New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Dam, M.J.C.M.; Pottel, H.; Vreugdenhil, A.C.E. Relation between obesity-related comorbidities and kidney function estimation in children. Pediatr. Nephrol. 2023, 38, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Ahmadi, S.F.; Kalantar-Zadeh, K. The dual roles of obesity in chronic kidney disease: A review of the current literature. Curr. Opin. Nephrol. Hypertens 2016, 25, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Sandino, J.; Luzardo, L.; Morales, E.; Praga, M. Which Patients with Obesity Are at Risk for Renal Disease? Nephron 2021, 145, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Assadi, F. The Growing Epidemic of Chronic Kidney Disease: Preventive Strategies to Delay the Risk for Progression to ESRD. Adv. Exp. Med. Biol. 2019, 1121, 57–59. [Google Scholar]
- Czaja-Stolc, S.; Potrykus, M.; Stankiewicz, M.; Kaska, Ł.; Małgorzewicz, S. Pro-Inflammatory Profile of Adipokines in Obesity Contributes to Pathogenesis, Nutritional Disorders, and Cardiovascular Risk in Chronic Kidney Disease. Nutrients 2022, 14, 1457. [Google Scholar] [CrossRef]
- Vivante, A.; Golan, E.; Tzur, D.; Leiba, A.; Tirosh, A.; Skorecki, K.; Calderon-Margalit, R. Body Mass Index in 1.2 Million Adolescents and Risk for End-Stage Renal Disease. Arch. Intern. Med. 2012, 172, 1644–1650. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Haycock, G.B.; Edelmann, C.M., Jr.; Spiter, A. Asimple estimate of glomerular filtration rate in children derived from body length and plasma creatinin. Pediatrics 1976, 58, 259–263. [Google Scholar] [CrossRef]
- Naour, N.; Fellahi, S.; Renucci, J.F.; Poitou, C.; Rouault, C.; Basdevant, A.; Dutour, A.; Alessi, M.C.; Bastard, J.P.; Clément, K.; et al. Potential contribution of adipose tissue to elevated serum cystatin C in human obesity. Obesity (Silver Spring) 2009, 17, 2121–2126. [Google Scholar] [CrossRef] [PubMed]
- Csernus, K.; Lanyi, E.; Erhardt, E.; Molnar, D. Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur. J. Pediatr. 2005, 164, 44–49. [Google Scholar] [CrossRef]
- Polidori, N.; Giannini, C.; Salvatore, R.; Pelliccia, P.; Parisi, A.; Chiarelli, F.; Mohn, A. Role of urinary NGAL and KIM-1 as biomarkers of early kidney injury in obese prepubertal children. J. Pediatr. Endocrinol. Metab. 2020, 33, 1183–1189. [Google Scholar] [CrossRef]
- Gul, A.; Yilmaz, R.; Ozmen, Z.C.; Gumuser, R.; Demir, O.; Unsal, V. Assessment of renal function in obese and overweight children with NGAL and KIM-1 biomarkers. Nutr. Hosp. 2020, 34, 434–442. [Google Scholar]
- Medyńska, A.; Chrzanowska, J.; Kościelska-Kasprzak, K.; Bartoszek, D.; Żabińska, M.; Zwolińska, D. Alpha-1 Acid Glycoprotein and Podocin mRNA as Novel Biomarkers for Early Glomerular Injury in Obese Children. J. Clin. Med. 2021, 10, 4129. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, S.; Chalikias, G.; Devetzis, V.; Konstantinides, S.; Huynh-Do, U.; Tziakas, D. C-terminal fragment of agrin (CAF) levels predict acute kidney injury after acute myocardial infarction. BMC Nephrol. 2017, 18, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Daryadel, A.; Haubitz, M.; Figueiredo, M.; Steubl, D.; Roos, M.; Mäder, A.; Hettwer, S.; Wagner, C.A. The C-terminal fragment of agrin (CAF), a novel marker of renal function, is filtered by the kidney and reabsorbed by the proximal tubule. PLoS ONE 2016, 5, e0157905. [Google Scholar] [CrossRef]
- Steubl, D.; Roos, M.; Hettwer, S.; Satanovskij, R.; Tholen, S.; Wen, M.; Schmaderer, C.; Hasenau, A.L.; Luppa, P.; Stecher, L.; et al. Plasma total C-terminal agrin fragment (tCAF) as a marker for kidney function in patients with chronic kidney disease. Clin. Chem. Lab. Med. 2016, 54, 1487–1495. [Google Scholar] [CrossRef]
- Steubl, D.; Hettwer, S.; Vrijbloed, W.; Dahinden, P.; Wolf, P.; Luppa, P.; Wagner, C.A.; Renders, L.; Heemann, U.; Roos, M. C-terminal agrin fragment—A new fast biomarker for kidney function in renal transplant recipients. Am. J. Nephrol. 2013, 38, 501–508. [Google Scholar] [CrossRef]
- Laisalmi, M.; Teppo, A.M.; Koivusalo, A.M.; Honkanen, E.; Valta, P.; Lindgren, L. The effect of ketorolac and sevoflurane anesthesia on renal glomerular and tubular function. Anesth. Analg. 2001, 93, 1210–1213. [Google Scholar] [CrossRef]
- Branten, A.J.; Mulder, T.P.; Peters, W.H.; Assmann, K.J.; Wetzels, J.F. Urinary excretion of glutathione S transferases alpha and pi in patients with proteinuria: Reflection of the site of tubular injury. Nephron 2000, 85, 120–126. [Google Scholar] [CrossRef]
- Cawood, T.J.; Bashir, M.; Brady, J.; Murray, B.; Murray, P.T.; O’Shea, D. Urinary collagen IV and πGST: Potential biomarkers for detecting localized kidney injury in diabetes—A pilot study. Am. J. Nephrol. 2010, 32, 219–225. [Google Scholar] [CrossRef]
- Layne, K.; Ferro, A.; Passacquale, G. Netrin-1 as a novel therapeutic target in cardiovascular disease: To activate or inhibit? Cardiovasc. Res. 2015, 107, 410–419. [Google Scholar] [CrossRef]
- Ziegon, L.; Schlegel, M. Netrin-1: A Modulator of Macrophage Driven Acute and Chronic Inflammation. Int. J. Mol. Sci. 2021, 23, 275. [Google Scholar] [CrossRef] [PubMed]
- ÖvünçHacıhamdioğlu, D.; Hacıhamdioğlu, B.; Altun, D.; Müftüoğlu, T.; Karademir, F.; Süleymanoğlu, S. Urinary Netrin-1: A New Biomarker for the Early Diagnosis of Renal Damage in Obese Children. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 282–287. [Google Scholar] [CrossRef]
- Eltounali, S.A.; Moodley, J.; Naicker, T. Role of kidney biomarkers [Kidney injury molecule-1, Calbindin, Interleukin-18 and Monocyte chemoattractant protein-1] in HIV associated pre-eclampsia. Hypertens. Pregnancy 2017, 36, 288–294. [Google Scholar] [CrossRef]
- Lane, B.R.; Babitz, S.K.; Vlasakova, K.; Wong, A.; Noyes, S.L.; Boshoven, W.; Grady, P.; Zimmerman, C.; Engerman, S.; Gebben, M.; et al. Evaluation of Urinary Renal Biomarkers for Early Prediction of Acute Kidney Injury Following Partial Nephrectomy: A Feasibility Study. Eur. Urol. Focus 2018, 6, 1240–1247. [Google Scholar] [CrossRef]
- Blessy, G.; Wen, X.; Mercke, N.; Gomez, M.; O’Bryant, C.; Bowles, D.W.; Hu, Y.; Hogan, S.L.; Joy, M.S.; Aleksunes, L.M. Profiling of Kidney Injury Biomarkers in Patients Receiving Cisplatin: Time-dependent Changes in the Absence of Clinical Nephrotoxicity. Clin. Pharmacol. Ther. 2017, 101, 510–518. [Google Scholar]
- Carnazzo, V.; Redi, S.; Basile, V.; Natali, P.; Gulli, F.; Equitani, F.; Marino, M.; Basile, U. Calprotectin: Two sides of the same coin. Rheumatology 2024, 63, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Fujiu, K.; Manabe, I.; Nagai, R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J. Clin. Investig. 2011, 121, 3425–3441. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Fan, P.-C.; Kou, G.; Chang, S.-W.; Chen, Y.-T.; Lee, C.-C.; Chang, C.-H. Meta-analysis: Urinary calprotectin for discrimination of intrinsic and prerenal acute kidney injury. J. Clin. Med. 2019, 8, 74. [Google Scholar] [CrossRef]
- John, J.S.; Deepthi, R.V.; Rebekah, G.; Prabhu, S.B.; Ajitkumar, P.; Mathew, G.; Agarwal, I. Usefulness of urinary calprotectin as a novel marker differentiating functional from structural acute kidney injury in the critical care setting. J. Nephrol. 2023, 36, 695–704. [Google Scholar] [CrossRef]
- Mishra, O.P.; Prasad, R. Microalbuminuria and serum cystatin C: Biomarkers for early detection of kidney injury in children with obesity. Indian J. Pediatr. 2020, 87, 991–992. [Google Scholar] [CrossRef]
- Bostan Gayret, Ö.; Taşdemir, M.; Erol, M.; Tekin Nacaroğlu, H.; Zengi, O.; Yiğit, Ö. Are there any new reliable markers to detect renal injury in obese children? Ren. Fail. 2018, 40, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Mak, R.H. Early markers of obesity-related injury in childhood. Pediatr. Nephrol. 2015, 30, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Marmarinos, A.; Garoufi, A.; Panagoulia, A.; Dimou, S.; Drakatos, A.; Paraskakis, I.; Gourgiotis, D. Cystatin-C levels in healthy children and adolescents: Influence of age, gender, body mass index and blood pressure. Clin. Biochem. 2016, 49, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Codoñer-Franch, P.; Ballester-Asensio, E.; Martínez-Pons, L.; Vallecillo-Hernández, J.; Navarro-Ruíz, A.; del Valle-Pérez, R. Cystatin C, cardiometabolic risk, and body composition in severely obese children. Pediatr. Nephrol. 2011, 26, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Önerli Salman, D.; Şıklar, Z.; Çullasİlarslan, E.N.; Özçakar, Z.B.; Kocaay, P.; Berberoğlu, M. Evaluation of Renal Function in Obese Children and Adolescents Using Serum Cystatin C Levels, Estimated Glomerular Filtration Rate Formulae and Proteinuria: Which is most Useful? J. Clin. Res. Pediatr. Endocrinol. 2019, 11, 46–54. [Google Scholar] [CrossRef]
- Oz-Sig, O.; Kara, O.; Erdogan, H. Microalbuminuria and serum cystatin C in prediction od early-renal insufficiency in children with obesity. Indian J. Pediatr. 2020, 87, 1009–1013. [Google Scholar] [CrossRef]
- Witzel, S.H.; Butts, K.; Filler, G. Elevated triglycerides may affect cystatin C recovery. Clin. Biochem. 2014, 47, 676–679. [Google Scholar] [CrossRef]
- Soliman, N.S.; Attia, G.F.; Ezat, S.E.; Hagras, M.M. Plasma C-Terminal Agrin Fragment (CAF) as an Early Marker for Kidney Function in Patients with Chronic Kidney Disease. Med. J. Cairo Univ. 2019, 87, 3297–3305. [Google Scholar]
- Rajeswari, M. Study of Serum C-Terminal Fragment of Agrin as a Marker for Kidney Function in Patients with Chronic Kidney Disease. Ph.D. Thesis, Dissertation for M.D Degree Branch—XIII (Biochemistry Department). Department of Biochemistry Thanjavur Medical College, Tamilnadu, India, May 2020. [Google Scholar]
- Devetzis, V.; Daryadel, A.; Roumeliotis, S.; Theodoridis, M.; Wagner, C.A.; Hettwer, S.; Huynh-Do, U.; Ploumis, P.; Arampatzis, S. C-Terminal Fragment of Agrin (CAF): A Novel Marker for Progression of Kidney Disease in Type 2 Diabetics. PLoS ONE 2015, 10, e0143524. [Google Scholar] [CrossRef]
- Jayakumar, C.; Nauta, F.L.; Bakker, S.J.; Bilo, H.; Gansevoort, R.T.; Johnson, M.H.; Ramesh, G. Netrin-1, a urinary proximal tubular injury marker, is elevated early in the time course of human diabetes. J. Nephrol. 2014, 27, 151–157. [Google Scholar] [CrossRef]
- Sarafidis, P.A.; Ruilope, L.M. Insulin resistance, hyperinsulinemia and renal injury: Mechanisms and implications. Am. J. Nephrol. 2006, 26, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Carullo, N.; Zicarelli, M.; Michael, A.; Faga, T.; Battaglia, Y.; Pisani, A.; Perticone, M.; Costa, D.; Ielapi, N.; Coppolino, G.; et al. Childhood Obesity: Insight into Kidney Involvement. Int. J. Mol. Sci. 2023, 24, 17400. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.J.; Sabater, M.; Moreno-Navarrete, J.M.; Pueyo, N.; Botas, P.; Delgado, E.; Ricart, W.; Frühbeck, G.; Fernández-Real, J.M. Serum and urinary concentrations of calprotectin as markers of insulin resistance and type 2 diabetes. Eur. J. Endocrinol. 2012, 167, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Kułaga, Z.; Litwin, M.; Tkaczyk, M.; Palczewska, I.; Zajączkowska, M.; Zwolińska, D.; Krynicki, T.; Wasilewska, A.; Moczulska, A.; Morawiec-Knysak, A.; et al. Polish 2010 growth references for school-aged children and adolescents. Eur. J. Pediatr. 2011, 170, 599–609. [Google Scholar] [CrossRef]
- Lurbe, E.; Agabiti-Rosei, E.; Cruickshank, J.K.; Dominiczak, A.; Erdine, S.; Hirth, A.; Invitti, C.; Litwin, M.; Mancia, G.; Pall, D.; et al. European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 2016, 34, 1887–1892. [Google Scholar] [CrossRef]
Variable | Normal Weight Group F/M 18/15 | Obese Group F/M 68/57 | p | |
---|---|---|---|---|
Total cholesterol [mg/dL] | mean ± SD range (min–max) | 164.1 ± 14.8 133–188 | 179.2 ± 134.9 111–1611 | 0.537 |
HDL-cholesterol [mg/dL] | mean ± SD range (min–max) | 59 ± 9.6 34–78 | 42.2 ± 8.4 27–65 | # 5.7 × 10−6 |
LDL-cholesterol [mg/dL] | mean ± SD range (min–max) | 94.1 ± 14.9 65–121 | 100.4 ± 24.4 49–184 | 0.175 |
Triglycerides [mg/dL] | range (min–max) median quartile (25–75 Q) | 57–120 94 74–105 | 39–469 107 83.5–141 | * 0.00216 |
Creatinine [mg/dL] | mean ± SD range (min–max) | 0.736 ± 0.144 0.54–1.19 | 0.629 ± 0.123 0.37–0.89 | # 4.1 × 10−6 |
eGFR [mL/min/1.73 m2] | mean ± SD range (min–max) | 125 ± 13.2 96.0–160.0 | 154 ± 25.1 109–235 | # 4.3 × 10−6 |
Fasting glucose [mg/dL] | range (min–max) median quartile (25–75 Q) | 75–94 88 85–91 | 56–153 82 77–82 | * 0.0118 |
ACR [mg/g] | range (min–max) median quartile (25–75 Q) | 12.86–16.02 15.17 13.42–15.51 | 12.78–18.03 14.7 12–15.64 | * 0.168 |
Variable | Normal Weight Group F/M 18/15 | Obese Group F/M 68/57 | p | |
---|---|---|---|---|
Serum Cystatin C [ng/mL] n = 158 (33/125) | range (min–max) median quartile (25–75 Q) | 257.2–498.9 320.4 276.6–455.8 | 427.8–848.2 532.4 496.2–729.8 | #* 2.6 × 10−6 |
Serum t-CAF [pM] n = 72 (15/57) | range (min–max) median quartile (25–75 Q) | 92.2–137 107.1 99.7–117.1 | 398.3–585.8 482.3 450.7–516.7 | #* 1.6 × 10−6 |
Urine netrin-1 [ng/mg] | range (min–max) median quartile (25–75 Q) | 2.97–4.57 3.97 3.63–4.27 | 3.24–35.67 6.56 4.76–7.03 | #* 3.1 × 10−6 |
Urine α-GST [mLU/mg] | range (min–max) median quartile (25–75 Q) | 16–21.5 20 17.5–20.8 | 3.6–40 33.8 25.3–36.6 | #* 6.3 × 10−6 |
Urine π-GST [ng/mg] | range (min–max) median quartile (25–75 Q) | 1.46–2.2 1.99 1.8–2.08 | 0.54–4.01 3.5 2.34–3.72 | #* 4.2 × 10−6 |
Urine calbindin [pg/mg] | mean ± SD range (min–max) | 75.7 ± 5.9 57.7–83.4 | 113.2 ± 126 62.4–1505.5 | 0.0904 |
Urine calprotectin [ng/mg] | range (min–max) median quartile (25–75 Q) | 32.8–57.3 45.2 39.6–49.8 | 18.3–111,1 91.6 66.5–98.7 | #* 2.4 × 10−6 |
Variable | 2 ≤ SDS BMI ≤ 4 n = 65 F/M 31/34 | SDS BMI > 4 n = 60 F/M 34/26 | p | |
---|---|---|---|---|
Total cholesterol [mg/dL] | mean ± SD range (min–max) | 170.5 ± 30.9 121–259 | 193 ± 208.8 111–1611 | 0.414 |
HDL-cholesterol [mg/dL] | mean ± SD range (min–max) | 42.8 ± 8.2 27–64 | 40.1 ± 8.8 27–65 | 0.111 |
LDL-cholesterol [mg/dL] | range (min–max) median quartile (25–75 Q) | 49–184 101 81–123 | 58–142 99 82–115 | * 0.314 |
Triglycerides [mg/dL] | mean ± SD range (min–max) | 119.2 ± 57.8 52–369 | 131.8 ± 70.1 39–469 | 0.312 |
Fasting glucose [mg/dL] | mean ± SD range (min–max) | 82.5 ± 11.9 65–153 | 82.6 ± 9.1 56–105 | 0.952 |
eGFR [ml/min/1.73 m2] | mean ± SD range (min–max) | 152.9 ± 25.4 109.2–235.0 | 157.2 ± 26.3 117–223 | 0.398 |
ACR [mg/g] | mean ± SD range (min–max) | 13.6 ± 2.6 1.89–6.4 | 13.7 ± 3.2 1.8–18 | 0.945 |
Variable | 2 ≤ SDS BMI ≤ 4 n = 65 F/M 31/34 | SDS BMI > 4 n = 60 F/M 34/26 | p | |
---|---|---|---|---|
Serum Cystatin C [ng/mL] n = 110 (60/50) | mean ± SD range (min–max) | 602.4 ± 124.4 427.8–848.2 | 612.9 ± 123.1 447.1–793.9 | 0.659 |
Serum t-CAF [pM] n = 52 (28/24) | range (min–max) median quartile (25–75 Q) | 398.3–585.8 475.7 449.4–510.1 | 424.5–569.8 485 450.7–518 | * 0.417 |
Urine netrin-1 [ng/mg] | mean ± SD range (min–max) | 6.51 ± 4.04 3.78–35.67 | 6.88 ± 5.01 3.24–31.83 | 0.672 |
Urine α-GST [mlU/mg] | mean ± SD range (min–max) | 30.9 ± 6.7 7.9–39.7 | 30.5 ± 7.6 3.6–40 | 0.781 |
Urine π-GST [ng/mg] | mean ± SD range (min–max) | 3.11 ± 0.74 0.72–3.97 | 3.02 ± 0.85 0.54–4.01 | 0.548 |
Urine calbindin [pg/mg] | mean ± SD range (min–max) | 126 ± 181.4 67.1–1505.5 | 102 ± 13.4 62.4–127.5 | 0.354 |
Urine calprotectin [ng/mg] | mean ± SD range (min–max) | 83 ± 18.2 18.4–108.2 | 81.8 ± 21.3 18.3–111.1 | 0.767 |
r | p | |
---|---|---|
serum t-CAF—urine calbindin | 0.3 | 0.024 |
serum t-CAF—urine π-GST | 0.29 | 0.029 |
serum t-CAF—urine netrin-1 | 0.27 | 0.045 |
urine calbindin—urine netrin-1 | 0.67 | 0.000 |
urine calbindin—urine α-GST | 0.72 | 0.000 |
urine calbindin—urine π-GST | 0.83 | 0.000 |
urine calbindin—urine calprotectin | 0.69 | 0.000 |
urine calbindin—ACR | 0.72 | 0.000 |
urine netrin-1—urine α-GST | 0.72 | 0.000 |
urine netrin-1—urine π-GST | 0.78 | 0.000 |
urine netrin-1—urine calprotectin | 0.73 | 0.000 |
urine netrin-1—ACR | 0.74 | 0.000 |
urine α-GST—urine π-GST | 0.88 | 0.000 |
urine α-GST—urine calprotectin | 0.88 | 0.000 |
urine α-GST—ACR | 0.92 | 0.000 |
urine π-GST—urine calprotectin | 0.88 | 0.000 |
urine π-GST—ACR | 0.88 | 0.000 |
urine calprotectin—ACR | 0.87 | 0.000 |
Variable | Normal Weight Group F/M 18/15 | Obese Group F/M 68/57 | p | |
---|---|---|---|---|
Age [years] | mean ± SD range (min–max) | 12.9 ± 3.0 7.6–17.8 | 13.7 ± 2.84 8.0–17.9 | 0.172 |
Body weight [kg] | range (min–max) median quartile (25–75 Q) | 47.7 ± 11.9 48.1 38.6–55.4 | 85.7 ± 23.8 82.7 72.7–100 | #* 6.3 × 10−6 |
BMI | range (min–max) median quartile (25–75 Q) | 19.2 ± 2.3 19 17.7–20.3 | 32.1 ± 5.8 30.8 28.4–35.2 | #* 7.1 × 10−6 |
SDS BMI | range (min–max) median quartile (25–75 Q) | 0.061 ± 0.633 0.061 (−0.547)–0.563 | 4.02 ± 1.7 3.55 2.88–5.13 | #* 5.3 × 10−6 |
SBP [mmHg] | mean ± SD range (min–max) | 106.3 ± 8.9 85–120 | 117.2 ± 9.9 98–140 | # 1.4 × 10−6 |
DBP [mmHg] | mean ± SD range (min–max) | 65.3 ± 7.2 48–76 | 71.8 ± 8.0 50–92 | # 5.1 × 10−6 |
Variable | 2 ≤ SDS BMI ≤ 4 n = 65 F/M 31/34 | SDS BMI > 4 n = 60 F/M 34/26 | p | |
---|---|---|---|---|
Age [years] | mean ± SD range (min–max) | 13.7 ± 2.8 8–17.9 | 13.5 ± 2.9 8.2–17.8 | 0.729 |
Body weight [kg] | range (min–max) median quartile (25–75 Q) | 78.2 ± 17.1 78.2 70.5–88.4 | 98.6 ± 26.7 99.3 79.9–113.3 | #* 3.8 × 10−6 |
SBP [mmHg] | mean ± SD range (min–max) | 116.1 ± 9.4 98–140 | 119.3 ± 10.4 99–140 | 0.0959 |
DBP [mmHg] | mean ± SD range (min–max) | 70.3 ± 7.7 50–90 | 73.9 ± 7.9 59–92 | 0.0172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medyńska, A.; Chrzanowska, J.; Zubkiewicz-Kucharska, A.; Zwolińska, D. New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity. Int. J. Mol. Sci. 2024, 25, 10769. https://doi.org/10.3390/ijms251910769
Medyńska A, Chrzanowska J, Zubkiewicz-Kucharska A, Zwolińska D. New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity. International Journal of Molecular Sciences. 2024; 25(19):10769. https://doi.org/10.3390/ijms251910769
Chicago/Turabian StyleMedyńska, Anna, Joanna Chrzanowska, Agnieszka Zubkiewicz-Kucharska, and Danuta Zwolińska. 2024. "New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity" International Journal of Molecular Sciences 25, no. 19: 10769. https://doi.org/10.3390/ijms251910769
APA StyleMedyńska, A., Chrzanowska, J., Zubkiewicz-Kucharska, A., & Zwolińska, D. (2024). New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity. International Journal of Molecular Sciences, 25(19), 10769. https://doi.org/10.3390/ijms251910769