McWRKY43 Confers Cold Stress Tolerance in Michelia crassipes via Regulation of Flavonoid Biosynthesis
Abstract
:1. Introduction
2. Results
2.1. Extraction and Sequence Analysis of McWRKY43
2.2. McWRKY43 Expression Pattern Analysis in Michelia crassipes Law
2.3. McWRKY43 Encodes a Nucleus-Localized Protein with Transcriptional Activation Activity
2.4. McWRKY43 Positively Regulates Flavonoid Biosynthesis during Flowering under Cold Stress
2.5. The Overexpression of McWRKY43-Enhanced Cold Stress in Tobacco
2.5.1. Effect of Cold Stress on Seed Germination of McWRKY43 Transgenic Tobacco
2.5.2. Physiological and Biochemical Analysis
2.6. Altered Expression of Flavonoid Biosynthesis-Related Genes in McWRKY43 Transgenic Tobacco Plants under Cold Stress
2.7. McWRKY43 Conferred Cold Tolerance in M. crassipes
2.8. The Overexpression of McWRKY43-Enhanced Expression of Flavonoid Biosynthesis-Related Genes in M. crassipes under Cold Stress
2.9. McWRKY43 Can Bind to the Promoter of McLDOX to Co-Regulate Cold Stress
3. Discussion
3.1. McWRKY43 Is a Typical IIc Subgroup Gene
3.2. McWRKY43 Enhances Tolerance to Cold
3.3. McWRKY43 Enhances Tolerance to Cold Depending on the Flavonoid Biosynthesis Pathway
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Bioinformatic Analysis of McWRKY43
4.3. Expression Pattern Analysis of McWRKY43 M. crassipes Exposed to Cold Stress
4.4. Subcellular Localization
4.5. Transactivation Activation Analysis in Yeast
4.6. McWRKY43 Overexpression in Transgenic Tobacco
4.7. Cold Treatment in Transgenic Tobacco Seeds
4.8. Phenotypic Assay and Measurement of Physiological Indicators
4.9. Transient Expression in Michelia crassipes Leaves
4.10. Quantitative Real-Time PCR
4.11. Yeast One-Hybrid Assay
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jing, H.W.; Wilkinson, E.G.; Sageman-Furnas, K.; Strader, L.C. Auxin and abiotic stress responses. J. Exp. Bot. 2023, 74, 7000–7014. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.Y.; Zhao, B.H.; Zhang, H.N.; Duan, S.N.; Liu, Z.H.; Guo, X.L.; Meng, X.Z.; Li, G.L. Upregulation of Wheat Heat Shock Transcription Factor TaHsfC3-4 by ABA Contributes to Drought Tolerance. Int. J. Mol. Sci. 2024, 25, 977. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Xu, Y.Y.; Wang, X.; Du, C.; Du, J.Z.; Yuan, M.; Xu, Z.H.; Chong, K. OsRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. Plant Cell Environ. 2011, 34, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; Zeng, Q.H.; Yang, Q.; Luo, X.L.; Feng, Y.; Wang, Q.; Zhang, F.; Zhang, L.; Liu, Q.L. DgHDA6 enhances the cold tolerance in chrysanthemum by improving ROS scavenging capacity. Ecotoxicol. Environ. Saf. 2024, 269, 1–10. [Google Scholar] [CrossRef]
- Wei, Z.P.; Ye, J.F.; Zhou, Z.Q.; Chen, G.; Meng, F.J.; Liu, Y.F. Isolation and characterization of PoWRKY, an abiotic stress-related WRKY transcription factor from Polygonatum odoratum. Physiol. Mol. Biol. Plants 2021, 27, 1–9. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Pandit, E.; Nayak, D.K.; Behera, L.; Mohapatra, T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC Plant Biol. 2019, 19, 352. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Ngatia, J.N.; Wang, Y.R.; Khoso, M.A.; Farooq, U.; Chen, S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiol. Mol. Biol. Plants 2021, 27, 1953–1968. [Google Scholar] [CrossRef]
- Ma, F.N.; Zhou, H.W.; Yang, H.T.; Huang, D.M.; Xing, W.T.; Wu, B.; Li, H.L.; Hu, W.B.; Song, S.; Xu, Y. WRKY transcription factors in passion fruit analysis reveals key PeWRKYs involved in abiotic stress and flavonoid biosynthesis. Int. J. Biol. Macromol. 2024, 256, 128063. [Google Scholar] [CrossRef]
- Song, H.; Cao, Y.P.; Zhao, L.G.; Zhang, J.C.; Li, S. Review: WRKY transcription factors: Understanding the functional divergence. Plant Sci. 2023, 334, 111770. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Zhou, X.H.; Liu, S.Y.; Zhuang, Y. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant. PeerJ 2020, 8, 1–21. [Google Scholar] [CrossRef]
- Wu, W.H.; Yang, J.C.; Yu, N.; Li, R.S.; Yuan, Z.X.; Shi, J.S.; Chen, J.H. Evolution of the WRKY Family in Angiosperms and Functional Diversity under Environmental Stress. Int. J. Mol. Sci. 2024, 25, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.L.; Zhao, S.; Duan, D.Y.; Tian, Y.; Wang, Y.P.; Mao, K.; Zhou, Z.S.; Ma, F.W. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors. Plant Sci. 2018, 272, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.N. The WRK Y Family Genes and Its Response to Cold Stress in Grape. Master’s Dissertation, University of Chinese Academy of Sciences, Wuhan, China, May 2014. (In Chinese). [Google Scholar]
- Song, Y.N. Identification of WRKY Transcription Factor Family of Camelina sativa and Its Function in Mediating Salt Stress Response. Ph.D. Dissertation, Shanxi Agricultural University, Jinzhong, China, June 2021. (In Chinese). [Google Scholar]
- Zhou, T.T.; Yang, X.M.; Wang, G.B.; Cao, F.L. Molecular cloning and expression analysis of a WRKY transcription factor gene, GbWRKY20, from Ginkgo biloba. Plant Signal. Behav. 2021, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.W.; Liu, D.F.; Huang, M.; Ma, J.; Li, Z.N.; Li, M.Y.; Sui, S.Z. CpWRKY71, a WRKY Transcription Factor Gene of Wintersweet (Chimonanthus praecox), Promotes Flowering and Leaf Senescence in Arabidopsis. Int. J. Mol. Sci. 2019, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.Y.; Yi, R.; Ma, Y.L.; Dong, Q.L.; Mao, K.; Ma, F.W. Apple WRKY transcription factor MdWRKY56 positively modulates drought stress tolerance. Environ. Exp. Bot. 2023, 212, 105400. [Google Scholar] [CrossRef]
- Wang, Y.G.; Dong, B.; Wang, N.N.; Zheng, Z.F.; Yang, L.Y.; Zhong, S.W.; Fang, Q.; Xiao, Z.; Zhao, H.B. A WRKY Transcription Factor PmWRKY57 from Prunus mume Improves Cold Tolerance in Arabidopsis thaliana. Mol. Biotechnol. 2023, 65, 1359–1368. [Google Scholar] [CrossRef]
- Fei, J.; Wang, Y.S.; Cheng, H.; Su, Y.B.; Zhong, Y.J.; Zheng, L. The Kandelia obovata transcription factor KoWRKY40 enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biol. 2022, 22, 1–15. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Huang, Y.X.; Zhou, Z.F.; Zhou, S.; Duan, W.X.; Yang, C.F.; Gao, Y.J.; Zhang, G.M.; Song, X.P.; Zhang, X.Q.; et al. Cold-Induced Physiological and Biochemical Alternations and Proteomic Insight into the Response of Saccharum spontaneum to Low Temperature. Int. J. Mol. Sci. 2022, 23, 1–19. [Google Scholar] [CrossRef]
- Su, M.Y.; Zuo, W.F.; Wang, Y.C.; Liu, W.J.; Zhang, Z.Y.; Wang, N.; Chen, X.S. The WKRY transcription factor MdWRKY75 regulates anthocyanins accumulation in apples (Malus domestica). Funct. Plant Biol. 2022, 49, 799–809. [Google Scholar] [CrossRef]
- Wang, L.J.; Guo, D.Z.; Zhao, G.D.; Wang, J.Y.; Zhang, S.X.; Wang, C.; Guo, X.Q. Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis. New Phytol. 2022, 236, 249–265. [Google Scholar] [CrossRef]
- Song, T.T.; Li, K.T.; Wu, T.; Wang, Y.; Zhang, X.Z.; Xu, X.F.; Yao, Y.C.; Han, Z.H. Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS ONE 2019, 14, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.L.; Jiang, L.Y.; Zhang, N.T.; Zhang, L.X.; Liu, Y.Q.; Wang, Y.; Li, M.Y.; Lin, Y.X.; Zhang, Y.T.; Zhang, Y.; et al. Importance of FaWRKY71 in Strawberry (Fragaria x ananassa) Fruit Ripening. Int. J. Mol. Sci. 2022, 23, 12483. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.X.; Yu, Q.X.; Li, Z.Q.; Jin, X.L.; Xing, W. Metabolic and transcriptomic analysis related to flavonoid biosynthesis during the color formation of Michelia crassipes tepal. Plant Physiol. Biochem. 2020, 155, 938–951. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.; Amiri, R.M.; Mehraban, F.H.; Khaneghah, H.Z. Change in Antioxidant Responses against Oxidative Damage in Black Chickpea Following Cold Acclimation. Russ. J. Plant Physiol. 2012, 59, 183–189. [Google Scholar] [CrossRef]
- Gao, Q.M.; Venugopal, S.; Navarre, D.; Kachroo, A. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol. 2011, 155, 464–476. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Xiang, S.; Chen, Y.; Zhang, H.; Yu, D. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. J. Exp. Bot. 2021, 72, 1473–1489. [Google Scholar] [CrossRef]
- Ma, Q.B.; Xia, Z.L.; Cai, Z.D.; Li, L.; Cheng, Y.B.; Liu, J.; Nian, H. GmWRKY16 Enhances Drought and Salt Tolerance Through an ABA-Mediated Pathway in Arabidopsis thaliana. Front. Plant Sci. 2019, 9, 1–18. [Google Scholar] [CrossRef]
- Sheng, Y.B.; Yan, X.X.; Huang, Y.; Han, Y.Y.; Zhang, C.; Ren, Y.B.; Fan, T.T.; Xiao, F.M.; Liu, Y.S.; Cao, S.Q. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ. 2019, 42, 891–903. [Google Scholar] [CrossRef]
- Wang, L.N.; Zhu, W.; Fang, L.C.; Sun, X.M.; Su, L.Y.; Liang, Z.; Wang, N.; Londo, J.P.; Li, S.; Xin, H. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol. 2014, 14, 103. [Google Scholar] [CrossRef]
- Li, D.H.; Liu, P.; Yu, J.Y.; Wang, L.H.; Dossa, K.; Zhang, Y.; Zhou, R.; Wei, X.; Zhang, X. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biol. 2017, 17, 152. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y.C.; Wang, R.M.; Feng, K.; Di, J.; Feng, T.; Cao, F. Transcriptome and physiological analysis highlights the hormone, phenylpropanoid, and photosynthesis effects on early somatic embryogenesis in Ginkgo biloba. Ind. Crops Prod. 2023, 203, 117176. [Google Scholar] [CrossRef]
- Geilen, K.; Heilmann, M.; Hillmer, S.; Böhmer, M. WRKY43 regulates polyunsaturated fatty acid content and seed germination under unfavourable growth conditions. Sci. Rep. 2017, 7, 1–26. [Google Scholar] [CrossRef]
- Raza, M.A.; Sohail, H.; Hassan, M.A.; Sajad, S.; Xing, Y.Y.; Song, J.H. Cold stress in Brassica vegetables: Morpho-physiological and molecular responses underlying adaptive mechanism. Sci. Hortic. 2024, 329, 113002. [Google Scholar] [CrossRef]
- Lin, P.; Shen, C.; Chen, H.; Yao, X.H.; Lin, J. Improving tobacco freezing tolerance by co-transfer of stress-inducible CbCBF and CbICE53 genes. Biol. Plant. 2017, 61, 520–528. [Google Scholar] [CrossRef]
- Jan, N.L.F.; Wani, U.M.; Wani, M.A.; Qazi, H.A.; John, R. Comparative physiological, antioxidant and proteomic investigation reveal robust response to cold stress in Digitalis purpurea L. Mol. Biol. Rep. 2023, 50, 7319–7331. [Google Scholar] [CrossRef]
- Yu, R.R.; Hou, Q.D.; Deng, H.; Xiao, L.; Cai, X.W.; Shang, C.Q.; Qiao, G. Overexpression of PavHIPP16 from Prunus avium enhances cold stress tolerance in transgenic tobacco. BMC Plant Biol. 2024, 24, 1–15. [Google Scholar] [CrossRef]
- Baranova, E.N.; Kononenko, N.V.; Lapshin, P.V.; Nechaeva, T.L.; Khaliluev, M.R.; Zagoskina, N.V.; Smirnova, E.A.; Yuorieva, N.O.; Raldugina, G.N.; Chaban, I.A.; et al. Superoxide Dismutase Premodulates Oxidative Stress in Plastids for Protection of Tobacco Plants from Cold Damage Ultrastructure Damage. Int. J. Mol. Sci. 2024, 25, 1–24. [Google Scholar] [CrossRef]
- Zhu, M.; Zheng, L.M.; Cao, S.L.; Liu, Q.; Wei, S.J.; Zhou, Y.J.; Gao, F. AnDREB5.1, a A5 group DREB gene from desert shrub Ammopiptanthus nanus, confers osmotic and cold stress tolerances in transgenic tobacco. Physiol. Plant. 2024, 176, 1–16. [Google Scholar] [CrossRef]
- Tamura, H.; Jozaki, M.; Tanabe, M.; Shirafuta, Y.; Mihara, Y.; Shinagawa, M. Importance of melatonin in assisted reproductive technology and ovarian aging. Int. J. Mol. Sci. 2020, 21, 1135. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Li, T.T.; Cheng, Z.Y.; Zhao, D.Q.; Tao, J. R2R3-MYB Transcription Factor PlMYB108 Confers Drought Tolerance in Herbaceous Peony (Paeonia lactiflora Pall.). Int. J. Mol. Sci. 2021, 22, 1–12. [Google Scholar] [CrossRef]
- Zhuang, W.B.; Li, Y.H.; Shu, X.C.; Pu, Y.T.; Wang, X.J.; Wang, T.; Wang, Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023, 28, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B.S. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef]
- Pawlikowska-Pawlega, B.; Dziubhiska, H.; Król, E.; Trebacz, K.; Jarosz-Wilkolazka, A.; Paduch, R.; Gawron, A.; Gruszecki, W.I. Characteristics of quercetin interactions with liposomal and vacuolar membranes. Biochim. Biophys. Acta-Biomembr. 2014, 1838, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Bai, Y.C.; Li, C.L.; Yao, H.P.; Chen, H.; Zhao, H.X.; Wu, Q. Anthocyanins accumulate in tartary buckwheat (Fagopyrum tataricum) sprout in response to cold stress. Acta Physiol. Plant 2015, 37, 159. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, Y.; Zuo, W.T.; Gao, Y.R.; Li, R.Z.; Yu, C.X.; Liu, Z.Y.; Zheng, Y.; Shen, Y.Y.; Duan, L.S. Integration of metabolome and transcriptome studies reveals flavonoids, abscisic acid, and nitric oxide comodulating the freezing tolerance in Liriope spicata. Front. Plant Sci. 2022, 12, 764625. [Google Scholar] [CrossRef]
- Schulz, E.; Tohge, T.; Zuther, E.; Fernie, A.R.; Hincha, D.K. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant Cell Environ. 2015, 38, 1658–1672. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Yang, L.W.; Hu, H.L.; Yang, J.J.; Cui, J.B.; Wei, G.Q.; Xu, J. Transcriptome and metabolome changes in Chinese cedar during cold acclimation reveal the roles of flavonoids in needle discoloration and cold resistance. Tree Physiol. 2022, 42, 1858–1875. [Google Scholar] [CrossRef]
- Ahmed, N.U.; Park, J.I.; Jung, H.J.; Hur, Y.; Nou, I.S. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Funct. Integr. Genom. 2015, 15, 383–394. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, J.K.; Wu, Q.; Park, S.U. Effects of cold stress on transcripts and metabolites in tartary buckwheat (Fagopyrum tataricum). Environ. Exp. Bot. 2018, 155, 488–496. [Google Scholar] [CrossRef]
- Song, Y.; Feng, J.; Liu, D.; Long, C. Different Phenylalanine Pathway Responses to Cold Stress Based on Metabolomics and Transcriptomics in Tartary Buckwheat Landraces. J. Agric. Food Chem. 2022, 70, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Aslam, M.T.; Alhammad, B.A.; Hassan, M.U.; Maqbool, R.; Chattha, M.U.; Khan, I.; Gitari, H.I.; Uslu, O.S.; Roy, R. Salinity stress in wheat: Effects, mechanisms and management strategies. Phyton 2022, 91, 667–694. [Google Scholar] [CrossRef]
- Joshi, A.; Jeena, G.S.; Shikha; Kumar, R.S.; Pandey, A.; Shukla, R.K. Ocimum sanctum, OscWRKY1, regulates phenylpropanoid pathway genes and promotes resistance to pathogen infection in Arabidopsis. Plant Mol. Biol. 2022, 110, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yu, S.; Shi, G.F.; Yan, L.; Lv, R.T.; Ma, Z.; Wang, L. Comparative analysis of R2R3-MYB transcription factors in the flower of Iris laevigata identifies a novel gene regulating tobacco cold tolerance. Plant Biol. 2022, 24, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Chen, T.T.; Wang, W.; Liu, H.; Yan, X.; Wu-Zhang, K.; Qin, W.; Xie, L.; Zhang, Y.; Peng, B.; et al. A high-efficiency Agrobacterium-mediated transient expression system in the leaves of Artemisia annua L. Plant Methods 2021, 17, 106. [Google Scholar] [CrossRef]
- Wang, J.W.; Wang, J.X.; Zhu, Y.; Zhu, Y.; Liu, C.Z.; Chen, Y.Y.; Zeng, F.L.; Chen, S.; Wang, Y.C. Building an improved transcription factor-centered yeast one hybrid system to identify DNA motifs bound by protein comprehensively. BMC Plant Biol. 2023, 23, 236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Liu, C.; Sun, J.; Ding, M.; Ding, Y.; Xu, Y.; He, J.; Li, Q.; Jin, X. McWRKY43 Confers Cold Stress Tolerance in Michelia crassipes via Regulation of Flavonoid Biosynthesis. Int. J. Mol. Sci. 2024, 25, 9843. https://doi.org/10.3390/ijms25189843
Yu Q, Liu C, Sun J, Ding M, Ding Y, Xu Y, He J, Li Q, Jin X. McWRKY43 Confers Cold Stress Tolerance in Michelia crassipes via Regulation of Flavonoid Biosynthesis. International Journal of Molecular Sciences. 2024; 25(18):9843. https://doi.org/10.3390/ijms25189843
Chicago/Turabian StyleYu, Qiuxiu, Caixian Liu, Jiahui Sun, Minghai Ding, Yu Ding, Yun Xu, Jinsong He, Qizhen Li, and Xiaoling Jin. 2024. "McWRKY43 Confers Cold Stress Tolerance in Michelia crassipes via Regulation of Flavonoid Biosynthesis" International Journal of Molecular Sciences 25, no. 18: 9843. https://doi.org/10.3390/ijms25189843
APA StyleYu, Q., Liu, C., Sun, J., Ding, M., Ding, Y., Xu, Y., He, J., Li, Q., & Jin, X. (2024). McWRKY43 Confers Cold Stress Tolerance in Michelia crassipes via Regulation of Flavonoid Biosynthesis. International Journal of Molecular Sciences, 25(18), 9843. https://doi.org/10.3390/ijms25189843