Genome-Wide Identification and Expression Analysis of the BTB Gene Superfamily Provides Insight into Sex Determination and Early Gonadal Development of Alligator sinensis
Abstract
:1. Introduction
2. Results
2.1. Identification, Classification, and Distribution of BTB Genes in the A. sinensis Genome
2.2. Phylogenetic Analysis of the AsBTB
2.3. Gene Structure, Protein Structure, and Protein Motif Analysis of AsBTB
2.4. Analysis of the Cis-Acting Elements in the Promoter Region of the AsBTB Gene
2.5. Protein Interaction Network Analysis of the AsBTB Genes
2.6. Expression Pattern and Protein Network Analysis of AsBTB Genes during Sex Differentiation and Early Gonadal Development in Alligators sinensis
3. Discussion
4. Materials and Methods
4.1. Identification of the BTB Protein Superfamily in A. sinensis
4.2. Chromosomal Localization and Gene Duplication
4.3. Phylogenetic Analysis and Gene Collinearity Analysis
4.4. Analysis of Gene Structure and Conserved Motifs
4.5. Analysis of Cis-Acting Elements and Protein Interaction Networks in Promoter Regions
4.6. AsBTB Gene Expression Analysis
4.7. Real-Time Fluorescence Quantitative PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | protein length |
ANK | ankyrin repeat |
As | Alligator sinensis |
ATS1 | alpha-tubulin suppressor ATS1 and related RCC1 domain-containing |
BACK | BTB and C-terminal Kelch |
BBK | BTB-BACK-Kelch |
BBP | BTB-BACK-PHR |
BTB/POZ | bric-a-brac/tramtrack/broad complex/poxvirus and zinc finger |
bZIP | basic leucine zipper |
CDS | coding sequence |
CUL-3 | cullin-3 |
CySCs | somatic cyst stem cells |
DEGs | differentially expressed genes |
FPKM | fragments per kilobase million |
GCL | germ cell-less protein |
GSCs | germline stem cells |
KCTD | potassium channel tetramerization domain-containing |
KELCH | Kelch repeat |
LSE | lineage-specific expansion |
MATH | meprin and TRAF-C homology |
MW | molecular weight |
PGC | primitive germ cell |
PHR | photolyase-homologous region |
Pi | isoelectric point |
POK | POZ and Krüppel-like zinc finger |
RT-qPCR | quantitative real-time polymerase chain reaction |
T1-Kv | voltage-gated potassium channel T1 |
UTR | untranslated region |
ZF | zinc finger |
References
- Zollman, S.; Godt, D.; Privé, G.G.; Couderc, J.L.; Laski, F.A. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Natl. Acad. Sci. USA 1994, 91, 10717–10721. [Google Scholar] [CrossRef] [PubMed]
- Godt, D.; Couderc, J.L.; Cramton, S.E.; Laski, F.A. Pattern formation in the limbs of Drosophila: Bric à brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus. Development 1993, 119, 799–812. [Google Scholar] [CrossRef] [PubMed]
- DiBello, P.R.; Withers, D.A.; Bayer, C.A.; Fristrom, J.W.; Guild, G.M. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 1991, 129, 385–397. [Google Scholar] [CrossRef]
- Harrison, S.D.; Travers, A.A. The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J. 1990, 9, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Chaharbakhshi, E.; Jemc, J.C. Broad-complex, tramtrack, and bric-à-brac (BTB) proteins: Critical regulators of development. Genesis 2016, 54, 505–518. [Google Scholar] [CrossRef]
- Stogios, P.J.; Downs, G.S.; Jauhal, J.J.; Nandra, S.K.; Privé, G.G. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005, 6, R82. [Google Scholar] [CrossRef]
- Koonin, E.V.; Senkevich, T.G.; Chernos, V.I. A family of DNA virus genes that consists of fused portions of unrelated cellular genes. Trends Biochem. Sci. 1992, 17, 213–214. [Google Scholar] [CrossRef]
- Bardwell, V.J.; Treisman, R. The POZ domain: A conserved protein-protein interaction motif. Genes Dev. 1994, 8, 1664–1677. [Google Scholar] [CrossRef]
- Numoto, M.; Niwa, O.; Kaplan, J.; Wong, K.K.; Merrell, K.; Kamiya, K.; Yanagihara, K.; Calame, K. Transcriptional repressor ZF5 identifies a new conserved domain in zinc finger proteins. Nucleic Acids Res. 1993, 21, 3767–3775. [Google Scholar] [CrossRef]
- Ahmad, K.F.; Engel, C.K.; Privé, G.G. Crystal structure of the BTB domain from PLZF. Proc. Natl. Acad. Sci. USA 1998, 95, 12123–12128. [Google Scholar] [CrossRef]
- Perez-Torrado, R.; Yamada, D.; Defossez, P.A. Born to bind: The BTB protein-protein interaction domain. BioEssays News Rev. Mol. Cell. Dev. Biol. 2006, 28, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Stone, J.R.; Williams, A.J. All in the family: The BTB/POZ, KRAB, and SCAN domains. Mol. Cell. Biol. 2001, 21, 3609–3615. [Google Scholar] [CrossRef]
- Ban, Z.; Estelle, M. CUL3 E3 ligases in plant development and environmental response. Nat. Plants 2021, 7, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Qian, W.; Meng, M.; Wang, Y.; Peng, J.; Xia, Q. Identification and Expression Profiling of the BTB Domain-Containing Protein Gene Family in the Silkworm, Bombyx mori. Int. J. Genom. 2014, 2014, 865065. [Google Scholar] [CrossRef]
- Aravind, L.; Koonin, E.V. Fold prediction and evolutionary analysis of the POZ domain: Structural and evolutionary relationship with the potassium channel tetramerization domain. J. Mol. Biol. 1999, 285, 1353–1361. [Google Scholar] [CrossRef]
- Schultz, J.; Copley, R.R.; Doerks, T.; Ponting, C.P.; Bork, P. SMART: A web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 2000, 28, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Albagli, O.; Dhordain, P.; Deweindt, C.; Lecocq, G.; Leprince, D. The BTB/POZ domain: A new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res. 1995, 6, 1193–1198. [Google Scholar]
- Deweindt, C.; Albagli, O.; Bernardin, F.; Dhordain, P.; Quief, S.; Lantoine, D.; Kerckaert, J.P.; Leprince, D. The LAZ3/BCL6 oncogene encodes a sequence-specific transcriptional inhibitor: A novel function for the BTB/POZ domain as an autonomous repressing domain. Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res. 1995, 6, 1495–1503. [Google Scholar]
- Huynh, K.D.; Bardwell, V.J. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 1998, 17, 2473–2484. [Google Scholar] [CrossRef]
- Weber, H.; Bernhardt, A.; Dieterle, M.; Hano, P.; Mutlu, A.; Estelle, M.; Genschik, P.; Hellmann, H. Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family. Plant Physiol. 2005, 137, 83–93. [Google Scholar] [CrossRef]
- Irigoyen, S.; Ramasamy, M.; Misra, A.; McKnight, T.D.; Mandadi, K.K. A BTB-TAZ protein is required for gene activation by Cauliflower mosaic virus 35S multimerized enhancers. Plant Physiol. 2022, 188, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.U.; Maeda, T. POK/ZBTB proteins: An emerging family of proteins that regulate lymphoid development and function. Immunol. Rev. 2012, 247, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.A.; Beggs, A.H. Kelch proteins: Emerging roles in skeletal muscle development and diseases. Skelet. Muscle 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xiang, S.; Cao, J.; Zhu, H.; Yang, B.; He, Q.; Ying, M. Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol. Res. 2019, 148, 104404. [Google Scholar] [CrossRef]
- Angrisani, A.; Di Fiore, A.; De Smaele, E.; Moretti, M. The emerging role of the KCTD proteins in cancer. Cell Commun. Signal. CCS 2021, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Davudian, S.; Mansoori, B.; Shajari, N.; Mohammadi, A.; Baradaran, B. BACH1, the master regulator gene: A novel candidate target for cancer therapy. Gene 2016, 588, 30–37. [Google Scholar] [CrossRef]
- Bartoletti, M.; Rubin, T.; Chalvet, F.; Netter, S.; Dos Santos, N.; Poisot, E.; Paces-Fessy, M.; Cumenal, D.; Peronnet, F.; Pret, A.M.; et al. Genetic basis for developmental homeostasis of germline stem cell niche number: A network of Tramtrack-Group nuclear BTB factors. PLoS ONE 2012, 7, e49958. [Google Scholar] [CrossRef]
- Mukai, M.; Hayashi, Y.; Kitadate, Y.; Shigenobu, S.; Arita, K.; Kobayashi, S. MAMO, a maternal BTB/POZ-Zn-finger protein enriched in germline progenitors is required for the production of functional eggs in Drosophila. Mech. Dev. 2007, 124, 570–583. [Google Scholar] [CrossRef]
- Smith, T.H.; Stedronsky, K.; Morgan, B.; McGowan, R.A. Identification and isolation of a BTB-POZ-containing gene expressed in oocytes and early embryos of the zebrafish Danio rerio. Genome 2006, 49, 808–814. [Google Scholar] [CrossRef]
- Petroski, M.D.; Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Reviews. Mol. Cell Biol. 2005, 6, 9–20. [Google Scholar] [CrossRef]
- Pae, J.; Cinalli, R.M.; Marzio, A.; Pagano, M.; Lehmann, R. GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK. Dev. Cell 2017, 42, 130–142.e7. [Google Scholar] [CrossRef] [PubMed]
- Jongens, T.A.; Hay, B.; Jan, L.Y.; Jan, Y.N. The germ cell-less gene product: A posteriorly localized component necessary for germ cell development in Drosophila. Cell 1992, 70, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Cinalli, R.M.; Lehmann, R. A spindle-independent cleavage pathway controls germ cell formation in Drosophila. Nat. Cell Biol. 2013, 15, 839–845. [Google Scholar] [CrossRef]
- Robinson, D.N.; Cooley, L. Stable intercellular bridges in development: The cytoskeleton lining the tunnel. Trends Cell Biol. 1996, 6, 474–479. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, H.; Esaki, Y.; Kelly, F.; Yan, W. Cullin3 is a KLHL10-interacting protein preferentially expressed during late spermiogenesis. Biol. Reprod. 2006, 74, 102–108. [Google Scholar] [CrossRef]
- Arama, E.; Bader, M.; Rieckhof, G.E.; Steller, H. A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila. PLoS Biol. 2007, 5, e251. [Google Scholar] [CrossRef]
- Lécuyer, C.; Dacheux, J.L.; Hermand, E.; Mazeman, E.; Rousseaux, J.; Rousseaux-Prévost, R. Actin-binding properties and colocalization with actin during spermiogenesis of mammalian sperm calicin. Biol. Reprod. 2000, 63, 1801–1810. [Google Scholar] [CrossRef]
- Kimura, T.; Ito, C.; Watanabe, S.; Takahashi, T.; Ikawa, M.; Yomogida, K.; Fujita, Y.; Ikeuchi, M.; Asada, N.; Matsumiya, K.; et al. Mouse germ cell-less as an essential component for nuclear integrity. Mol. Cell. Biol. 2003, 23, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Kleiman, S.E.; Yogev, L.; Gal-Yam, E.N.; Hauser, R.; Gamzu, R.; Botchan, A.; Paz, G.; Yavetz, H.; Maymon, B.B.; Schreiber, L.; et al. Reduced human germ cell-less (HGCL) expression in azoospermic men with severe germinal cell impairment. J. Androl. 2003, 24, 670–675. [Google Scholar] [CrossRef]
- Arama, E.; Agapite, J.; Steller, H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev. Cell 2003, 4, 687–697. [Google Scholar] [CrossRef]
- Arama, E.; Bader, M.; Srivastava, M.; Bergmann, A.; Steller, H. The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. EMBO J. 2006, 25, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Ma, L.; Burns, K.H.; Matzuk, M.M. Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice. Proc. Natl. Acad. Sci. USA 2004, 101, 7793–7798. [Google Scholar] [CrossRef]
- Yatsenko, A.N.; Roy, A.; Chen, R.; Ma, L.; Murthy, L.J.; Yan, W.; Lamb, D.J.; Matzuk, M.M. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum. Mol. Genet. 2006, 15, 3411–3419. [Google Scholar] [CrossRef]
- Cavarec, L.; Jensen, S.; Casella, J.F.; Cristescu, S.A.; Heidmann, T. Molecular cloning and characterization of a transcription factor for the copia retrotransposon with homology to the BTB-containing lola neurogenic factor. Mol. Cell. Biol. 1997, 17, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Siggs, O.M.; Beutler, B. The BTB-ZF transcription factors. Cell Cycle 2012, 11, 3358–3369. [Google Scholar] [CrossRef] [PubMed]
- Davies, E.L.; Lim, J.G.; Joo, W.J.; Tam, C.H.; Fuller, M.T. The transcriptional regulator lola is required for stem cell maintenance and germ cell differentiation in the Drosophila testis. Dev. Biol. 2013, 373, 310–321. [Google Scholar] [CrossRef]
- Maeda, T.; Hobbs, R.M.; Merghoub, T.; Guernah, I.; Zelent, A.; Cordon-Cardo, C.; Teruya-Feldstein, J.; Pandolfi, P.P. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature 2005, 433, 278–285. [Google Scholar] [CrossRef]
- Li, J.Y.; English, M.A.; Ball, H.J.; Yeyati, P.L.; Waxman, S.; Licht, J.D. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J. Biol. Chem. 1997, 272, 22447–22455. [Google Scholar] [CrossRef]
- Kerrigan, L.A.; Croston, G.E.; Lira, L.M.; Kadonaga, J.T. Sequence-specific transcriptional antirepression of the Drosophila Krüppel gene by the GAGA factor. J. Biol. Chem. 1991, 266, 574–582. [Google Scholar] [CrossRef]
- Staller, P.; Peukert, K.; Kiermaier, A.; Seoane, J.; Lukas, J.; Karsunky, H.; Möröy, T.; Bartek, J.; Massagué, J.; Hänel, F.; et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 2001, 3, 392–399. [Google Scholar] [CrossRef]
- Tsukiyama, T.; Becker, P.B.; Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 1994, 367, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, R.; Kunwar, P.S.; Sano, H.; Renault, A.D. Transcriptional regulation of Drosophila gonad formation. Dev. Biol. 2014, 392, 193–208. [Google Scholar] [CrossRef]
- Weyers, J.J.; Milutinovich, A.B.; Takeda, Y.; Jemc, J.C.; Van Doren, M. A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway. Dev. Biol. 2011, 353, 217–228. [Google Scholar] [CrossRef]
- Lin, W.; Lai, C.H.; Tang, C.J.; Huang, C.J.; Tang, T.K. Identification and gene structure of a novel human PLZF-related transcription factor gene, TZFP. Biochem. Biophys. Res. Commun. 1999, 264, 789–795. [Google Scholar] [CrossRef]
- Miaw, S.C.; Choi, A.; Yu, E.; Kishikawa, H.; Ho, I.C. ROG, repressor of GATA, regulates the expression of cytokine genes. Immunity 2000, 12, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Costoya, J.A.; Hobbs, R.M.; Barna, M.; Cattoretti, G.; Manova, K.; Sukhwani, M.; Orwig, K.E.; Wolgemuth, D.J.; Pandolfi, P.P. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat. Genet. 2004, 36, 653–659. [Google Scholar] [CrossRef]
- Bass, B.P.; Cullen, K.; McCall, K. The axon guidance gene lola is required for programmed cell death in the Drosophila ovary. Dev. Biol. 2007, 304, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Maines, J.Z.; Park, J.K.; Williams, M.; McKearin, D.M. Stonewalling Drosophila stem cell differentiation by epigenetic controls. Development 2007, 134, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, H.; Berg, C.A. The Drosophila pipsqueak gene encodes a nuclear BTB-domain-containing protein required early in oogenesis. Development 1996, 122, 1859–1871. [Google Scholar] [CrossRef]
- Couderc, J.L.; Godt, D.; Zollman, S.; Chen, J.; Li, M.; Tiong, S.; Cramton, S.E.; Sahut-Barnola, I.; Laski, F.A. The bric à brac locus consists of two paralogous genes encoding BTB/POZ domain proteins and acts as a homeotic and morphogenetic regulator of imaginal development in Drosophila. Development 2002, 129, 2419–2433. [Google Scholar] [CrossRef]
- Soltani-Bejnood, M.; Thomas, S.E.; Villeneuve, L.; Schwartz, K.; Hong, C.S.; McKee, B.D. Role of the mod(mdg4) common region in homolog segregation in Drosophila male meiosis. Genetics 2007, 176, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.C.; Chang, Y.C.; Bai, J.; Montell, D. Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat. Cell Biol. 2009, 11, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Buaas, F.W.; Kirsh, A.L.; Sharma, M.; McLean, D.J.; Morris, J.L.; Griswold, M.D.; de Rooij, D.G.; Braun, R.E. Plzf is required in adult male germ cells for stem cell self-renewal. Nat. Genet. 2004, 36, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.M.; Seandel, M.; Falciatori, I.; Rafii, S.; Pandolfi, P.P. Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 2010, 142, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yin, Y.; Sun, L.; Yan, P.; Zhou, Y.; Wu, R.; Wu, X. Molecular cloning of ESR2 and gene expression analysis of ESR1 and ESR2 in the pituitary gland of the Chinese alligator (Alligator sinensis) during female reproductive cycle. Gene 2017, 623, 15–23. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, H.; Fan, G.; Sun, K.; Jiang, Q.; Lv, Z.; Han, B.; Nie, Z.; Shao, Y.; Zhou, Y.; et al. Effects of Eggshell Thickness, Calcium Content, and Number of Pores in Erosion Craters on Hatching Rate of Chinese Alligator Eggs. Animals 2023, 13, 1405. [Google Scholar] [CrossRef]
- Wink, C.S.; Elsey, R.M. Morphology of shells from viable and nonviable eggs of the chinese alligator (Alligator sinensis). J. Morphol. 1994, 222, 103–110. [Google Scholar] [CrossRef]
- Wang, L.; Cai, R.; Liu, F.; Lv, Y.; Zhang, Y.; Duan, S.; Izaz, A.; Zhou, J.; Wang, H.; Duan, R.; et al. Molecular cloning, characterization, mRNA expression changes and nucleocytoplasmic shuttling during kidney embryonic development of SOX9 in Alligator sinensis. Gene 2020, 731, 144334. [Google Scholar] [CrossRef]
- Nie, H.; Zhang, Y.; Duan, S.; Zhang, Y.; Xu, Y.; Zhan, J.; Wen, Y.; Wu, X. RNA-Sequencing Analysis of Gene-Expression Profiles in the Dorsal Gland of Alligator sinensis at Different Time Points of Embryonic and Neonatal Development. Life 2022, 12, 1787. [Google Scholar] [CrossRef]
- Yang, L.; Liu, M.; Zhu, Y.; Li, Y.; Pan, T.; Li, E.; Wu, X. Candidate Regulatory Genes for Hindlimb Development in the Embryos of the Chinese Alligator (Alligator sinensis). Animals 2023, 13, 3126. [Google Scholar] [CrossRef]
- Nie, H.; Xu, Y.; Zhang, Y.; Wen, Y.; Zhan, J.; Xia, Y.; Zhou, Y.; Wang, R.; Wu, X. The effects of endogenous FSH and its receptor on oogenesis and folliculogenesis in female Alligator sinensis. BMC Zool. 2023, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Zhan, J.; Li, C.; Li, P.; Wang, C.; Wu, J.; Xu, Y.; Zhang, Y.; Zhou, Y.; Li, E.; et al. G-protein couple receptor (GPER1) plays an important role during ovarian folliculogenesis and early development of the Chinese Alligator. Anim. Reprod. Sci. 2023, 255, 107295. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhu, M. Isolation and sequence analysis of the Sox-1, -2, -3 homologs in Trionyx sinensis and Alligator sinensis having temperature-dependent sex determination. Biochem. Genet. 2006, 44, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Deeming, D.C.; Ferguson, M.W. Environmental regulation of sex determination in reptiles. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1988, 322, 19–39. [Google Scholar]
- Lin, J.Q.; Zhou, Q.; Yang, H.Q.; Fang, L.M.; Tang, K.Y.; Sun, L.; Wan, Q.H.; Fang, S.G. Molecular mechanism of temperature-dependent sex determination and differentiation in Chinese alligator revealed by developmental transcriptome profiling. Sci. Bull. 2018, 63, 209–212. [Google Scholar] [CrossRef]
- Mandal, S.N.; Sanchez, J.; Bhowmick, R.; Bello, O.R.; Van-Beek, C.R.; de Los Reyes, B.G. Novel genes and alleles of the BTB/POZ protein family in Oryza rufipogon. Sci. Rep. 2023, 13, 15466. [Google Scholar] [CrossRef]
- Li, J.; Su, X.; Wang, Y.; Yang, W.; Pan, Y.; Su, C.; Zhang, X. Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Genes Genom. 2018, 40, 1–15. [Google Scholar] [CrossRef]
- Elsanosi, H.A.; Zhang, J.; Mostafa, S.; Geng, X.; Zhou, G.; Awdelseid, A.H.M.; Song, L. Genome-wide identification, structural and gene expression analysis of BTB gene family in soybean. BMC Plant Biol. 2024, 24, 663. [Google Scholar] [CrossRef]
- Wan, Q.H.; Pan, S.K.; Hu, L.; Zhu, Y.; Xu, P.W.; Xia, J.Q.; Chen, H.; He, G.Y.; He, J.; Ni, X.W.; et al. Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res. 2013, 23, 1091–1105. [Google Scholar] [CrossRef]
- Laine, V.N.; Gossmann, T.I.; Schachtschneider, K.M.; Garroway, C.J.; Madsen, O.; Verhoeven, K.J.; de Jager, V.; Megens, H.J.; Warren, W.C.; Minx, P.; et al. Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat. Commun. 2016, 7, 10474. [Google Scholar] [CrossRef]
- Bonchuk, A.; Balagurov, K.; Georgiev, P. BTB domains: A structural view of evolution, multimerization, and protein-protein interactions. BioEssays News Rev. Mol. Cell. Dev. Biol. 2023, 45, e2200179. [Google Scholar] [CrossRef] [PubMed]
- Lespinet, O.; Wolf, Y.I.; Koonin, E.V.; Aravind, L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 2002, 12, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Fan, Y.; Xu, P.; Fan, G. Bioinformatic Analysis of the BTB Gene Family in Paulownia fortunei and Functional Characterization in Response to Abiotic and Biotic Stresses. Plants 2023, 12, 4144. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Sajib, S.D.; Jui, Z.S.; Arabia, S.; Islam, T.; Ghosh, A. Genome-wide identification of glutathione S-transferase gene family in pepper, its classification, and expression profiling under different anatomical and environmental conditions. Sci. Rep. 2019, 9, 9101. [Google Scholar] [CrossRef]
- Schmit, F.; Cremer, S.; Gaubatz, S. LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc2 promoter in a sequence-specific manner. FEBS J. 2009, 276, 5703–5716. [Google Scholar] [CrossRef]
- Müller, G.A.; Wintsche, A.; Stangner, K.; Prohaska, S.J.; Stadler, P.F.; Engeland, K. The CHR site: Definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Res. 2014, 42, 10331–10350. [Google Scholar] [CrossRef]
- Vandewalle, C.; Van Roy, F.; Berx, G. The role of the ZEB family of transcription factors in development and disease. Cell. Mol. Life Sci. CMLS 2009, 66, 773–787. [Google Scholar] [CrossRef]
- Katsuoka, F.; Yamamoto, M. Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene 2016, 586, 197–205. [Google Scholar] [CrossRef]
- Hamazaki, J.; Murata, S. ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond. Int. J. Mol. Sci. 2020, 21, 3683. [Google Scholar] [CrossRef]
- Jantsch, J.; Schatz, V.; Friedrich, D.; Schröder, A.; Kopp, C.; Siegert, I.; Maronna, A.; Wendelborn, D.; Linz, P.; Binger, K.J.; et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 2015, 21, 493–501. [Google Scholar] [CrossRef]
- Morancho, B.; Minguillón, J.; Molkentin, J.D.; López-Rodríguez, C.; Aramburu, J. Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice. BMC Mol. Biol. 2008, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.N. NF-Y (CBF) regulation in specific cell types and mouse models. Biochim. Et Biophys. Acta Gene Regul. Mech. 2017, 1860, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Bray, P.J.; Cotton, R.G. Variations of the human glucocorticoid receptor gene (NR3C1): Pathological and in vitro mutations and polymorphisms. Hum. Mutat. 2003, 21, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A. Proteolysis: From the lysosome to ubiquitin and the proteasome. Nat. Reviews. Mol. Cell Biol. 2005, 6, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Wee, S.; Anderson, S.; Yates, J.; Wolf, D.A. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 2003, 12, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wei, Y.; Reboul, J.; Vaglio, P.; Shin, T.H.; Vidal, M.; Elledge, S.J.; Harper, J.W. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 2003, 425, 316–321. [Google Scholar] [CrossRef]
- Furukawa, M.; He, Y.J.; Borchers, C.; Xiong, Y. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat. Cell Biol. 2003, 5, 1001–1007. [Google Scholar] [CrossRef]
- Pintard, L.; Willems, A.; Peter, M. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J. 2004, 23, 1681–1687. [Google Scholar] [CrossRef]
- van den Heuvel, S. Protein degradation: CUL-3 and BTB--partners in proteolysis. Curr. Biol. CB 2004, 14, R59–R61. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Y.; Zhong, C.; Guo, Y.; Li, S.; Lin, H.; Liu, X. Transcriptome profiling of laser-captured germ cells and functional characterization of zbtb40 during 17alpha-methyltestosterone-induced spermatogenesis in orange-spotted grouper (Epinephelus coioides). BMC Genom. 2020, 21, 73. [Google Scholar] [CrossRef]
- Wang, J.; Teves, M.E.; Shen, X.; Nagarkatti-Gude, D.R.; Hess, R.A.; Henderson, S.C.; Strauss, J.F., 3rd; Zhang, Z. Mouse RC/BTB2, a member of the RCC1 superfamily, localizes to spermatid acrosomal vesicles. PLoS ONE 2012, 7, e39846. [Google Scholar] [CrossRef] [PubMed]
- Molcho, J.; Albagly, D.; Levy, T.; Manor, R.; Aflalo, E.D.; Alfaro-Montoya, J.; Sagi, A. Regulation of early spermatogenesis in the giant prawn Macrobrachium rosenbergii by a GCL homolog†. Biol. Reprod. 2024, 110, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Lukacsovich, T.; Yuge, K.; Awano, W.; Asztalos, Z.; Kondo, S.; Juni, N.; Yamamoto, D. The ken and barbie gene encoding a putative transcription factor with a BTB domain and three zinc finger motifs functions in terminalia development of Drosophila. Arch. Insect Biochem. Physiol. 2003, 54, 77–94. [Google Scholar] [CrossRef]
- Baazm, M.; Mashayekhi, F.J.; Babaie, S.; Bayat, P.; Beyer, C.; Zendedel, A. Effects of different Sertoli cell types on the maintenance of adult spermatogonial stem cells in vitro. Vitr. Cell. Dev. Biology. Anim. 2017, 53, 752–758. [Google Scholar] [CrossRef]
- Mi, W.; Zhang, Y.; Lyu, J.; Wang, X.; Tong, Q.; Peng, D.; Xue, Y.; Tencer, A.H.; Wen, H.; Li, W.; et al. The ZZ-type zinc finger of ZZZ3 modulates the ATAC complex-mediated histone acetylation and gene activation. Nat. Commun. 2018, 9, 3759. [Google Scholar] [CrossRef]
- Ji, W.; Rivero, F. Atypical Rho GTPases of the RhoBTB Subfamily: Roles in Vesicle Trafficking and Tumorigenesis. Cells 2016, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Berthold, J.; Schenková, K.; Ramos, S.; Miura, Y.; Furukawa, M.; Aspenström, P.; Rivero, F. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes--evidence for an autoregulatory mechanism. Exp. Cell Res. 2008, 314, 3453–3465. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, A.; Ping, Q.; Carpenter, C.L. RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev. 2004, 18, 856–861. [Google Scholar] [CrossRef]
- Gubar, O.; Morderer, D.; Tsyba, L.; Croisé, P.; Houy, S.; Ory, S.; Gasman, S.; Rynditch, A. Intersectin: The Crossroad between Vesicle Exocytosis and Endocytosis. Front. Endocrinol. 2013, 4, 109. [Google Scholar] [CrossRef]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016, 44, D279–D285. [Google Scholar] [CrossRef]
- Pan, T.; Sun, K.; Nie, H.; Luscombe, N.M.; Li, W.; Zhang, S.; Yang, L.; Wang, H.; Zhou, Y.; Tu, G.; et al. Genomic insights and the conservation potential of captive breeding: The case of Chinese alligator. Sci. Adv. 2024. [Google Scholar]
- Finn, R.D.; Attwood, T.K.; Babbitt, P.C.; Bateman, A.; Bork, P.; Bridge, A.J.; Chang, H.Y.; Dosztányi, Z.; El-Gebali, S.; Fraser, M.; et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 2017, 45, D190–D199. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef] [PubMed]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef]
- Liu, C.; Xie, T.; Chen, C.; Luan, A.; Long, J.; Li, C.; Ding, Y.; He, Y. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus). BMC Genom. 2017, 18, 503. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Wen, Y.; Li, C.; You, F.; Xu, Y.; Nie, H.; Wu, X. Utilizing RNA-seq to investigate the influence of MAEL on thesexual differentiation of Chinese alligator (Alligator sinensis). Aquac. Rep. 2024. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Liu, P.; Zang, D.; Li, C.; Wang, C.; Zhu, Y.; Liu, M.; Lu, L.; Wu, X.; Nie, H. Genome-Wide Identification and Expression Analysis of the BTB Gene Superfamily Provides Insight into Sex Determination and Early Gonadal Development of Alligator sinensis. Int. J. Mol. Sci. 2024, 25, 10771. https://doi.org/10.3390/ijms251910771
Li P, Liu P, Zang D, Li C, Wang C, Zhu Y, Liu M, Lu L, Wu X, Nie H. Genome-Wide Identification and Expression Analysis of the BTB Gene Superfamily Provides Insight into Sex Determination and Early Gonadal Development of Alligator sinensis. International Journal of Molecular Sciences. 2024; 25(19):10771. https://doi.org/10.3390/ijms251910771
Chicago/Turabian StyleLi, Pengfei, Peng Liu, Dongsheng Zang, Changcheng Li, Chong Wang, Yunzhen Zhu, Mengqin Liu, Lilei Lu, Xiaobing Wu, and Haitao Nie. 2024. "Genome-Wide Identification and Expression Analysis of the BTB Gene Superfamily Provides Insight into Sex Determination and Early Gonadal Development of Alligator sinensis" International Journal of Molecular Sciences 25, no. 19: 10771. https://doi.org/10.3390/ijms251910771
APA StyleLi, P., Liu, P., Zang, D., Li, C., Wang, C., Zhu, Y., Liu, M., Lu, L., Wu, X., & Nie, H. (2024). Genome-Wide Identification and Expression Analysis of the BTB Gene Superfamily Provides Insight into Sex Determination and Early Gonadal Development of Alligator sinensis. International Journal of Molecular Sciences, 25(19), 10771. https://doi.org/10.3390/ijms251910771