, S.; Monteiro, M.B.; Santos-Bezerra, D.P.; Costa-Pessoa, J.M.; Oliveira-Souza, M.; Machado, U.F.; Passarelli, M.; et al. N-Acetyl Cysteine Attenuated the Deleterious Effects of Advanced Glycation End-Products on the Kidney of Non-Diabetic Rats. Cell. Physiol. Biochem. 2016, 40, 608–620. [Google Scholar] [CrossRef]
- Gundersen, H.J.; Bendtsen, T.F.; Korbo, L.; Marcussen, N.; Møller, A.; Nielsen, K.; Nyengaard, J.R.; Pakkenberg, B.; Sørensen, F.B.; Vesterby, A.; et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Apmis 1988, 96, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
NS-S | NS-T | LS-S | LS-T | p | |
---|---|---|---|---|---|
BM (g) (n = 15, 12, 14, 12) | 24 ± 2 | 25 ± 1 | 25 ± 2 | 24 ± 2 | 0.76 |
Glucose (mmol/L) (n = 15, 12, 15, 12) | 5.2 ± 0.7 | 5.2 ± 0.4 | 5.2 ± 0.8 | 5.3 ± 0.8 | 0.93 |
Hematocrit (%) (n = 15, 12, 15, 11) | 49 ± 5 | 49 ± 7 | 49 ± 7 | 51 ± 5 | 0.15 |
TC (mmol/L) (n = 4, 3, 5, 3) | 6.9 ± 0.9 | 6.6 ± 0.9 | 7.4 ± 0.9 | 6.8 ± 1.0 | 0.37 |
TG (mmol/L) (n = 4, 3, 5, 3) | 1.9 ± 0,4 | 1.7 ± 0.3 | 1.8 ± 0.4 | 1.7 ± 0.3 | 0.87 |
SBP (mmHg) (n = 13, 10, 14, 12) | 109 ± 8 | 113 ± 6 | 111 ± 6 | 111 ± 5 | 0.44 |
NS-S | NS-T | LS-S | LS-T | Diet (p) | AET (p) | Interaction (p) | |
---|---|---|---|---|---|---|---|
BM (g) (n = 15, 12, 14, 12) | 26 ± 2.6 | 25 ± 1.5 | 28 ± 3.0 | 27 ± 2.4 | 0.008 | - | - |
Glucose (mmol/L) (n = 15, 12, 15, 12) | 5.6 ± 0.8 | 6.2 ± 1.1 | 6.4 ± 1.0 | 6.9 ± 1.3 | 0.01 | - | - |
Hematocrit (%) (n = 15, 12, 15, 11) | 48 ± 3.2 | 49 ± 2.7 | 49 ± 3.6 | 50 ± 4.7 | - | - | - |
TC (mmol/L) (n = 4, 3, 5, 3) | 7.0 ± 2.6 | 8.7 ± 2.6 | 7.7 ± 3.3 | 7.5 ± 2.1 | - | - | - |
TG (mmol/L) (n = 4, 3, 5, 3) | 1.1 ± 0.1 | 1.2 ± 0.4 | 1.8 ± 0.5 | 1.5 ± 0.6 | 0.049 | - | - |
SBP (mmHg) (n = 13, 10, 14, 12) | 106 ± 6.1 | 105 ± 4.9 | 104 ± 7.6 | 103 ± 4.8 | - | - | - |
UNa (mEq/24 h) (n = 14, 12, 13, 12) | 0.2 ± 0.10 | 0.2 ± 0.1 | 0.04 ± 0.02 | 0.03 ± 0.02 | <0.001 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Bianco, V.; Ferreira, G.d.S.; Bochi, A.P.G.; Pinto, P.R.; Rodrigues, L.G.; Furukawa, L.N.S.; Okamoto, M.M.; Almeida, J.A.; da Silveira, L.K.R.; Santos, A.S.; et al. Aerobic Exercise Training Protects Against Insulin Resistance, Despite Low-Sodium Diet-Induced Increased Inflammation and Visceral Adiposity. Int. J. Mol. Sci. 2024, 25, 10179. https://doi.org/10.3390/ijms251810179
Del Bianco V, Ferreira GdS, Bochi APG, Pinto PR, Rodrigues LG, Furukawa LNS, Okamoto MM, Almeida JA, da Silveira LKR, Santos AS, et al. Aerobic Exercise Training Protects Against Insulin Resistance, Despite Low-Sodium Diet-Induced Increased Inflammation and Visceral Adiposity. International Journal of Molecular Sciences. 2024; 25(18):10179. https://doi.org/10.3390/ijms251810179
Chicago/Turabian StyleDel Bianco, Vanessa, Guilherme da Silva Ferreira, Ana Paula Garcia Bochi, Paula Ramos Pinto, Letícia Gomes Rodrigues, Luzia Naoko Shinohara Furukawa, Maristela Mitiko Okamoto, Jaíne Alves Almeida, Lizandre Keren Ramos da Silveira, Aritania Sousa Santos, and et al. 2024. "Aerobic Exercise Training Protects Against Insulin Resistance, Despite Low-Sodium Diet-Induced Increased Inflammation and Visceral Adiposity" International Journal of Molecular Sciences 25, no. 18: 10179. https://doi.org/10.3390/ijms251810179
APA StyleDel Bianco, V., Ferreira, G. d. S., Bochi, A. P. G., Pinto, P. R., Rodrigues, L. G., Furukawa, L. N. S., Okamoto, M. M., Almeida, J. A., da Silveira, L. K. R., Santos, A. S., Bispo, K. C. S., Capelozzi, V. L., Correa-Giannella, M. L., da Silva, A. A., Velosa, A. P. P., Nakandakare, E. R., Machado, U. F., Teodoro, W. P. R., Passarelli, M., & Catanozi, S. (2024). Aerobic Exercise Training Protects Against Insulin Resistance, Despite Low-Sodium Diet-Induced Increased Inflammation and Visceral Adiposity. International Journal of Molecular Sciences, 25(18), 10179. https://doi.org/10.3390/ijms251810179