Functional Evaluation of a Novel Homozygous ADCY3 Variant Causing Childhood Obesity
Abstract
:1. Introduction
2. Results
2.1. Case Presentation
2.2. Genetic Analysis
2.3. Quantitative Analysis of CRE and SRE Luciferase Activity and cAMP Levels in 3T3-L1 Cells Expressing Wild-Type and Mutant ADCY3
2.4. CRE-Luciferase Activity
2.5. SRE-Luciferase Activity
2.6. cAMP Levels
2.7. Oil Red O Staining of Lipid Accumulation in 3T3-L1 Cells Expressing Wild-Type and Mutant ADCY3
2.8. Lipolysis Assay
2.9. In Silico Structural Analysis
2.10. The ADCY3 Nonsense Mutation Negatively Impacts ADCY3 Binding to the Stimulatory G-Protein Subunit and Subsequent Activation of ADCY3
3. Discussion
4. Materials and Methods
4.1. 3T3-L1 Cell Culture and Differentiation
4.1.1. Cell Culture
4.1.2. Differentiation into Adipocytes
4.2. Western Blot for ADCY3 Protein
4.3. Luciferase Assay
4.4. cAMP Assay
4.5. WT and Mutant ADCY3 Overexpression and Oil Red O Staining
4.6. Lipolysis Assay Using Differentiated 3T3-L1 Cells
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooqi, I.S.; O’Rahilly, S. Monogenic Obesity in Humans. Annu. Rev. Med. 2005, 56, 443–458. [Google Scholar] [CrossRef]
- Stergiakouli, E.; Gaillard, R.; Tavaré, J.M.; Balthasar, N.; Loos, R.J.; Taal, H.R.; Evans, D.M.; Rivadeneira, F.; Pourcain, B.S.; Uitterlinden, A.G.; et al. Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity 2014, 22, 2252–2259. [Google Scholar] [CrossRef]
- Bishop, G.A.; Berbari, N.F.; Lewis, J.; Mykytyn, K. Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J. Comp. Neurol. 2007, 505, 562–571. [Google Scholar] [CrossRef]
- Cao, H.; Chen, X.; Yang, Y.; RStorm, D. Disruption of Type 3 Adenylyl Cyclase Expression in the Hypothalamus Leads to Obesity. Integr. Obes. Diabetes 2016, 2, 225–228. [Google Scholar] [CrossRef]
- Saeed, S.; Bonnefond, A.; Tamanini, F.; Mirza, M.U.; Manzoor, J.; Janjua, Q.M.; Din, S.M.; Gaitan, J.; Milochau, A.; Durand, E.; et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat. Genet. 2018, 50, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, V.; Chan, G.C.K.; Phan, T.; Nudelman, A.S.; Xia, Z.; Storm, D.R. Adult Type 3 Adenylyl Cyclase–Deficient Mice Are Obese. PLoS ONE 2009, 4, e6979. [Google Scholar] [CrossRef] [PubMed]
- Pitman, J.L.; Wheeler, M.C.; Lloyd, D.J.; Walker, J.R.; Glynne, R.J.; Gekakis, N. A Gain-of-Function Mutation in Adenylate Cyclase 3 Protects Mice from Diet-Induced Obesity. PLoS ONE 2014, 9, e110226. [Google Scholar] [CrossRef] [PubMed]
- Nordman, S.; Abulaiti, A.; Hilding, A.; Långberg, E.-C.; Humphreys, K.; Östenson, C.-G.; Efendic, S.; Gu, H.F. Genetic variation of the adenylyl cyclase 3 (AC3) locus and its influence on type 2 diabetes and obesity susceptibility in Swedish men. Int. J. Obes. 2008, 32, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, M.; Zhu, W.; Shen, J.; Shi, X.; Yang, J.; Zhao, Q.; Ni, C.; Xu, Y.; Shen, H.; et al. Evaluation of the Association between the AC3 Genetic Polymorphisms and Obesity in a Chinese Han Population. PLoS ONE 2010, 5, e13851. [Google Scholar] [CrossRef] [PubMed]
- Siljee, J.E.; Wang, Y.; Bernard, A.A.; Ersoy, B.A.; Zhang, S.; Marley, A.; Von Zastrow, M.; Reiter, J.F.; Vaisse, C. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 2018, 50, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Engle, S.E.; Bansal, R.; Antonellis, P.J.; Berbari, N.F. Cilia signaling and obesity. Semin. Cell Dev. Biol. 2021, 110, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Sorrentino, S.; Medalia, O.; Korkhov, V.M. The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science 2019, 364, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Tao, H.; He, J.; Huang, S.-Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef] [PubMed]
- Toumba, M.; Fanis, P.; Vlachakis, D.; Neocleous, V.; Phylactou, L.; Skordis, N.; Mantzoros, C.S.; Pantelidou, M. Molecular modelling of novel ADCY3 variant predicts a molecular target for tackling obesity. Int. J. Mol. Med. 2021, 49, 10. [Google Scholar] [CrossRef] [PubMed]
- Rogne, M.; Taskén, K. Compartmentalization of cAMP Signaling in Adipogenesis, Lipogenesis, and Lipolysis. Horm. Metab. Res. 2014, 46, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.Z. Control of Food Intake Through Regulation of cAMP. Curr. Top. Dev. Biol. 2005, 67, 207–224. [Google Scholar] [PubMed]
- Zhao, A.Z.; Huan, J.-N.; Gupta, S.; Pal, R.; Sahu, A. A phosphatidylinositol 3-kinase–phosphodiesterase 3B–cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat. Neurosci. 2002, 5, 727–728. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.; Haris, B.; Al-Barazenji, T.; Vasudeva, D.; Tomei, S.; Al Azwani, I.; Dauleh, H.; Shehzad, S.; Chirayath, S.; Mohamadsalih, G.; et al. Understanding the Genetics of Early-Onset Obesity in a Cohort of Children from Qatar. J. Clin. Endocrinol. Metab. 2023, 108, 3201–3213. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, I.; Selvaraj, S.; Ahmed, W.S.; Al-Barazenji, T.; Dauleh, H.; Love, D.R.; Saraiva, L.R.; Hussain, K. Functional Evaluation of a Novel Homozygous ADCY3 Variant Causing Childhood Obesity. Int. J. Mol. Sci. 2024, 25, 11815. https://doi.org/10.3390/ijms252111815
Mohammed I, Selvaraj S, Ahmed WS, Al-Barazenji T, Dauleh H, Love DR, Saraiva LR, Hussain K. Functional Evaluation of a Novel Homozygous ADCY3 Variant Causing Childhood Obesity. International Journal of Molecular Sciences. 2024; 25(21):11815. https://doi.org/10.3390/ijms252111815
Chicago/Turabian StyleMohammed, Idris, Senthil Selvaraj, Wesam S. Ahmed, Tara Al-Barazenji, Hajar Dauleh, Donald R. Love, Luis R. Saraiva, and Khalid Hussain. 2024. "Functional Evaluation of a Novel Homozygous ADCY3 Variant Causing Childhood Obesity" International Journal of Molecular Sciences 25, no. 21: 11815. https://doi.org/10.3390/ijms252111815
APA StyleMohammed, I., Selvaraj, S., Ahmed, W. S., Al-Barazenji, T., Dauleh, H., Love, D. R., Saraiva, L. R., & Hussain, K. (2024). Functional Evaluation of a Novel Homozygous ADCY3 Variant Causing Childhood Obesity. International Journal of Molecular Sciences, 25(21), 11815. https://doi.org/10.3390/ijms252111815