Enhanced Photodynamic Therapy Efficacy through Solid Lipid Nanoparticle of Purpurin-18-N-Propylimide Methyl Ester for Cancer Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of P18 N PI ME
2.1.1. NMR Spectroscopy
2.1.2. Development of Analytical Method for P18 N PI ME
The Absorption Spectrum and Specificity of P18 N PI ME
Linearity
Precision
Accuracy
2.2. Characterization of P18 N PI ME-Loaded SLNs
2.2.1. Nanoparticle Size, Polydispersity Index (PDI), and Zeta Potential
2.2.2. Determination of Drug-Loading Capacity
2.3. In Vitro P18 N PI ME Release Studies
2.4. Photostability Studies
2.5. 1O2 Photogeneration
2.6. In Vitro Photocytotoxicity Studies
3. Materials and Methods
3.1. Materials
3.2. Synthesis of P18 N PI ME
3.3. Preparation of P18 N PI ME-Loaded SLNs
3.4. Characterization of P18 N PI ME
3.4.1. NMR Spectroscopy
3.4.2. Development of Analytical Method for P18 N PI ME
Linearity
Precision and Accuracy
3.5. Characterization of P18 N PI ME-Loaded SLNs
3.5.1. Determination of Particle Characteristics
3.5.2. Determination of Drug-Loading Capacity
3.6. In Vitro Release Studies
3.7. Photostability Studies
3.8. 1O2 Photogeneration
3.9. In Vitro Photocytotoxicity Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Dabo-Trubelja, A.; Gottumukkala, V. Review of cancer therapies for the perioperative physician. Perioper. Med. 2023, 12, 25. [Google Scholar] [CrossRef]
- Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.-W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 2014, 1, 24. [Google Scholar] [CrossRef] [PubMed]
- Rominiyi, O.; Vanderlinden, A.; Clenton, S.J.; Bridgewater, C.; Al-Tamimi, Y.; Collis, S.J. Tumour treating fields therapy for glioblastoma: Current advances and future directions. Br. J. Cancer 2021, 124, 697–709. [Google Scholar] [CrossRef]
- Abbas, Z.; Rehman, S. An overview of cancer treatment modalities. Neoplasm 2018, 1, 139–157. [Google Scholar]
- Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Kurokawa, H.; Ito, H.; Matsui, H. Porphylipoprotein accumulation and porphylipoprotein photodynamic therapy effects involving cancer cell-specific cytotoxicity. Int. J. Mol. Sci. 2021, 22, 7306. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy–mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Grumezescu, A.M. Photodynamic therapy—An up-to-date review. Appl. Sci. 2021, 11, 3626. [Google Scholar] [CrossRef]
- Skalerič, E.; Petelin, M.; Gašpirc, B. Antimicrobial photodynamic therapy in treatment of aggressive periodontitis (stage III, grade C periodontitis): A comparison between photodynamic therapy and antibiotic therapy as an adjunct to non-surgical periodontal treatment. Photodiagnosis Photodyn. Ther. 2023, 41, 103251. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Cao, S.; Cheung, P.P.-H.; Zheng, X.; Leung, C.W.T.; Peng, Q.; Shuai, Z.; Tang, B.Z.; Yao, S.; Huang, X. Real-time monitoring of hydrophobic aggregation reveals a critical role of cooperativity in hydrophobic effect. Nat. Commun. 2017, 8, 15639. [Google Scholar] [CrossRef]
- Kumar, S.; Dilbaghi, N.; Saharan, R.; Bhanjana, G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience 2012, 2, 227–250. [Google Scholar] [CrossRef]
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 2020, 7, 587997. [Google Scholar] [CrossRef]
- Liu, M.; Wang, F.; Pu, C.; Tang, W.; Sun, Q. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier. Food Chem. 2021, 358, 129840. [Google Scholar] [CrossRef]
- Ma, Y.; Zhuang, Z.; Xing, L.; Li, J.; Yang, Z.; Ji, S.; Hu, R.; Zhao, Z.; Huo, Y.; Tang, B.Z. The AIE-active dual-cationic molecular engineering: Synergistic effect of dark toxicity and phototoxicity for anticancer therapy. Adv. Funct. Mater. 2021, 31, 2106988. [Google Scholar] [CrossRef]
- Sharifi, M.; Cho, W.C.; Ansariesfahani, A.; Tarharoudi, R.; Malekisarvar, H.; Sari, S.; Bloukh, S.H.; Edis, Z.; Amin, M.; Gleghorn, J.P. An updated review on EPR-based solid tumor targeting nanocarriers for cancer treatment. Cancers 2022, 14, 2868. [Google Scholar] [CrossRef]
- Lin, X.; Jiang, X.; Xu, Y.; Liu, R.; Zhang, N.; Li, R.; Xiang, H.; Zhao, C.; Zhao, Z.; Zeng, W. Perfluorocarbon-encapsulated porphyrin-lipid nanoparticles as a photoactive pyroptosis inducer for cancer therapy. J. Biomed. Nanotech. 2023, 19, 28–35. [Google Scholar] [CrossRef]
- Lima, A.M.; Dal Pizzol, C.; Monteiro, F.B.; Creczynski-Pasa, T.B.; Andrade, G.P.; Ribeiro, A.O.; Perussi, J.R. Hypericin encapsulated in solid lipid nanoparticles: Phototoxicity and photodynamic efficiency. J. Photochem. Photobiol. B Biol. 2013, 125, 146–154. [Google Scholar] [CrossRef]
- Yeo, S.; Song, H.H.; Kim, M.J.; Hong, S.; Yoon, I.; Lee, W.K. Synthesis and design of purpurin-18-loaded solid lipid nanoparticles for improved anticancer efficiency of photodynamic therapy. Pharmaceutics 2022, 14, 1064. [Google Scholar] [CrossRef]
- Kou, J.; Dou, D.; Yang, L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget 2017, 8, 81591. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Qin, K.; Li, F.; Chen, W. Comparative study of cancer profiles between 2020 and 2022 using global cancer statistics (GLOBOCAN). J. Natl. Cancer Cent. 2024, 4, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Pi, C.; Zhao, W.; Zeng, M.; Yuan, J.; Shen, H.; Li, K.; Su, Z.; Liu, Z.; Wen, J.; Song, X. Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Deliv. 2022, 29, 1878–1891. [Google Scholar] [CrossRef]
- Sofiqul, I.; Murugan, V. Development of validation of a rapid and simple analytical separation method for anticancer alkylating agents using application of total error concept. J. Res. Pharm. 2022, 26, 431. [Google Scholar] [CrossRef]
- Yeo, S.; Yoon, I.; Lee, W.K. Design and characterisation of pH-responsive photosensitiser-loaded nano-transfersomes for enhanced photodynamic therapy. Pharmaceutics 2022, 14, 210. [Google Scholar] [CrossRef]
- Diaz-Diestra, D.; Gholipour, H.M.; Bazian, M.; Thapa, B.; Beltran-Huarac, J. Photodynamic therapeutic effect of nanostructured metal sulfide photosensitizers on cancer treatment. Nanoscale Res. Lett. 2022, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, Y.; Choi, W.; Jangili, P.; Ge, Y.; Xu, Y.; Kang, J.; Liu, L.; Zhang, B.; Xie, Z. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem. Soc. Rev. 2021, 50, 9152–9201. [Google Scholar] [CrossRef]
- Gundogdu, E.; Demir, E.-S.; Ekinci, M.; Ozgenc, E.; Ilem-Ozdemir, D.; Senyigit, Z.; Gonzalez-Alvarez, I.; Bermejo, M. An innovative formulation based on nanostructured lipid carriers for imatinib delivery: Pre-formulation, cellular uptake and cytotoxicity studies. Nanomaterials 2022, 12, 250. [Google Scholar] [CrossRef]
- Nelemans, L.C.; Gurevich, L. Drug delivery with polymeric nanocarriers—Cellular uptake mechanisms. Materials 2020, 13, 366. [Google Scholar] [CrossRef]
- Sultana, S.; Alzahrani, N.; Alzahrani, R.; Alshamrani, W.; Aloufi, W.; Ali, A.; Najib, S.; Siddiqui, N.A. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J. Drug Target. 2020, 28, 468–486. [Google Scholar] [CrossRef]
- Le, T.N.Q.; Tran, N.N.; Escribà-Gelonch, M.; Serra, C.A.; Fisk, I.; McClements, D.J.; Hessel, V. Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chem. Soc. Rev. 2021, 50, 11979–12012. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Italiya, K.S.; Narisepalli, S.; Chitkara, D.; Mittal, A. Role of chain length and degree of unsaturation of fatty acids in the physicochemical and pharmacological behavior of drug–fatty acid conjugates in diabetes. J. Med. Chem. 2021, 64, 14217–14229. [Google Scholar] [CrossRef] [PubMed]
- Arellano, H.; Nardello-Rataj, V.; Szunerits, S.; Boukherroub, R.; Fameau, A.-L. Saturated long chain fatty acids as possible natural alternative antibacterial agents: Opportunities and challenges. Adv. Colloid Interface Sci. 2023, 318, 102952. [Google Scholar] [CrossRef] [PubMed]
- Gershanik, T.; Benita, S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm. 2000, 50, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O’Neill, F.; Roberts, M. Surfactant effects on lipid-based vesicles properties. J. Pharm. Sci. 2018, 107, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Ishak, K.; Annuar, M.S.M.; Ahmad, N. Optimization of water/oil/surfactant system for preparation of medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA)-incorporated nanoparticles via nanoemulsion templating technique. Appl. Biochem. Biotechnol. 2017, 183, 1191–1208. [Google Scholar] [CrossRef]
- Yoo, J.; Won, Y.-Y. Phenomenology of the initial burst release of drugs from PLGA microparticles. ACS Biomater. Sci. Eng. 2020, 6, 6053–6062. [Google Scholar] [CrossRef]
- Zoubari, G.; Staufenbiel, S.; Volz, P.; Alexiev, U.; Bodmeier, R. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur. J. Pharm. Biopharm. 2017, 110, 39–46. [Google Scholar] [CrossRef]
- Kumari, A.; Guliani, A.; Shukla, A.K.; Kumar, S.; Acharya, A. Green surfactant based synthesis of curcumin loaded poly lactic-co-glycolic acid nanoparticles with enhanced solubility, photo-stability and anti-biofilm activity. J. Drug Deliv. Sci. Technol. 2020, 59, 101884. [Google Scholar] [CrossRef]
- Gerasimovich, E.; Kriukova, I.; Shishkov, V.V.; Efremov, Y.M.; Timashev, P.S.; Karaulov, A.; Nabiev, I.; Sukhanova, A. Interaction of Serum and Plasma Proteins with Polyelectrolyte Microparticles with Core/Shell and Shell-Only Structures. ACS Omega 2024, 9, 29739–29750. [Google Scholar] [CrossRef]
- Gupta, T.; Singh, J.; Kaur, S.; Sandhu, S.; Singh, G.; Kaur, I.P. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness. Front. Bioeng. Biotechnol. 2020, 8, 879. [Google Scholar] [CrossRef]
- Ioele, G.; Grande, F.; De Luca, M.; Occhiuzzi, M.A.; Garofalo, A.; Ragno, G. Photodegradation of anti-inflammatory drugs: Stability tests and lipid nanocarriers for their photoprotection. Molecules 2021, 26, 5989. [Google Scholar] [CrossRef]
- Sarella, P.N.K.; Vegi, S.; Vendi, V.K.; Vipparthi, A.K.; Valluri, S. A Promising Frontier in Nanotechnology-based Drug Delivery. Asian J. Pharm. Res. 2024, 14, 153. [Google Scholar] [CrossRef]
- Jana, B.; Thomas, A.P.; Kim, S.; Lee, I.S.; Choi, H.; Jin, S.; Park, S.A.; Min, S.K.; Kim, C.; Ryu, J.H. Self-Assembly of Mitochondria-Targeted Photosensitizer to Increase Photostability and Photodynamic Therapeutic Efficacy in Hypoxia. Chem.-Eur. J. 2020, 26, 10695–10701. [Google Scholar] [CrossRef]
- Li, N.; Sun, C.; Jiang, J.; Wang, A.; Wang, C.; Shen, Y.; Huang, B.; An, C.; Cui, B.; Zhao, X. Advances in controlled-release pesticide formulations with improved efficacy and targetability. J. Agric. Food Chem. 2021, 69, 12579–12597. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Xu, T.; Wang, C.; Gan, C. The stabilization and antioxidant performances of coenzyme Q10-loaded niosomes coated by PEG and chitosan. J. Mol. Liq. 2021, 325, 115194. [Google Scholar] [CrossRef]
- Lee, T.H.; Liu, Y.; Kim, H.J.; Lee, S.H.; Song, H.H.; Shim, Y.K.; Lee, W.K.; Yoon, I. Mitochondrial targeting cationic purpurinimide–polyoxometalate supramolecular complexes for enhanced photodynamic therapy with reduced dark toxicity. Eur. J. Inorg. Chem. 2021, 2021, 3211–3223. [Google Scholar] [CrossRef]
No | Recovery (%) |
---|---|
1 | 100.95 |
2 | 101.43 |
3 | 100.95 |
4 | 101.43 |
5 | 100.95 |
6 | 100.48 |
Average | 101.03 |
SD | 0.33 |
RSD | 0.32 |
Drug (ppm) | No. | Recovery (%) | Average (%) | SD (%) | RSD (%) |
---|---|---|---|---|---|
5 | 1 | 103.70 | 103.29 | 0.58 | 0.56 |
2 | 103.70 | ||||
3 | 102.47 | ||||
20 | 1 | 101.43 | 100.95 | 0.39 | 0.39 |
2 | 100.95 | ||||
3 | 100.48 | ||||
100 | 1 | 99.57 | 99.75 | 0.18 | 0.18 |
2 | 99.68 | ||||
3 | 100.00 |
Test Substance | HeLa (μM) | A549 (μM) | Particle Size (nm) | LE (%) |
---|---|---|---|---|
P18 N PI ME | 0.91 | 0.95 | N/A | N/A |
F1 | 0.87 | 0.78 | 248.43 ± 3.47 | 65.66 ± 4.48 |
F2 | 0.81 | 0.72 | 210.10 ± 2.73 | 67.31 ± 4.02 |
F3 | 0.77 | 0.69 | 174.59 ± 10.16 | 70.44 ± 7.69 |
F4 | 0.74 | 0.64 | 158.59 ± 26.29 | 77.67 ± 6.87 |
Drug (mg) | Lipid (mg) | Surfactant (mg) | |||
---|---|---|---|---|---|
P18 N PI ME | PA | GMS | TW 20 | PX 188 | |
F1 | 5 | 50 | 100 | ||
F2 | 5 | 50 | 100 | ||
F3 | 5 | 50 | 100 | ||
F4 | 5 | 50 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, S.; Wu, H.; Yoon, I.; Kim, H.-S.; Song, Y.K.; Lee, W.K. Enhanced Photodynamic Therapy Efficacy through Solid Lipid Nanoparticle of Purpurin-18-N-Propylimide Methyl Ester for Cancer Treatment. Int. J. Mol. Sci. 2024, 25, 10382. https://doi.org/10.3390/ijms251910382
Yeo S, Wu H, Yoon I, Kim H-S, Song YK, Lee WK. Enhanced Photodynamic Therapy Efficacy through Solid Lipid Nanoparticle of Purpurin-18-N-Propylimide Methyl Ester for Cancer Treatment. International Journal of Molecular Sciences. 2024; 25(19):10382. https://doi.org/10.3390/ijms251910382
Chicago/Turabian StyleYeo, Sooho, Huiqiang Wu, Il Yoon, Hye-Soo Kim, Young Kyu Song, and Woo Kyoung Lee. 2024. "Enhanced Photodynamic Therapy Efficacy through Solid Lipid Nanoparticle of Purpurin-18-N-Propylimide Methyl Ester for Cancer Treatment" International Journal of Molecular Sciences 25, no. 19: 10382. https://doi.org/10.3390/ijms251910382
APA StyleYeo, S., Wu, H., Yoon, I., Kim, H. -S., Song, Y. K., & Lee, W. K. (2024). Enhanced Photodynamic Therapy Efficacy through Solid Lipid Nanoparticle of Purpurin-18-N-Propylimide Methyl Ester for Cancer Treatment. International Journal of Molecular Sciences, 25(19), 10382. https://doi.org/10.3390/ijms251910382