Differential Anti-Inflammatory Effects of Electrostimulation in a Standardized Setting
Abstract
:1. Introduction
2. Results and Discussion
2.1. Question 1: Impact of Time
2.2. Question 2: Impact of Stimuli on Physiological Samples
2.3. Question 3: Effects of Stimuli on Inflamed Samples
2.4. Question 4: Impact of States ( and ) on Stimulus Effects
2.5. Question 5: Differential Impact of Stimuli on PHYS
2.6. Question 6: Differential Impact of Stimuli on INFL
3. Materials and Methods
3.1. Study Design
3.2. Omics
3.2.1. Transcriptomics
3.2.2. Metabolomics
3.3. Differential Analysis
3.3.1. Transcriptomics
3.3.2. Metabolomics
3.4. Enrichment
3.4.1. Transcriptomics
3.4.2. Metabolomics KEGG Enrichment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAM | Complementary and alternative approaches |
WH | Wound Healing |
EMT | Epithelial Mesenchymal Transition |
DC | direct current |
AC | alternative current |
NO | no stimulus |
PHYS | physiological |
INFL | inflamed |
HaCaT | Human keratinocytes cell line |
HFF-1 | human foreskin fibroblast cell line |
TNF- | tumor necrosis factor |
TENS | transcutaneous electrical nerve stimulation |
DEG | differentially expressed gene |
NES | Normalized enrichment Score |
GSEA | Gene Set Enrichment Analysis |
MSigDB | Molecular Signatures Database |
IFN | interferon |
IL | interleukin |
JAK | Janus kinase |
STAT | signal transducers and activators of transcription |
E2F | E2 Transcription Factor |
KRAS | Kirsten rat sarcoma viral oncogene |
mTORC1 | mammalian target of rapamycin complex1 |
Myc | myelocytomatosis oncogene |
PI3K | phosphatidylinositol-3-kinase |
mTOR | mammalian target of rapamycin |
Akt | protein kinase B |
TGF | transforming growth factor |
Wnt | wingless-related integration site |
ROS | Reactive oxygen species |
NF-kB | nuclear factor kappa-light-chain-enhancer 0f activated B cells |
References
- Yuanhua, L.; Liang, Y.; Zhou, X.; Dent, J.E.; di Nardo, L.; Ting, J.; Ding, Q.; Lu, Y.; He, D.; Nardini, C. Wound healing from bench to bedside: A PPPM bridge between physical therapies and chronic inflammation. In Predictive, Preventive, and Personalised Medicine: From Bench to Bedside; Advances in Predictive, Preventive and Personalised Medicine; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Nardini, C.; Candelise, L.; Turrini, M.; Addimanda, O. Semi-automated socio-anthropologic analysis of the medical discourse on rheumatoid arthritis: Potential impact on public health. PLoS ONE 2022, 17, e0279632. [Google Scholar] [CrossRef] [PubMed]
- Maturo, M.G.; Soligo, M.; Gibson, G.; Manni, L.; Nardini, C. The greater inflammatory pathway-high clinical potential by innovative predictive, preventive, and personalized medical approach. EPMA J. 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Villata, S.; Napione, L.; Baruffaldi, D.; Nardini, C.; Frascella, F.; Pirri, F. Electrostimulation of a 3D in vitro skin model to activate wound healing. Biomed. Sci. Eng. 2021, 5, 200. [Google Scholar]
- Tracey, K.J. The inflammatory reflex. Nature 2002, 420, 853–859. [Google Scholar] [CrossRef]
- Koopman, F.A.; van Maanen, M.A.; Vervoordeldonk, M.J.; Tak, P.P. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med. 2017, 282, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Berman, M.H.; Nichols, T.W. Treatment of Neurodegeneration: Integrating Photobiomodulation and Neurofeedback in Alzheimer’s Dementia and Parkinson’s: A Review. Photobiomodul. Photomed. Laser Surg. 2019, 37, 623–634. [Google Scholar] [CrossRef]
- Goldman, N.; Chen, M.; Fujita, T.; Xu, Q.; Peng, W.; Liu, W.; Jensen, T.K.; Pei, Y.; Wang, F.; Han, X.; et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat. Neurosci. 2010, 13, 883–888. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.F.; Su, Y.S.; Ray, R.S.; Jing, X.H.; Wang, Y.Q.; Ma, Q. Somatotopic Organization and Intensity Dependence in Driving Distinct NPY-Expressing Sympathetic Pathways by Electroacupuncture. Neuron 2020, 108, 436–450.e7. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Nardini, C.; Devescovi, V.; Liu, Y.; Zhou, X.; Lu, Y.; Dent, J.E. Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation. Sci. Rep. 2016, 6, 39043. [Google Scholar] [CrossRef]
- Moreau, J.F.; Pradeu, T.; Grignolio, A.; Nardini, C.; Castiglione, F.; Tieri, P.; Capri, M.; Salvioli, S.; Taupin, J.L.; Garagnani, P.; et al. The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in humans. Ageing Res. Rev. 2017, 35, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Wufuer, M.; Lee, G.; Hur, W.; Jeon, B.; Kim, B.J.; Choi, T.H.; Lee, S. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci. Rep. 2016, 6, 37471. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Hwang, H.S. Anti-inflammation activity of brazilin in TNF-α induced human psoriasis dermatitis skin model. Appl. Biol. Chem. 2019, 62, 46. [Google Scholar] [CrossRef]
- Boarder, E.; Rumberger, B.; Howell, M.D. Modeling Skin Inflammation Using Human In Vitro Models. Curr. Protoc. 2021, 1, e72. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K. Effects of Electrical Stimulation of the Cell: Wound Healing, Cell Proliferation, Apoptosis, and Signal Transduction. Med. Sci. 2023, 11, 11. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
- Kumari, R.; Jat, P. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol. 2021, 9, 485. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef]
- Akman, M.; Belisario, D.C.; Salaroglio, I.C.; Kopecka, J.; Donadelli, M.; De Smaele, E.; Riganti, C. Hypoxia, endoplasmic reticulum stress and chemoresistance: Dangerous liaisons. J. Exp. Clin. Cancer Res. CR 2021, 40, 28. [Google Scholar] [CrossRef]
- Burrill, J.S.; Long, E.K.; Reilly, B.; Deng, Y.; Armitage, I.M.; Scherer, P.E.; Bernlohr, D.A. Inflammation and ER stress regulate branched-chain amino acid uptake and metabolism in adipocytes. Mol. Endocrinol. 2015, 29, 411–420. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Jagdish, S.; Karhale, A.K.; Ramteke, N.S.; Zaib, A.; Nandi, D. IFN-γ lowers tumor growth by increasing glycolysis and lactate production in a nitric oxide-dependent manner: Implications for cancer immunotherapy. Front. Immunol. 2023, 14, 1282653. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.K.; Kouzine, F.; Levens, D. MYC function and regulation in physiological perspective. Front. Cell Dev. Biol. 2023, 11, 1268275. [Google Scholar] [CrossRef] [PubMed]
- Ghini, V.; Meoni, G.; Vignoli, A.; Di Cesare, F.; Tenori, L.; Turano, P.; Luchinat, C. Fingerprinting and profiling in metabolomics of biosamples. Prog. Nuclear Magnet. Resonance Spectrosc. 2023, 138–139, 105–135. [Google Scholar] [CrossRef] [PubMed]
- Pidsley, R.; Zotenko, E.; Peters, T.J.; Lawrence, M.G.; Risbridger, G.P.; Molloy, P.; Van Djik, S.; Muhlhausler, B.; Stirzaker, C.; Clark, S.J. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016, 17, 1–17. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Castellano-Escuder, P.; González-Domínguez, R.; Carmona-Pontaque, F.; Andrés-Lacueva, C.; Sánchez-Pla, A. POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis. PLoS Comput. Biol. 2021, 17, e1009148. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.W.; Amode, M.R.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2024. Nucleic Acids Res. 2024, 52, D891–D899. [Google Scholar] [CrossRef]
- Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.; Sergushichev, A. Fast gene set enrichment analysis. BioRxiv, 2016; 060012preprint. [Google Scholar] [CrossRef]
- Liu, A.; Vöröslakos, M.; Kronberg, G.; Henin, S.; Krause, M.R.; Huang, Y.; Opitz, A.; Mehta, A.; Pack, C.C.; Krekelberg, B.; et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 2018, 9, 5092. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Terenius, L. Neurochemical basis of acupuncture analgesia. Annu. Rev. Pharmacol. Toxicol. 1982, 22, 193–220. [Google Scholar] [CrossRef] [PubMed]
- Jeanmougin, M.; De Reynies, A.; Marisa, L.; Paccard, C.; Nuel, G.; Guedj, M. Should we abandon the t-test in the analysis of gene expression microarray data: A comparison of variance modeling strategies. PLoS ONE 2010, 5, e12336. [Google Scholar] [CrossRef]
- Jennings, J.; Chen, D.; Feldman, D. Transcriptional response of dermal fibroblasts in direct current electric fields. Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc. 2008, 29, 394–405. [Google Scholar] [CrossRef]
- Koopman, F.; Chavan, S.; Miljko, S.; Grazio, S.; Sokolovic, S.; Schuurman, P.; Mehta, A.; Levine, Y.; Faltys, M.; Zitnik, R. Others Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2016, 113, 8284–8289. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Gu, Y.; Pu, J.; Reid, B.; Zhao, Z.; Zhao, M. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat. Protoc. 2007, 2, 1479–1489. [Google Scholar] [CrossRef]
- Ulett, G.; Han, S.; Han, J. Electroacupuncture: Mechanisms and clinical application. Biol. Psychiatry 1998, 44, 129–138. [Google Scholar] [CrossRef]
- Yu, C.; Hu, Z.; Peng, R. Effects and mechanisms of a microcurrent dressing on skin wound healing: A review. Mil. Med. Res. 2014, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Bai, H.; Wang, E.; Forrester, J.; McCaig, C. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci. 2004, 117, 397–405. [Google Scholar] [CrossRef] [PubMed]
INFL | PHYS | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NO | DC | AC | NO | DC | AC | ||||||||||||||||
1V | 5V | 10 Hz | 100 Hz | 1V | 5V | 10 Hz | 100 Hz | ||||||||||||||
t0 | t1 | t48 | t1 | t48 | t1 | t48 | t1 | t48 | t1 | t48 | t0 | t1 | t48 | t1 | t48 | t1 | t48 | t1 | t48 | t1 | t48 |
3/3 | 2/2 | 3/3 | 2/3 | 3/3 | 1/3 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 2/3 | 2/2 | 3/3 | 3/3 | 1/3 | 2/3 | 2/3 | 3/3 | 2/3 | 2/3 | 3/3 |
Question | Contrasts | Effects |
---|---|---|
1. What is the impact of time? | PHYS.1vs0.NO, PHYS.48vs1.NO, PHYS.48vs0.NO, INFL.1vs0.NO, INFL.48vs1.NO, INFL.48vs0.NO, INFLvsPHYS.0.NO, INFLvsPHYS.1.NO, INFLvsPHYS.48.NO |
|
2. What is the impact of stimuli on the physiological state? | PHYS.1.DC1vsNO, PHYS.1.DC5vsNO, PHYS.1.AC10vsNO, PHYS.1.AC100vsNO, PHYS.48.DC1vsNO, PHYS.48.DC5vsNO, PHYS.48.AC10vsNO, PHYS.48.AC100vsNO |
|
3. What is the impact of stimuli on the inflamed state? | INFL.1.DC1vsNO, INFL.1.DC5vsNO, INFL.1.AC10vsNO, INFL.1.AC100vsNO, INFL.48.DC1vsNO, INFL.48.DC5vsNO, INFL.48.AC10vsNO, INFL.48.AC100vsNO |
|
4. Given a stimulus, what is the (differential) impact of the state (INFL, PHYS)? | INFLvsPHYS.1.DC1, INFLvsPHYS.1.DC5, INFLvsPHYS.1.AC10, INFLvsPHYS.1.AC100, INFLvsPHYS.48.DC1, INFLvsPHYS.48.DC5, INFLvsPHYS.48.AC10, INFLvsPHYS.48.AC100 |
|
5. What is the differential impact of stimuli on PHYS? | PHYS.1.DC5vsDC1, PHYS.48.DC5vsDC1, PHYS.1.AC100vsAC10, PHYS.48.AC100vsAC10, PHYS.1.DC5vsAC10, PHYS.1.DC5vsAC100, PHYS.48.DC5vsAC10, PHYS.48.DC5vsAC100, PHYS.1.DC1vsAC10, PHYS.1.DC1vsAC100, PHYS.48.DC1vsAC10, PHYS.48.DC1vsAC100 |
|
6. What is the differential impact of stimuli on INFL? | INFL.1.DC5vsDC1, INFL.48.DC5vsDC1, INFL.1.AC100vsAC10, INFL.48.AC100vsAC10, INFL.1.DC5vsAC10, INFL.1.DC5vsAC100, INFL.48.DC5vsAC10, INFL.48.DC5vsAC100, INFL.1.DC1vsAC10, INFL.1.DC1vsAC100, INFL.48.DC1vsAC10, INFL.48.DC1vsAC100 |
|
Group | Hallmarks |
---|---|
1 Metabolism and homeostasis | Adipogenesis, Bile acid metabolism, Cholesterol homeostasis, Fatty acid metabolism, Heme metabolism, Xenobiotic metabolism |
2 Immune Response and Inflammation | Allograft rejection, Complement, Inflammatory response, IFN- response, IFN- response, IL-2 STAT5 signalling, IL-6 JAK STAT3 signalling, TNF- signalling via NF-B |
3 Cellular Regulation and Proliferation | Androgen response, Apical junction, Apical surface, DNA repair, E2F targets, G2M checkpoint, KRAS signalling down, KRAS signalling up, mitotic spindle, mTORC1 signalling, Myc targets v1, Myc targets v2, NOTCH signalling, p53 pathway, Pancreas -cells, PI3k Akt mTOR signalling |
4 Cellular processes and Development | Angiogenesis, EMT, Estrogen response early, Estrogen response late, Myogenesis, Spermatogenesis, TGF- signalling, Wnt- catenin signalling |
5 Signal Regulation and Stress Response | Apoptosis, Hypoxia, ROS pathway, UV response dn, UV response up |
6 Specialized Functions | Coagulation, Glycolysis, Hedgehog signalling, Oxidative phosphorylation, Peroxisome, Protein Secretion, Unfolded Protein Response |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pietro, B.; Villata, S.; Dal Monego, S.; Degasperi, M.; Ghini, V.; Guarnieri, T.; Plaksienko, A.; Liu, Y.; Pecchioli, V.; Manni, L.; et al. Differential Anti-Inflammatory Effects of Electrostimulation in a Standardized Setting. Int. J. Mol. Sci. 2024, 25, 9808. https://doi.org/10.3390/ijms25189808
Di Pietro B, Villata S, Dal Monego S, Degasperi M, Ghini V, Guarnieri T, Plaksienko A, Liu Y, Pecchioli V, Manni L, et al. Differential Anti-Inflammatory Effects of Electrostimulation in a Standardized Setting. International Journal of Molecular Sciences. 2024; 25(18):9808. https://doi.org/10.3390/ijms25189808
Chicago/Turabian StyleDi Pietro, Biagio, Simona Villata, Simeone Dal Monego, Margherita Degasperi, Veronica Ghini, Tiziana Guarnieri, Anna Plaksienko, Yuanhua Liu, Valentina Pecchioli, Luigi Manni, and et al. 2024. "Differential Anti-Inflammatory Effects of Electrostimulation in a Standardized Setting" International Journal of Molecular Sciences 25, no. 18: 9808. https://doi.org/10.3390/ijms25189808
APA StyleDi Pietro, B., Villata, S., Dal Monego, S., Degasperi, M., Ghini, V., Guarnieri, T., Plaksienko, A., Liu, Y., Pecchioli, V., Manni, L., Tenori, L., Licastro, D., Angelini, C., Napione, L., Frascella, F., & Nardini, C. (2024). Differential Anti-Inflammatory Effects of Electrostimulation in a Standardized Setting. International Journal of Molecular Sciences, 25(18), 9808. https://doi.org/10.3390/ijms25189808