During Postnatal Ontogenesis, the Development of a Microvascular Bed in an Intestinal Villus Depends on Intussusceptive Angiogenesis
Abstract
:1. Introduction
2. Results
3. Discussion
- There should be a restriction in the space for the growth of micro-vessels, which would lead them to flatten, as in the glomeruli of the kidney, where there is a sharp restriction in the volume of the glomerulus by the surrounding convoluted tubules or in the alveoli of the lungs, where only vascular growth is possible in one plane. The limitation of the intestinal villi is their flat surfaces, the appearance of which is due to the fact that the intestine contracts longitudinally.
- The flattening of capillaries only leads to the gluing of their APMs when the contact zones of the EC are opposed to each other, which contributes to the gluing of lamellipodia and cylindrical outgrowths of the APMs.
- The contact of the outgrowths of the ECs leads to their fusion and the formation of an empty space penetrating the capillary. Then, inter-endothelial cells are subjected to reorganization. A hole is formed through these contacts. Continuous pillar formation and growth lead to a rapid expansion of the capillary plexus [29,30]. The presence of blood cells attached to this zone or local deposition of fibrin contributes to the cleavage of the capillary lumen.
- Perhaps this attracts connective tissue cells, which, having penetrated there, fix the cleavage of the capillary lumen.
4. Material and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikonova, M.A.; Sesorova, I.S.; Dimov, I.D.; Karelina, N.R.; Mironov, A.A. Effect of the First Feeding on Enterocytes of Newborn Rats. Int. J. Mol. Sci. 2022, 23, 14179. [Google Scholar] [CrossRef] [PubMed]
- Karelina, H.R. Morphogenesis, Microscopical Anatomy and Ultrastructure of Villi in Jejunum (Experimental Morphological Study). Ph.D. Thesis, The Second State Moscow University, Moscow, Russia, 1994. [Google Scholar]
- Korablev, A.V.; Sesorova, I.S.; Sesorov, V.V.; Vavilov, P.S.; Mironov, A.; Zaitseva, A.V.; Bedyaev, E.V.; Mironov, A.A. New Interpretations for Sprouting, Intussusception, Ansiform, and Coalescent Types of Angiogenesis. Int. J. Mol. Sci. 2024, 25, 8575. [Google Scholar] [CrossRef] [PubMed]
- Sesorova, I.S.; Karelina, N.R.; Kazakova, T.E.; Parashuraman, S.; Zdorikova, M.A.; Dimov, I.D.; Seliverstova, E.V.; Beznoussenko, G.V.; Mironov, A.A. Structure of the enterocyte transcytosis compartments during lipid absorption. Histochem. Cell Biol. 2020, 153, 413–429. [Google Scholar] [CrossRef] [PubMed]
- Braet, F.; Wisse, E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review. Comp. Hepatol. 2002, 1, 1. [Google Scholar] [CrossRef]
- Clementi, F.; Palade, G.E. Intestinal capillaries. I. Permeability to peroxidase and ferritin. J. Cell Biol. 1969, 41, 33–58. [Google Scholar] [CrossRef] [PubMed]
- Clementi, F.; Palade, G.E. Intestinal capillaries. II. Structural effects of EDTA and histamine. J. Cell Biol. 1969, 42, 706–714. [Google Scholar] [CrossRef]
- Simionescu, N.; Simionescu, M.; Palade, G.E. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J. Cell Biol. 1972, 53, 365–392. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, J.A. Histology: A Text and Atlas; Oxford University Press: New York, NY, USA, 1974; 803p. [Google Scholar]
- Kessel, R.G.; Kardon, R.H. The shape, polarization, and innervation of sensory hair cells in the guinea pig crista ampullaris and macula utriculi. Scan Electron. Microsc. 1979, 3, 967–974. [Google Scholar]
- Volkova, O.V.; Shakhlamov, V.A.; Mironov, A.A. Atlas of Scanning Electron Microscopy of Cells, Tissues and Organs; Medicina: Moscow, Russia, 1987; 464p. [Google Scholar]
- Karelina, N.R.; Sesorova, I.S.; Beznusenko, G.V.; Shishlo, V.K.; Kazakova, T.E.; Mironov, A.A. Ultrastructural basis for the process of lymph formation. Morfologiia 2017, 151, 7–19. [Google Scholar]
- Stan, R.V. Endothelial stomatal and fenestra diaphragms in normal vessels and angiogenesis. J. Cell Mol. Med. 2007, 11, 621–643. [Google Scholar] [CrossRef]
- Kupriyanov, V.; Mironov, V.A.; Mironov, A.A.; Gurina, O.Y. Angiogenesis. Formation, growth and development of blood vessels. M. Quartet. 1993. Available online: https://studfile.net/preview/21479070/ (accessed on 27 June 2024).
- Korablev, A.V. Main principles of the organization of the microcirculatory bed of the human greater omentum in early ontogenesis. Arkh. Anat. Gistol. Embriol. 1988, 94, 18–24. [Google Scholar] [PubMed]
- Korablev, A.V. Ansiform growth of blood vessels as a fundamental principle of angiogenesis. Arkh. Anat. Gistol. Embriol. 1990, 99, 45–52. [Google Scholar] [PubMed]
- Dong, Y.; Alonso, F.; Jahjah, T.; Fremaux, I.; Génot, E. Angiogenesis Invasion Assay to Study Endothelial Cell Invasion and Sprouting Behavior. Methods Mol Biol. 2023, 2608, 345–364. [Google Scholar] [CrossRef] [PubMed]
- Caduff, J.H.; Fischer, L.C.; Burri, P.H. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat. Rec. 1986, 216, 154–164. [Google Scholar] [CrossRef]
- Burri, P.H.; Tarek, M.R. A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat. Rec. 1990, 228, 35–45. [Google Scholar] [CrossRef]
- Esteban, S.; Clemente, C.; Koziol, A.; Gonzalo, P.; Rius, C.; Martínez, F.; Linares, P.M.; Chaparro, M.; Urzainqui, A.; Andrés, V.; et al. Endothelial MT1-MMP targeting limits intussusceptive angiogenesis and colitis via TSP1/nitric oxide axis. EMBO Mol. Med. 2020, 12, e10862. [Google Scholar] [CrossRef]
- Konerding, M.A.; Turhan, A.; Ravnic, D.J.; Lin, M.; Fuchs, C.; Secomb, T.W.; Tsuda, A.; Mentzer, S.J. Inflammation-induced intussusceptive angiogenesis in murine colitis. Anat. Rec. 2010, 293, 849–857. [Google Scholar] [CrossRef]
- Ackermann, M.; Tsuda, A.; Secomb, T.W.; Mentzer, S.J.; Konerding, M.A. Intussusceptive remodeling of vascular branch angles in chemically-induced murine colitis. Microvasc. Res. 2013, 87, 75–82. [Google Scholar] [CrossRef]
- Paku, S.; Dezso, K.; Bugyik, E.; Tóvári, J.; Tímár, J.; Nagy, P.; Laszlo, V.; Klepetko, W.; Döme, B. A new mechanism for pillar formation during tumor-induced intussusceptive angiogenesis: Inverse sprouting. Am. J. Pathol. 2011, 179, 1573–1585. [Google Scholar] [CrossRef]
- Makanya, A.N.; Hlushchuk, R.; Djonov, V.G. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 2009, 12, 113–123. [Google Scholar] [CrossRef]
- Díaz-Flores, L.; Gutiérrez, R.; González-Gómez, M.; García, M.D.P.; Carrasco-Juan, J.L.; Martín-Vasallo, P.; Madrid, J.F.; Díaz-Flores, L., Jr. Phenomena of Intussusceptive Angiogenesis and Intussusceptive Lymphangiogenesis in Blood and Lymphatic Vessel Tumors. Biomedicines 2024, 12, 258. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Flores, L.; Gutiérrez, R.; Pino García, M.; González-Gómez, M.; Díaz-Flores, L., Jr.; Carrasco, J.L.; Madrid, J.F.; Álvarez-Argüelles, H. Intussusceptive angiogenesis facilitated by microthrombosis has an important example in angiolipoma. An ultrastructural and immunohistochemical study. Histol. Histopathol. 2023, 38, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Makanya, A.N.; Stauffer, D.; Ribatti, D.; Burri, P.H.; Djonov, V. Microvascular growth, development, and remodeling in the embryonic avian kidney: The interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc. Res. Tech. 2005, 66, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Styp-Rekowska, B.; Hlushchuk, R.; Pries, A.R.; Djonov, V. Intussusceptive angiogenesis: Pillars against the blood flow. Acta Physiol. 2011, 202, 213–223. [Google Scholar] [CrossRef]
- Djonov, V.; Baum, O.; Burri, P.H. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 2003, 314, 107–117. [Google Scholar] [CrossRef]
- Peter, H.; Burri, P.H.; Hlushchuk, R.; Djonov, V. Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance. Dev. Dyn. 2004, 231, 74–88. [Google Scholar] [CrossRef]
- Ribatti, D.; Djonov, V. Intussusceptive microvascular growth in tumors. Cancer Lett. 2012, 316, 126–131. [Google Scholar] [CrossRef]
- Dudley, A.C.; Griffioen, A.W. Pathological angiogenesis: Mechanisms and therapeutic strategies. Angiogenesis 2023, 313–347. [Google Scholar] [CrossRef]
- Patan, S.; Alvarez, M.J.; Schittny, J.C.; Burri, P.H. Intussusceptive microvascular growth: A common alternative to capillary sprouting. Arch. Histol. Cytol. 1992, 55, 65–75. [Google Scholar] [CrossRef]
- Patan, S.; Alvarez, M.J.; Schittny, J.C.; Burri, P.H. Vascular morphogenesis and remodeling in a model of tissue repair: Blood vessel formation and growth in the ovarian pedicle after ovariectomy. Circ. Res. 2001, 89, 723–731. [Google Scholar] [CrossRef]
- Djonov, V.; Schmid, M.; Tschanz, S.A.; Burri, P.H. Intussusceptive angiogenesis: Its role in embryonic vascular network formation. Circ. Res. 2000, 86, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Djonov, V.G.; Galli, A.B.; Burri, P.H. Intussusceptive arborization contributes to vascular tree formation in the chick chorio-allantoic membrane. Anat. Embryol. Berl. 2000, 202, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Djonov, V.; Baum, O.; Burri, P.H. Intussusceptive angiogenesis-the alternative to capillary sprouting. Mol. Asp. Med. 2002, 6, 1–27. [Google Scholar] [CrossRef]
- Saravanan, S.; Vimalraj, S.; Pavani, K.; Nikarika, R.; Sumantran, V.N. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci. 2020, 252, 117670. [Google Scholar] [CrossRef]
- Nitzsche, B.; Rong, W.W.; Goede, A.; Hoffmann, B.; Scarpa, F.; Kuebler, W.M.; Secomb, T.W.; Pries, A.R. Coalescent angiogenesis-evidence for a novel concept of vascular network maturation. Angiogenesis 2022, 25, 35–45. [Google Scholar] [CrossRef]
- Cimpean, A.M.; Raica, M. Historical Overview of In Vivo and In Vitro Angiogenesis Assays. Methods Mol. Biol. 2021, 2206, 1–13. [Google Scholar] [CrossRef]
- Potter, E.L. Development of the human glomerulus. Arch. Pathol. 1965, 80, 241–255. [Google Scholar]
- Bär, T.; Güldner, F.H.; Wolff, J.R. “Seamless” endothelial cells of blood capillaries. Cell Tissue Res. 1984, 235, 99–106. [Google Scholar] [CrossRef]
- Terasaki, M.; Brunson, J.C.; Sardi, J. Analysis of the three-dimensional structure of the kidney glomerulus capillary network. Sci. Rep. 2020, 10, 203–234. [Google Scholar] [CrossRef]
- Gianni-Barrera, R.; Trani, M.; Fontanellaz, C.; Heberer, M.; Djonov, V.; Hlushchuk, R.; Banfi, A. VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting. Angiogenesis 2013, 16, 123–136. [Google Scholar] [CrossRef]
- Dudley, A.C. Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2012, 2, a006536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yao, Y.; Gao, H.; Hu, X. Mechanisms of angiogenesis in tumour. Front. Oncol. 2024, 14, 1359069. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007, 8, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Sliwinska, P.; Alitalo, K.; Allen, E.; Anisimov, A.; Aplin, A.C.; Auerbach, R.; Augustin, H.G.; Bates, D.O.; van Beijnum, J.R.; Bender, R.H.F.; et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018, 21, 425–532. [Google Scholar] [CrossRef]
- Ribatti, D. The Fundamental Contribution of Judah Folkman in the Setting of Angiogenesis Assays. Methods Mol Biol. 2021, 2206, 15–25. [Google Scholar] [CrossRef]
- Yan, F.; Liu, X.; Ding, H.; Zhang, W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022, 124, 1518–1533. [Google Scholar] [CrossRef]
- Xiao, P.; Zhang, Y.; Zeng, Y.; Yang, D.; Mo, J.; Zheng, Z.; Wang, J.; Zhang, Y.; Zhou, Z.; Zhong, X.; et al. Impaired angiogenesis in ageing: The central role of the extracellular matrix. J. Transl. Med. 2023, 21, 425–532. [Google Scholar] [CrossRef]
- Jakobsson, L.; Franco, C.A.; Bentley, K.; Collins, R.T.; Ponsioen, B.; Aspalter, I.M.; Rosewell, I.; Busse, M.; Thurston, G.; Medvinsky, A.; et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell. Biol. 2010, 12, 943–953. [Google Scholar] [CrossRef]
- Peña, O.A.; Martin, P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell Biol. 2024, 25, 599–616. [Google Scholar] [CrossRef]
- Noishiki, C.; Yuge, S.; Ando, K.; Wakayama, Y.; Mochizuki, N.; Ogawa, R.; Fukuhara, S. Live imaging of angiogenesis during cutaneous wound healing in adult zebrafish. Angiogenesis 2019, 22, 341–354. [Google Scholar] [CrossRef]
- Nissen, N.N.; Polverini, P.J.; Koch, A.E.; Volin, M.V.; Gamelli, R.L.; DiPietro, L.A. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am. J. Pathol. 1998, 152, 1445–1452. [Google Scholar] [PubMed]
- Brown, L.F.; Yeo, K.T.; Berse, B.; Yeo, T.K.; Senger, D.R.; Dvorak, H.F.; van de Water, L. Expression of vascular permeability factor(vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J. Exp. Med. 1992, 176, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- Patan, S. Vasculogenesis and angiogenesis. Cancer Treat. Res. 2004, 117, 3–32. [Google Scholar] [CrossRef] [PubMed]
- Bloor, C.M. Angiogenesis during exercise and training. Angiogenesis 2005, 8, 263–271. [Google Scholar] [CrossRef]
- Hudlicka, O. Microcirculation in skeletal muscle. Muscles Ligaments Tendons J. 2011, 30, 3–11. [Google Scholar]
- Hansen-Smith, F.M.; Hudlicka, O.; Egginton, S. In vivo angiogenesis in adult rat skeletal muscle: Early changes in capillary network architecture and ultrastructure. Cell Tissue Res. 1996, 286, 123–136. [Google Scholar] [CrossRef]
- Rottiers, P.; Saltel, F.; Daubon, T.; Chaigne-Delalande, B.; Tridon, V.; Billottet, C.; Reuzeau, E.; Génot, E. TGFbeta-induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. J. Cell Sci. 2009, 122, 4311–4318. [Google Scholar] [CrossRef]
- Zhou, A.L.; Egginton, S.; Brown, M.D.; Hudlicka, O. Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: An ultrastructural study. Anat. Rec. 1998, 252, 49–63. [Google Scholar] [CrossRef]
- Blum, Y.; Belting, H.G.; Ellertsdottir, E.; Herwig, L.; Luders, F.; Affolter, M. Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev. Biol. 2008, 316, 312–322. [Google Scholar] [CrossRef]
- Díaz-Flores, L.; Gutiérrez, R.; García-Suárez, M.P.; Sáez, F.J.; Gutiérrez, E.; Valladares, F.; Carrasco, J.L.; Díaz-Flores, L., Jr.; Madrid, J.F. Morphofunctional basis of the different types of angiogenesis and formation of postnatal angiogenesis-related secondary structures. Histol. Histopathol. 2017, 32, 1239–1279. [Google Scholar] [CrossRef]
- Polishchuk, R.S.; Polishchuk, E.V.; Mironov, A.A. Coalescence of Golgi fragments in microtubule-deprived living cells. Eur. J. Cell Biol. 1999, 78, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Kolpakov, V.; Polishchuk, R.; Bannykh, S.; Rekhter, M.; Solovjev, P.; Romanov, Y.; Tararak, E.; Antonov, A.; Mironov, A. Atherosclerosis prone branch regions in human aorta: Microarchitecture and cell composition of intima. Atherosclerosis 1996, 122, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Mironov, A.A., Jr.; Mironov, A.A. Estimation of subcellular organelle volume from ultrathin sections through centrioles with a discretized version of vertical rotator. J. Microsc. 1998, 192, 29–36. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaytseva, A.V.; Karelina, N.R.; Bedyaev, E.V.; Vavilov, P.S.; Sesorova, I.S.; Mironov, A.A. During Postnatal Ontogenesis, the Development of a Microvascular Bed in an Intestinal Villus Depends on Intussusceptive Angiogenesis. Int. J. Mol. Sci. 2024, 25, 10322. https://doi.org/10.3390/ijms251910322
Zaytseva AV, Karelina NR, Bedyaev EV, Vavilov PS, Sesorova IS, Mironov AA. During Postnatal Ontogenesis, the Development of a Microvascular Bed in an Intestinal Villus Depends on Intussusceptive Angiogenesis. International Journal of Molecular Sciences. 2024; 25(19):10322. https://doi.org/10.3390/ijms251910322
Chicago/Turabian StyleZaytseva, Anna V., Natalia R. Karelina, Eugeny V. Bedyaev, Pavel S. Vavilov, Irina S. Sesorova, and Alexander A. Mironov. 2024. "During Postnatal Ontogenesis, the Development of a Microvascular Bed in an Intestinal Villus Depends on Intussusceptive Angiogenesis" International Journal of Molecular Sciences 25, no. 19: 10322. https://doi.org/10.3390/ijms251910322
APA StyleZaytseva, A. V., Karelina, N. R., Bedyaev, E. V., Vavilov, P. S., Sesorova, I. S., & Mironov, A. A. (2024). During Postnatal Ontogenesis, the Development of a Microvascular Bed in an Intestinal Villus Depends on Intussusceptive Angiogenesis. International Journal of Molecular Sciences, 25(19), 10322. https://doi.org/10.3390/ijms251910322