TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis
Abstract
:1. Introduction
2. Cystic Fibrosis and CFTR Dysfunction
2.1. Advancements in CF Clinical Care
2.2. Mechanisms of Mucus Dehydration and Impaired Mucociliary Clearance
3. TRP Channels in Cystic Fibrosis
4. TRPV4 Channel’s Structure and Functions
4.1. Molecular Structure of TRPV4
4.2. Physiological Roles of TRPV4 in Respiratory Epithelium
5. TRPV4 Modulation in CF
5.1. TRPV4 and CBF Regulations
5.2. TRPV4’s Role in Restoring the Regulatory Volume Decrease (RVD) Process
5.3. TRPV4 Modulates Inflammatory Responses in CF
5.4. TRPV4 Activates CFTR Channels in CF Airway Epithelia
6. Pharmacological Modulators of TRPV4
Activators | Chemical Structure | Species | pEC50 (µM) | Remarks | References |
GSK1016790A | Human Mouse | 8.7 7.7 | A potent and selective TRPV4 activator induces Ca2+ influx | [113,122,123] | |
4α-PDD | Human | 6.5 | Known to activate TRPV4; it increases the ciliary beat frequency | [72,123,124] | |
RN-1747 | Human Mouse Rat | 6.1 5.4 5.4 | Selective TRPV4 agonist | [106,123] | |
Inhibitors | Chemical Structure | Species | IC50 (nM) | Remarks | References |
GSK2798745 | Human Rat | 1.8 1.6 | A potent inhibitor and selective and orally active TRPV4 ion channel | [119,120,125] | |
HC-067047 | Human Rat Mouse | 48 133 17 | A potent and selective TRPV4 inhibitor | [126] | |
GSK2193874 | Human Rat | 40 2 | A potent, orally active, and selective TRPV4 blocker | [127] | |
PF-05214030 | Human Rat | 4 27 | A TRPV4 inhibitor | [118,128] |
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Adenosine triphosphate (ATP) |
Airway surface liquid (ASL) |
Big conductance Ca2+-activated K+ (BK) |
Calcium (Ca2+) |
Cystic fibrosis (CF) |
Cystic fibrosis transmembrane conductance regulator (CFTR) |
Ciliary beat frequency (CBF) |
Calcium-dependent chloride channel (CaCC) |
Chronic obstructive pulmonary disease (COPD) |
Epithelial sodium channels (ENac) |
Magnesium (Mg2+) |
Mucociliary clearance (MCC) |
Periciliary liquid (PCL) |
Potassium (K+) |
Pulmonary artery smooth muscle cells (PASMCs) |
Regulatory volume decrease (RVD) |
Transmembrane helices (TMs) |
Transient receptor potential vanilloid (TRPV) |
Voltage sensor-like domain (VSLD) |
Voltage-gated ion channels (VGICs) |
Wild type (WT) |
References
- Vanaki, S.M.; Holmes, D.; Saha, S.C.; Chen, J.; Brown, R.J.; Jayathilake, P.G. Muco-ciliary clearance: A review of modelling techniques. J. Biomech. 2020, 99, 109578. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.F. The cell biological basis of ciliary disease. J. Cell Biol. 2008, 180, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Kuek, L.E.; Lee, R.J. First contact: The role of respiratory cilia in host-pathogen interactions in the airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L603–L619. [Google Scholar] [CrossRef]
- Joskova, M.; Mokry, J.; Franova, S. Respiratory Cilia as a Therapeutic Target of Phosphodiesterase Inhibitors. Front. Pharmacol. 2020, 11, 609. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, M.; Dong, D.; Xie, S.; Liu, M. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. Thorac. Cancer 2020, 11, 505–510. [Google Scholar] [CrossRef]
- Horani, A.; Ferkol, T.W. Understanding Primary Ciliary Dyskinesia and Other Ciliopathies. J. Pediatr. 2021, 230, 15–22.e1. [Google Scholar] [CrossRef] [PubMed]
- Mall, M.A. Role of Cilia, Mucus, and Airway Surface Liquid in Mucociliary Dysfunction: Lessons from Mouse Models. J. Aerosol Med. Pulm. Drug Deliv. 2008, 21, 13–24. [Google Scholar] [CrossRef]
- TRPV4 Activation Triggers Protective Responses to Bacterial Lipopolysaccharides in Airway Epithelial Cells|Nature Communi-Cations n.d. Available online: https://www.nature.com/articles/s41467-017-01201-3 (accessed on 31 July 2024).
- Alenmyr, L.; Uller, L.; Greiff, L.; Högestätt, E.D.; Zygmunt, P.M. TRPV4-Mediated Calcium Influx and Ciliary Activity in Human Native Airway Epithelial Cells. Basic Clin. Pharmacol. Toxicol. 2014, 114, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, T.; Benítez-Angeles, M.; Sánchez-Hernández, R.; Morales-Lázaro, S.L.; Hiriart, M.; Morales-Buenrostro, L.E.; Torres-Quiroz, F. TRPV4: A Physio and Pathophysiologically Significant Ion Channel. Int. J. Mol. Sci. 2020, 21, 3837. [Google Scholar] [CrossRef]
- Lawhorn, B.G.; Brnardic, E.J.; Behm, D.J. Recent advances in TRPV4 agonists and antagonists. Bioorganic Med. Chem. Lett. 2020, 30, 127022. [Google Scholar] [CrossRef] [PubMed]
- Grebert, C.; Becq, F.; Vandebrouck, C. Focus on TRP channels in cystic fibrosis. Cell Calcium 2019, 81, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Adapala, R.K.; Katari, V.; Teegala, L.R.; Thodeti, S.; Paruchuri, S.; Thodeti, C.K. TRPV4 Mechanotransduction in Fibrosis. Cells 2021, 10, 3053. [Google Scholar] [CrossRef] [PubMed]
- Paranjape, S.M.; Mogayzel, P.J. Cystic fibrosis in the era of precision medicine. Paediatr. Respir. Rev. 2018, 25, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.; Ramsey, B.W. Cystic Fibrosis: A Review. JAMA 2023, 329, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
- Bierlaagh, M.C.; Muilwijk, D.; Beekman, J.M.; van der Ent, C.K. A new era for people with cystic fibrosis. Eur. J. Pediatr. 2021, 180, 2731–2739. [Google Scholar] [CrossRef]
- Tilley, A.E.; Walters, M.S.; Shaykhiev, R.; Crystal, R.G. Cilia dysfunction in lung disease. Annu. Rev. Physiol. 2015, 77, 379–406. [Google Scholar] [CrossRef]
- McBennett, K.A.; Davis, P.B.; Konstan, M.W. Increasing life expectancy in cystic fibrosis: Advances and challenges. Pediatr. Pulmonol. 2021, 57, S5–S12. [Google Scholar] [CrossRef]
- Dickinson, K.M.; Collaco, J.M. Cystic Fibrosis. Pediatr. Rev. 2021, 42, 55–67. [Google Scholar] [CrossRef]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.-R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef]
- Bhowmik, A.; Chahal, K.; Austin, G.; Chakravorty, I. Improving mucociliary clearance in chronic obstructive pulmonary disease. Respir. Med. 2009, 103, 496–502. [Google Scholar] [CrossRef]
- Gentzsch, M.; Mall, M.A. Ion Channel Modulators in Cystic Fibrosis. Chest 2018, 154, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Bartoszewski, R.; Matalon, S.; Collawn, J.F. Ion channels of the lung and their role in disease pathogenesis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L859–L872. [Google Scholar] [CrossRef]
- Collawn, J.F.; Matalon, S. CFTR and lung homeostasis. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L917–L923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vega, G.; Guequén, A.; Philp, A.R.; Gianotti, A.; Arzola, L.; Villalón, M.; Zegarra-Moran, O.; Galietta, L.J.; Mall, M.A.; Flores, C.A. Lack of Kcnn4 improves mucociliary clearance in muco-obstructive lung disease. JCI Insight 2020, 5, e140076. [Google Scholar] [CrossRef] [PubMed]
- Kunzelmann, K.; Schreiber, R.; Hadorn, H.B. Bicarbonate in cystic fibrosis. J. Cyst. Fibros. 2017, 16, 653–662. [Google Scholar] [CrossRef]
- Genovese, M.; Borrelli, A.; Venturini, A.; Guidone, D.; Caci, E.; Viscido, G.; Gambardella, G.; di Bernardo, D.; Scudieri, P.; Galietta, L.J. TRPV4 and purinergic receptor signalling pathways are separately linked in airway epithelia to CFTR and TMEM16A chloride channels. J. Physiol. 2019, 597, 5859–5878. [Google Scholar] [CrossRef] [PubMed]
- Mall, M.A.; Galietta, L.J.V. Targeting ion channels in cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2015, 14, 561–570. [Google Scholar] [CrossRef]
- Knowles, M.R.; Clarke, L.L.; Boucher, R.C. Activation by Extracellular Nucleotides of Chloride Secretion in the Airway Epithelia of Patients with Cystic Fibrosis. N. Engl. J. Med. 1991, 325, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Orfali, R.; AlFaiz, A.; Rahman, M.A.; Lau, L.; Nam, Y.-W.; Zhang, M. KCa2 and KCa3.1 Channels in the Airways: A New Therapeutic Target. Biomedicines 2023, 11, 1780. [Google Scholar] [CrossRef]
- Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 2011, 12, 218. [Google Scholar] [CrossRef] [PubMed]
- Doerner, J.F.; Delling, M.; Clapham, D.E. Ion channels and calcium signaling in motile cilia. eLife 2015, 4, e11066. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A. Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals 2019, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Nilius, B. TRP channels in disease. Biochim. et Biophys. Acta (BBA)—Mol. Basis Dis. 2007, 1772, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, L.S. Transient Receptor Potential Channels as Targets for Phytochemicals. ACS Chem. Neurosci. 2014, 5, 1117–1130. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A.; Steinritz, D.; Gudermann, T. Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases. Cell Calcium 2017, 67, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Target. Ther. 2023, 8, 1–38. [Google Scholar] [CrossRef]
- Rather, M.A.; Khan, A.; Wang, L.; Jahan, S.; Rehman, M.U.; Makeen, H.A.; Mohan, S. TRP channels: Role in neurodegenerative diseases and therapeutic targets. Heliyon 2023, 9, e16910. [Google Scholar] [CrossRef]
- Gees, M.; Colsoul, B.; Nilius, B. The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling. Cold Spring Harb. Perspect. Biol. 2010, 2, a003962. [Google Scholar] [CrossRef]
- Yue, L.; Xu, H. TRP channels in health and disease at a glance. J. Cell Sci. 2021, 134, jcs258372. [Google Scholar] [CrossRef]
- Koivisto, A.-P.; Belvisi, M.G.; Gaudet, R.; Szallasi, A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov. 2022, 21, 41–59. [Google Scholar] [CrossRef]
- Müller, I.; Alt, P.; Rajan, S.; Schaller, L.; Geiger, F.; Dietrich, A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022, 11, 2907. [Google Scholar] [CrossRef] [PubMed]
- Prandini, P.; De Logu, F.; Fusi, C.; Provezza, L.; Nassini, R.; Montagner, G.; Materazzi, S.; Munari, S.; Gilioli, E.; Bezzerri, V.; et al. Transient Receptor Potential Ankyrin 1 Channels Modulate Inflammatory Response in Respiratory Cells from Patients with Cystic Fibrosis. Am. J. Respir. Cell Mol. Biol. 2016, 55, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Transient Receptor Potential Canonical Channel 6 Links Ca2+ Mishandling to Cystic Fibrosis Transmembrane Conductance Regu-Lator Channel Dysfunction in Cystic Fibrosis—PubMed n.d. Available online: https://pubmed.ncbi.nlm.nih.gov/20203293/ (accessed on 2 August 2024).
- Becker, D.; Blase, C.; Bereiter-Hahn, J.; Jendrach, M. TRPV4 exhibits a functional role in cell-volume regulation. J. Cell Sci. 2005, 118, 2435–2440. [Google Scholar] [CrossRef]
- Mendoza, S.A.; Fang, J.; Gutterman, D.D.; Wilcox, D.A.; Bubolz, A.H.; Li, R.; Suzuki, M.; Zhang, D.X. TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am. J. Physiol. Heart Circ. Physiol. 2009, 298, H466–H476. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, N.M.; Ravindran, K.; Kuebler, W.M. TRPV4: Physiological role and therapeutic potential in respiratory diseases. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015, 388, 421–436. [Google Scholar] [CrossRef]
- Reyes-García, J.; Carbajal-García, A.; Montaño, L.M. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur. J. Pharmacol. 2022, 915, 174692. [Google Scholar] [CrossRef]
- Achanta, S.; Jordt, S. Transient receptor potential (TRP) channels in pulmonary chemical injuries and as countermeasure targets. Ann. N. Y. Acad. Sci. 2020, 1480, 73–103. [Google Scholar] [CrossRef]
- Nabissi, M.; Marinelli, O.; Morelli, M.B.; Nicotra, G.; Iannarelli, R.; Amantini, C.; Santoni, G.; Maggi, F. Thyme extract increases mucociliary-beating frequency in primary cell lines from chronic obstructive pulmonary disease patients. Biomed. Pharmacother. 2018, 105, 1248–1253. [Google Scholar] [CrossRef]
- Xiao, T.; Sun, M.; Zhao, C.; Kang, J. TRPV1: A promising therapeutic target for skin aging and inflammatory skin diseases. Front. Pharmacol. 2023, 14, 1037925. [Google Scholar] [CrossRef] [PubMed]
- Arnold, W.R.; Mancino, A.; Moss, F.R.; Frost, A.; Julius, D.; Cheng, Y. Structural basis of TRPV1 modulation by endogenous bioactive lipids. Nat. Struct. Mol. Biol. 2024, 31, 1377–1385. [Google Scholar] [CrossRef]
- Omar, S.; Clarke, R.; Abdullah, H.; Brady, C.; Corry, J.; Winter, H.; Touzelet, O.; Power, U.F.; Lundy, F.; McGarvey, L.P.A.; et al. Data from: Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells. PLoS ONE 2017, 12, e0171681. [Google Scholar] [CrossRef] [PubMed]
- The Emerging Role of Transient Receptor Potential Channels in Chronic Lung Disease|European Respiratory Society n.d. Available online: https://erj.ersjournals.com/content/50/2/1601357 (accessed on 3 August 2024).
- McGarvey, L.P.; Butler, C.A.; Stokesberry, S.; Polley, L.; McQuaid, S.; Abdullah, H.; Ashraf, S.; McGahon, M.K.; Curtis, T.M.; Arron, J.; et al. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J. Allergy Clin. Immunol. 2014, 133, 704–712.e4. [Google Scholar] [CrossRef] [PubMed]
- Siveen, K.S.; Nizamuddin, P.B.; Uddin, S.; Al-Thani, M.; Frenneaux, M.P.; Janahi, I.A.; Steinhoff, M.; Azizi, F. TRPV2: A Cancer Biomarker and Potential Therapeutic Target. Dis. Markers 2020, 2020, 8892312. [Google Scholar] [CrossRef]
- TRPV2 Transient Receptor Potential Cation Channel Subfamily V Member 2 [Homo Sapiens (Human)]—Gene—NCBI n.d. Available online: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=51393 (accessed on 3 August 2024).
- Lei, J.; Tominaga, M. Unlocking the therapeutic potential of TRPV3: Insights into thermosensation, channel modulation, and skin homeostasis involving TRPV3. BioEssays 2024, 46, 2400047. [Google Scholar] [CrossRef]
- TRPV3 Transient Receptor Potential Cation Channel Subfamily V Member 3 [Homo Sapiens (Human)]—Gene—NCBI n.d. Available online: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=162514 (accessed on 3 August 2024).
- Ürel-Demir, G.; Şimşek-Kiper, P.; Öncel, I.; Utine, G.E.; Haliloğlu, G.; Boduroğlu, K. Natural history of TRPV4-Related disorders: From skeletal dysplasia to neuromuscular phenotype. Eur. J. Paediatr. Neurol. 2021, 32, 46–55. [Google Scholar] [CrossRef]
- Peng, J.-B.; Suzuki, Y.; Gyimesi, G.; Hediger, M.A. TRPV5 and TRPV6 Calcium-Selective Channels. In Calcium Entry Channels in Non-Excitable Cells; Kozak, J.A., Putney, J.W., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2018. [Google Scholar]
- Wang, Y.; Deng, X.; Zhang, R.; Lyu, H.; Xiao, S.; Guo, D.; Ali, D.W.; Michalak, M.; Zhou, C.; Chen, X.-Z.; et al. The TRPV6 Calcium Channel and Its Relationship with Cancer. Biology 2024, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Paknejad, N.; Maksaev, G.; Sala-Rabanal, M.; Nichols, C.G.; Hite, R.K.; Yuan, P. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat. Struct. Mol. Biol. 2018, 25, 252–260. [Google Scholar] [CrossRef]
- TRPV4: Molecular Conductor of a Diverse Orchestra|Physiological Reviews n.d. Available online: https://journals.physiology.org/doi/full/10.1152/physrev.00016.2015 (accessed on 29 September 2024).
- Arcos-Hernández, C.; Nishigaki, T. Ion currents through the voltage sensor domain of distinct families of proteins. J. Biol. Phys. 2023, 49, 393–413. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.; Schremmer, C.; Weber, J.; Alt, P.; Geiger, F.; Dietrich, A. Ca2+ Signaling by TRPV4 Channels in Respiratory Function and Disease. Cells 2021, 10, 822. [Google Scholar] [CrossRef]
- D’HOedt, D.; Owsianik, G.; Prenen, J.; Cuajungco, M.P.; Grimm, C.; Heller, S.; Voets, T.; Nilius, B. Stimulus-specific Modulation of the Cation Channel TRPV4 by PACSIN 3. J. Biol. Chem. 2008, 283, 6272–6280. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, K. TRPV4 activation by thermal and mechanical stimuli in disease progression. Lab Invest. 2020, 100, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Structure of Human TRPV4 in Complex with GTPase RhoA|Nature Communications n.d. Available online: https://www.nature.com/articles/s41467-023-39346-z (accessed on 19 September 2024).
- Goretzki, B.; Glogowski, N.A.; Diehl, E.; Duchardt-Ferner, E.; Hacker, C.; Gaudet, R.; Hellmich, U.A. Structural Basis of TRPV4 N Terminus Interaction with Syndapin/PACSIN1-3 and PIP2. Structure 2018, 26, 1583–1593.e5. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yu, Y.; Yang, J. Structural Biology of TRP Channels. Adv. Exp. Med. Biol. 2011, 704, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Zaman, M.d.K.; Das, S.; Goyary, D.; Pathak, M.P.; Chattopadhyay, P. Transient Receptor Potential Vanilloid (TRPV4) channel inhibition: A novel promising approach for the treatment of lung diseases. Biomed. Pharmacother. 2023, 163, 114861. [Google Scholar] [CrossRef] [PubMed]
- Morty, R.E.; Kuebler, W.M. TRPV4: An exciting new target to promote alveolocapillary barrier function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 307, L817–L821. [Google Scholar] [CrossRef] [PubMed]
- Transient Receptor Potential Vanilloid 4–Mediated Disruption of the Alveolar Septal Barrier|Circulation Research n.d. Available online: https://www.ahajournals.org/doi/full/10.1161/01.RES.0000247065.11756.19 (accessed on 11 August 2024).
- Yang, X.-R.; Lin, A.H.Y.; Hughes, J.M.; Flavahan, N.A.; Cao, Y.-N.; Liedtke, W.; Sham, J.S.K. Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L555–L568. [Google Scholar] [CrossRef]
- Nishimoto, R.; Derouiche, S.; Eto, K.; Deveci, A.; Kashio, M.; Kimori, Y.; Matsuoka, Y.; Morimatsu, H.; Nabekura, J.; Tominaga, M. Thermosensitive TRPV4 channels mediate temperature-dependent microglia movement. Proc. Natl. Acad. Sci. USA 2021, 118, e2012894118. [Google Scholar] [CrossRef]
- Endothelial TRPV4 Channels in Lung Edema and Injury—PMC n.d. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744595/ (accessed on 12 August 2024).
- Xia, Y.; Fu, Z.; Hu, J.; Huang, C.; Paudel, O.; Cai, S.; Liedtke, W.; Sham, J.S.K. TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension. Am. J. Physiol. Cell Physiol. 2013, 305, C704–C715. [Google Scholar] [CrossRef]
- TRPV4 Channels Are Essential for Alveolar Epithelial Barrier Function as Protection from Lung Edema—PMC n.d. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605532/ (accessed on 11 August 2024).
- Lorenzo, I.M.; Liedtke, W.; Sanderson, M.J.; Valverde, M.A. TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proc. Natl. Acad. Sci. USA 2008, 105, 12611–12616. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.D.; Moss, C.R.; Kettelhut, K.L.; Gilbert, C.A.; Hu, H. Activation of TRPV4 Regulates Respiration through Indirect Activation of Bronchopulmonary Sensory Neurons. Front. Physiol. 2016, 7, 65. [Google Scholar] [CrossRef]
- Heathcote, H.R.; Lee, M.D.; Zhang, X.; Saunter, C.D.; Wilson, C.; McCarron, J.G. Endothelial TRPV4 channels modulate vascular tone by Ca2+-induced Ca2+ release at inositol 1,4,5-trisphosphate receptors. Br. J. Pharmacol. 2019, 176, 3297–3317. [Google Scholar] [CrossRef] [PubMed]
- Filosa, J.A.; Yao, X.B.; Rath, G. TRPV4 and the Regulation of Vascular Tone. J. Cardiovasc. Pharmacol. 2013, 61, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Scheraga, R.G.; Southern, B.D.; Grove, L.M.; Olman, M.A. The Role of TRPV4 in Regulating Innate Immune Cell Function in Lung Inflammation. Front. Immunol. 2020, 11, 1211. [Google Scholar] [CrossRef]
- Li, J.; Kanju, P.; Patterson, M.; Chew, W.L.; Cho, S.-H.; Gilmour, I.; Oliver, T.; Yasuda, R.; Ghio, A.; Simon, S.A.; et al. TRPV4-Mediated Calcium Influx into Human Bronchial Epithelia upon Exposure to Diesel Exhaust Particles. Environ. Health Perspect. 2011, 119, 784–793. [Google Scholar] [CrossRef]
- Hewitt, R.J.; Lloyd, C.M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 2021, 21, 347–362. [Google Scholar] [CrossRef]
- TRPV4 Integrates Matrix Mechanosensing with Ca2+ Signaling to Regulate Extracellular Matrix Remodeling—Ji—2021—The FEBS Journal—Wiley Online Library n.d. Available online: https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15665 (accessed on 12 August 2024).
- Alpizar, Y.A.; Boonen, B.; Sanchez, A.; Jung, C.; López-Requena, A.; Naert, R.; Steelant, B.; Luyts, K.; Plata, C.; De Vooght, V.; et al. TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat. Commun. 2017, 8, 1059. [Google Scholar] [CrossRef] [PubMed]
- Ehre, C.; Ridley, C.; Thornton, D.J. Cystic fibrosis: An inherited disease affecting mucin-producing organs. Int. J. Biochem. Cell Biol. 2014, 52, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Ramananda, Y.; Naren, A.P.; Arora, K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int. J. Mol. Sci. 2024, 25, 3384. [Google Scholar] [CrossRef]
- Mucus, Mucins and Cystic Fibrosis—PMC n.d. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853602/ (accessed on 13 August 2024).
- Saint-Criq, V.; Gray, M.A. Role of CFTR in epithelial physiology. Cell. Mol. Life Sci. CMLS 2017, 74, 93–115. [Google Scholar] [CrossRef] [PubMed]
- Stefano, D.D.; Villella, V.R.; Esposito, S.; Tosco, A.; Sepe, A.; Gregorio, F.D.; Salvadori, L.; Grassia, R.; A Leone, C.; De Rosa, G.; et al. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy 2014, 10, 2053–2074. [Google Scholar] [CrossRef]
- Blaconà, G.; Raso, R.; Castellani, S.; Pierandrei, S.; Del Porto, P.; Ferraguti, G.; Ascenzioni, F.; Conese, M.; Lucarelli, M. Downregulation of epithelial sodium channel (ENaC) activity in cystic fibrosis cells by epigenetic targeting. Cell. Mol. Life Sci. 2022, 79, 257. [Google Scholar] [CrossRef] [PubMed]
- Kristensson, C.; Åstrand, A.; Donaldson, S.; Goldwater, R.; Abdulai, R.; Patel, N.; Gardiner, P.; Tehler, U.; Mercier, A.-K.; Olsson, M.; et al. AZD5634, an inhaled ENaC inhibitor, in healthy subjects and patients with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Mall, M.A. ENaC inhibition in cystic fibrosis: Potential role in the new era of CFTR modulator therapies. Eur. Respir. J. 2020, 56, 2000946. [Google Scholar] [CrossRef]
- Reduction in Viscosity of Cystic Fibrosis Sputum in Vitro by Gelsolin|Science n.d. Available online: https://www.science.org/doi/10.1126/science.8310295 (accessed on 13 August 2024).
- Ikeuchi-Yamamoto, Y.; Kogiso, H.; Saito, D.; Kawaguchi, K.; Ikeda, R.; Asano, S.; Nakahari, T. Hochu-ekki-to enhanced airway ciliary beating by an [Ca2+]i increase via TRPV4 in mice. Phytomedicine Plus 2022, 2, 100243. [Google Scholar] [CrossRef]
- Arniges, M.; Vázquez, E.; Fernández-Fernández, J.M.; Valverde, M.A. Swelling-activated Ca2+ Entry via TRPV4 Channel Is Defective in Cystic Fibrosis Airway Epithelia. J. Biol. Chem. 2004, 279, 54062–54068. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.O.; Dalloneau, E.; Pérez-Berezo, M.-T.; Plata, C.; Wu, Y.; Guillon, A.; Morello, E.; Aimar, R.-F.; Potier-Cartereau, M.; Esnard, F.; et al. In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: Potential involvement in cystic fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 311, L664–L675. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-N.; Siddiqui, G.; Veldhuis, N.A.; Poole, D.P. Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Front. Immunol. 2022, 12, 828115. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Anishkin, A.; Zinkevich, N.S.; Nishijima, Y.; Korishettar, A.; Wang, Z.; Fang, J.; Wilcox, D.; Zhang, D. Transient receptor potential vanilloid 4 (TRPV4) activation by arachidonic acid requires protein kinase A–mediated phosphorylation. J. Biol. Chem. 2018, 293, 5307–5322. [Google Scholar] [CrossRef]
- Andrade, Y.N.; Fernandes, J.; Lorenzo, I.M.; Arniges, M.; Valverde, M.A. The TRPV4 Channel in Ciliated Epithelia. In TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades; Liedtke, W.B., Heller, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
- Babaniamansour, P.; Jacho, D.; Niedzielski, S.; Rabino, A.; Garcia-Mata, R.; Yildirim-Ayan, E. Modulating TRPV4 Channel Activity in Pro-Inflammatory Macrophages within the 3D Tissue Analog. Biomedicines 2024, 12, 230. [Google Scholar] [CrossRef]
- Rimessi, A.; Vitto, V.A.M.; Patergnani, S.; Pinton, P. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Front. Pharmacol. 2021, 12, 581645. [Google Scholar] [CrossRef]
- Vincent, F.; Acevedo, A.; Nguyen, M.T.; Dourado, M.; DeFalco, J.; Gustafson, A.; Spiro, P.; Emerling, D.E.; Kelly, M.G.; Duncton, M.A. Identification and characterization of novel TRPV4 modulators. Biochem. Biophys. Res. Commun. 2009, 389, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Vincent, F.; Duncton, M.A. TRPV4 Agonists and Antagonists. Curr. Top. Med. Chem. 2011, 11, 2216–2226. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, T.; Islas, L.D. Molecular Physiology of TRPV Channels: Controversies and Future Challenges. Annu. Rev. Physiol. 2023, 85, 293–316. [Google Scholar] [CrossRef]
- Sánchez-Hernández, R.; Benítez-Angeles, M.; Hernández-Vega, A.M.; Rosenbaum, T. Recent advances on the structure and the function relationships of the TRPV4 ion channel. Channels 2024, 18, 2313323. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hu, H. Structural insights into the TRPV4-RhoA complex offer clues to solve the puzzle of TRPV4 channelopathies. Cell Calcium. 2023, 116, 102814. [Google Scholar] [CrossRef] [PubMed]
- Darby, W.G.; Grace, M.S.; Baratchi, S.; McIntyre, P. Modulation of TRPV4 by diverse mechanisms. Int. J. Biochem. Cell Biol. 2016, 78, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Birder, L.; Kullmann, F.A.; Lee, H.; Barrick, S.; de Groat, W.; Kanai, A.; Caterina, M. Activation of Urothelial Transient Receptor Potential Vanilloid 4 by 4α-Phorbol 12,13-Didecanoate Contributes to Altered Bladder Reflexes in the Rat. J. Pharmacol. Exp. Ther. 2007, 323, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Wu, Z.; Chen, L.; Jaimes, J.; Collins, D.; Walters, E.T.; O’NEil, R.G. Determinants of TRPV4 Activity following Selective Activation by Small Molecule Agonist GSK1016790A. PLoS ONE 2011, 6, e16713. [Google Scholar] [CrossRef]
- Kwon, D.; Zhang, F.; McCray, B.; Feng, S.; Kumar, M.; Sullivan, J.M.; Im, W.; Sumner, C.J.; Lee, S.-Y. TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease. Nat. Commun. 2023, 14, 1–15. [Google Scholar] [CrossRef]
- Baratchi, S.; Keov, P.; Darby, W.G.; Lai, A.; Khoshmanesh, K.; Thurgood, P.; Vahidi, P.; Ejendal, K.; McIntyre, P. The TRPV4 Agonist GSK1016790A Regulates the Membrane Expression of TRPV4 Channels. Front. Pharmacol. 2019, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Asao, Y.; Tobori, S.; Kakae, M.; Nagayasu, K.; Shibasaki, K.; Shirakawa, H.; Kaneko, S. Transient receptor potential vanilloid 4 agonist GSK1016790A improves neurological outcomes after intracerebral hemorrhage in mice. Biochem. Biophys. Res. Commun. 2020, 529, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T.; Nilius, B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 2003, 424, 434–438. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.; Wang, J.; Liu, Y.; Luo, T.; Hua, H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J. Hematol. Oncol. 2022, 15, 34. [Google Scholar] [CrossRef]
- Brooks, C.A.; Barton, L.S.; Behm, D.J.; Eidam, H.S.; Fox, R.M.; Hammond, M.; Hoang, T.H.; Holt, D.A.; Hilfiker, M.A.; Lawhorn, B.G.; et al. Discovery of GSK2798745: A Clinical Candidate for Inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4). ACS Med. Chem. Lett. 2019, 10, 1228–1233. [Google Scholar] [CrossRef]
- Goyal, N.; Skrdla, P.; Schroyer, R.; Kumar, S.; Fernando, D.; Oughton, A.; Norton, N.; Sprecher, D.L.; Cheriyan, J. Clinical Pharmacokinetics, Safety, and Tolerability of a Novel, First-in-Class TRPV4 Ion Channel Inhibitor, GSK2798745, in Healthy and Heart Failure Subjects. Am. J. Cardiovasc. Drugs Drugs Devices Interv. 2019, 19, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Michalick, L.; Kuebler, W.M. TRPV4—A Missing Link Between Mechanosensation and Immunity. Front. Immunol. 2020, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- Thorneloe, K.S.; Sulpizio, A.C.; Lin, Z.; Figueroa, D.J.; Clouse, A.K.; McCafferty, G.P.; Chendrimada, T.P.; Lashinger, E.S.R.; Gordon, E.; Evans, L.; et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-Dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a Novel and Potent Transient Receptor Potential Vanilloid 4 Channel Agonist Induces Urinary Bladder Contraction and Hyperactivity: Part I. J. Pharmacol. Exp. Ther. 2008, 326, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Blair, N.T.; Carvacho, I.; Chaudhuri, D.; Clapham, D.E.; Clerq, K.D.; Delling, M.; Doerner, J.F.; Fan, L.; Grimm, C.M.; Ha, K. Transient Receptor Potential channels (TRP) in GtoPdb v.2023.1. IUPHAR/BPS Guide Pharmacol. CITE 2023, 2023. [Google Scholar] [CrossRef]
- Watanabe, H.; Davis, J.B.; Smart, D.; Jerman, J.C.; Smith, G.D.; Hayes, P.; Vriens, J.; Cairns, W.; Wissenbach, U.; Prenen, J.; et al. Activation of TRPV4 Channels (hVRL-2/mTRP12) by Phorbol Derivatives. J. Biol. Chem. 2002, 277, 13569–13577. [Google Scholar] [CrossRef] [PubMed]
- Vermillion, M.S.; Saari, N.; Bray, M.; Nelson, A.M.; Bullard, R.L.; Rudolph, K.; Gigliotti, A.P.; Brendler, J.; Jantzi, J.; Kuehl, P.J.; et al. Effect of TRPV4 Antagonist GSK2798745 on Chlorine Gas-Induced Acute Lung Injury in a Swine Model. Int. J. Mol. Sci. 2024, 25, 3949. [Google Scholar] [CrossRef] [PubMed]
- Everaerts, W.; Zhen, X.; Ghosh, D.; Vriens, J.; Gevaert, T.; Gilbert, J.P.; Hayward, N.J.; McNamara, C.R.; Xue, F.; Moran, M.M.; et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl. Acad. Sci. USA 2010, 107, 19084–19089. [Google Scholar] [CrossRef]
- Cheung, M.; Bao, W.; Behm, D.J.; Brooks, C.A.; Bury, M.J.; Dowdell, S.E.; Eidam, H.S.; Fox, R.M.; Goodman, K.B.; Holt, D.A.; et al. Discovery of GSK2193874: An Orally Active, Potent, and Selective Blocker of Transient Receptor Potential Vanilloid 4. ACS Med. Chem. Lett. 2017, 8, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Duncton, M.A.J. Chapter 12—Small Molecule Agonists and Antagonists of TRPV4. In TRP Channels as Therapeutic Targets; Szallasi, A., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 205–219. [Google Scholar] [CrossRef]
TRPV | Human Chromosomal Location | Tissue Distribution | Physiological Roles | Reference |
---|---|---|---|---|
TRPV1 | 17p13.2 | Brain, kidney, bladder, skin, pancreas, lung macrophages, epithelial cells, T-lymphocytes | Sensing heat, pain, and inflammation | [40,51,52,53,54,55] |
TRPV2 | 17p11.2 | Heart, lung, spleen, stomach, intestine | Sensing high temperatures and mechanical stimuli | [37,56,57] |
TRPV3 | 17p13.3 | Epithelial cells, skin, tongue, nose, hair follicles | Sensing warm temperatures and being involved in hair growth | [40,58,59] |
TRPV4 | 12q24.11 | Kidney, bladder, liver, blood vessels, lungs (airway smooth muscle, epithelial cells, fibroblasts, and macrophages) | Sensing osmotic pressure, mechanical stress, and heat, maintaining organ homeostasis, including in the lungs | [8,10,13,50,54,60] |
TRPV5 | 7q34 | Kidney, placenta | Calcium homeostasis | [37,61] |
TRPV6 | 7q34 | Intestine, kidney, placenta | Calcium absorption and homeostasis | [53,61,62] |
Respiratory Cell Type | TRPV4 Channel Role | References |
---|---|---|
Pulmonary artery smooth muscle cells (PASMCs) | Regulates pulmonary blood flow and vascular tone | [82,83] |
Tracheal epithelial cells | Modulates immune response, mucus secretion, and inflammatory cytokine release | [72,84] |
Bronchial epithelial cells | Mechanotransduction, regulation of calcium signaling, and modulation of inflammatory responses | [85,86] |
Cilia of bronchial epithelial cells | Regulates ciliary beat frequency and mechanosensation | [10,87] |
Bronchopulmonary sensory neurons | Indirectly modulates respiration through sensory neuron activation | [81] |
Alveolar epithelial cells | Contributes to the alveoli–capillary barrier function, maintains epithelial barrier integrity, prevents edema formation, and regulates fluid balance | [49,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orfali, R.; AlFaiz, A.; Alanazi, M.; Alabdulsalam, R.; Alharbi, M.; Alromaih, Y.; Dallak, I.; Alrahal, M.; Alwatban, A.; Saud, R. TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. Int. J. Mol. Sci. 2024, 25, 10551. https://doi.org/10.3390/ijms251910551
Orfali R, AlFaiz A, Alanazi M, Alabdulsalam R, Alharbi M, Alromaih Y, Dallak I, Alrahal M, Alwatban A, Saud R. TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. International Journal of Molecular Sciences. 2024; 25(19):10551. https://doi.org/10.3390/ijms251910551
Chicago/Turabian StyleOrfali, Razan, Ali AlFaiz, Madhawi Alanazi, Rahaf Alabdulsalam, Meaad Alharbi, Yara Alromaih, Ismail Dallak, Marah Alrahal, Abdulaziz Alwatban, and Reem Saud. 2024. "TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis" International Journal of Molecular Sciences 25, no. 19: 10551. https://doi.org/10.3390/ijms251910551
APA StyleOrfali, R., AlFaiz, A., Alanazi, M., Alabdulsalam, R., Alharbi, M., Alromaih, Y., Dallak, I., Alrahal, M., Alwatban, A., & Saud, R. (2024). TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. International Journal of Molecular Sciences, 25(19), 10551. https://doi.org/10.3390/ijms251910551