OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair—A Randomized Clinical Trial
Abstract
:1. Introduction
2. Results
2.1. Demographic Data
2.2. Anesthetic and Surgical Variables
2.3. Individual Biomarkers of Oxidative Stress
2.4. OXY-SCORE
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Data Collection
4.3. Study of Oxidative Stress
4.3.1. Biomarkers of Oxidative Stress
4.3.2. Biomarker of Antioxidant Defense
4.4. Calculation of OXY-SCORE
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norman, P.E.; Curci, J.A. Understanding the effects of tobacco smoke on the pathogenesis of aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Sampson, U.K.A.; Norman, P.E.; Fowkes, F.G.R.; Aboyans, V.; Song, Y.; Harrell, F.E.; Forouzanfar, M.H.; Naghavi, M.; Denenberg, J.O.; McDermott, M.M.; et al. Estimation of Global and Regional Incidence and Prevalence of Abdominal Aortic Aneurysms 1990 to 2010. Glob. Heart 2014, 9, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Altobelli, E.; Rapacchietta, L.; Profeta, V.F.; Fagnano, R. Risk Factors for Abdominal Aortic Aneurysm in Population-Based Studies: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2805. [Google Scholar] [CrossRef] [PubMed]
- Chaikof, E.L.; Dalman, R.L.; Eskandari, M.K.; Jackson, B.M.; Lee, W.A.; Mansour, M.A.; Mastracci, T.M.; Mell, M.; Murad, M.H.; Nguyen, L.L.; et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018, 67, 2–77. [Google Scholar] [CrossRef]
- Wanhainen, A.; Van Herzeele, I.; Bastos Goncalves, F.; Bellmunt Montoya, S.; Berard, X.; Boyle, J.R.; D’Oria, M.; Prendes, C.F.; Karkos, C.D.; Kazimierczak, A.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 192–331. [Google Scholar] [CrossRef]
- Wanhainen, A.; Verzini, F.; Van Herzeele, I.; Allaire, E.; Bown, M.; Cohnert, T.; Dick, F.; van Herwaarden, J.; Karkos, C.; Koelemay, M.; et al. Editor’s Choice e European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 8–93. [Google Scholar] [CrossRef]
- Antoniou, G.A.; Antoniou, S.A.; Torella, F. Editor’s Choice—Endovascular vs. Open Repair for Abdominal Aortic Aneurysm: Systematic Review and Meta-analysis of Updated Peri-operative and Long Term Data of Randomised Controlled Trials. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 385–397. [Google Scholar] [CrossRef]
- EVAR Trial Participants. Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): Randomised controlled trial. Lancet 2005, 365, 2187–2192. [Google Scholar] [CrossRef]
- Broos, P.P.H.L.; Stokmans, R.A.; Cuypers, P.W.M.; van Sambeek, M.R.H.M.; Teijink, J.A.W.; ENGAGE Investigators. Effects of Anesthesia Type on Perioperative Outcome After Endovascular Aneurysm Repair. J. Endovasc. Ther. 2015, 22, 770–777. [Google Scholar] [CrossRef]
- Jones, D.P. Redefining Oxidative Stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.; Cross, C.E. Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med. 1992, 119, 598–620. [Google Scholar]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Guzik, B.; Sagan, A.; Ludew, D.; Mrowiecki, W.; Chwała, M.; Bujak-Gizycka, B.; Filip, G.; Grudzien, G.; Kapelak, B.; Zmudka, K.; et al. Mechanisms of oxidative stress in human aortic aneurysms—Association with clinical risk factors for atherosclerosis and disease severity. Int. J. Cardiol. 2013, 168, 2389–2396. [Google Scholar] [CrossRef] [PubMed]
- Menteşe, U.; Turan, I.; Usta, S.; Demir, S.; Koral, Ö.; Öztaş Menteşe, S.; Çavuşoğlu, I.G.; Karahan, S.C.; Alver, A.; Doğan, O.V.; et al. Systemic oxidant/antioxidant balance in human abdominal aortic aneurysm. Perfusion 2016, 31, 288–294. [Google Scholar] [CrossRef]
- Emeto, T.I.; Moxon, J.V.; Au, M.; Golledge, J. Oxidative stress and abdominal aortic aneurysm: Potential treatment targets. Clin. Sci. 2016, 130, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Wiernicki, I.; Parafiniuk, M.; Kolasa-Wołosiuk, A.; Gutowska, I.; Kazimierczak, A.; Clark, J.; Baranowska-Bosiacka, I.; Szumilowicz, P.; Gutowski, P. Relationship between aortic wall oxidative stress/proteolytic enzyme expression and intraluminal thrombus thickness indicates a novel pathomechanism in the progression of human abdominal aortic aneurysm. FASEB J. 2019, 33, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.L.; Feelisch, M.; Martin, D.S. Perioperative Oxidative Stress: The Unseen Enemy. Anesth. Analg. 2019, 129, 1749–1760. [Google Scholar] [CrossRef]
- Rowlands, T.E.; Homer-Vanniasinkam, S. Pro- and anti-inflammatory cytokine release in open versus endovascular repair of abdominal aortic aneurysm. Br. J. Surg. 2010, 88, 1335–1340. [Google Scholar] [CrossRef]
- Aivatidi, C.; Vourliotakis, G.; Georgopoulos, S.; Sigala, F.; Bastounis, E.; Papalambros, E. Oxidative stress during abdominal aortic aneurysm repair—Biomarkers and antioxidant’s protective effect: A review. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 245–252. [Google Scholar]
- Gryszczyńska, B.; Budzyń, M.; Formanowicz, D.; Formanowicz, P.; Krasiński, Z.; Majewska, N.; Iskra, M.; Kasprzak, M.P. Advanced Oxidation Protein Products and Carbonylated Proteins Levels in Endovascular and Open Repair of an Abdominal Aortic Aneurysm: The Effect of Pre-, Intra-, and Postoperative Treatment. BioMed Res. Int. 2019, 2019, 7976043. [Google Scholar] [CrossRef]
- Senoner, T.; Velik-Salchner, C.; Luckner, G.; Tauber, H. Anesthesia-Induced Oxidative Stress: Are There Differences between Intravenous and Inhaled Anesthetics? Oxidative Med. Cell. Longev. 2021, 2021, 8782387. [Google Scholar] [CrossRef] [PubMed]
- Swyers, T.; Redford, D.; Larson, D.F. Volatile anesthetic-induced preconditioning. Perfusion 2014, 29, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.R.; Pavel, B.; Isvoranu, G.; Ceafalan, L.C.; Panaitescu, A.M.; Sava, R.I.; Vlad, A.; Zagrean, L. Cardioprotective Mechanisms of Interrupted Anesthetic Preconditioning with Sevoflurane in the Setting of Ischemia/Reperfusion Injury in Rats. Appl. Sci. 2022, 12, 1476. [Google Scholar] [CrossRef]
- Sepac, A.; Sedlic, F.; Si-Tayeb, K.; Lough, J.; Duncan, S.A.; Bienengraeber, M.; Park, F.; Kim, J.; Bosnjak, Z.J. Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells. Anesthesiology 2010, 113, 906–916. [Google Scholar] [CrossRef] [PubMed]
- D’Oria, R.; Schipani, R.; Leonardini, A.; Natalicchio, A.; Perrini, S.; Cignarelli, A.; Laviola, L.; Giorgino, F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative Med. Cell. Longev. 2020, 2020, 5732956. [Google Scholar] [CrossRef]
- De Hert, S.G.; Turani, F.; Mathur, S.; Stowe, D.F. Cardioprotection with volatile anesthetics: Mechanisms and clinical implications. Anesth. Analg. 2005, 100, 1584–1593. [Google Scholar] [CrossRef]
- Dharmalingam, S.K.; Amirtharaj, G.J.; Ramachandran, A.; Korula, M. Volatile anesthetic preconditioning modulates oxidative stress and nitric oxide in patients undergoing coronary artery bypass grafting. Ann. Card. Anaesth. 2021, 24, 319–326. [Google Scholar] [CrossRef]
- Hanouz, J.-L.; Zhu, L.; Lemoine, S.; Durand, C.; Lepage, O.; Massetti, M.; Khayat, A.; Plaud, B.; Gérard, J.-L. Reactive Oxygen Species Mediate Sevoflurane- and Desflurane-Induced Preconditioning in Isolated Human Right Atria In Vitro. Anesth. Analg. 2007, 105, 1534–1539. [Google Scholar] [CrossRef]
- Lindholm, E.; Aune, E.; Norén, C.; Seljeflot, I.; Hayes, T.; Otterstad, J.; Kirkeboen, K. The anesthesia in abdominal aortic surgery (ABSENT) study: A prospective, randomized, controlled trial comparing troponin T release with fentanyl-sevoflurane and propofol-remifentanil anesthesia in major vascular surgery. Anesthesiology 2013, 119, 802–812. [Google Scholar] [CrossRef]
- Koksal, G.M.; Sayilgan, C.; Aydin, S.; Uzun, H.; Oz, H. The effects of sevoflurane and desflurane on lipid peroxidation during laparoscopic cholecystectomy. Eur. J. Anaesthesiol. 2004, 21, 217–220. [Google Scholar] [CrossRef]
- Türkan, H.; Aydin, A.; Sayal, A.; Karahalil, B. The effect of sevoflurane and desflurane on markers of oxidative status in erythrocyte. Toxicol. Ind. Health 2011, 27, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Sivaci, R.; Kahraman, A.; Serteser, M.; Sahin, D.A.; Dilek, O.N. Cytotoxic effects of volatile anesthetics with free radicals undergoing laparoscopic surgery. Clin. Biochem. 2006, 39, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, M.A.; Do, H.T.; Miley, G.P.; Silverman, R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev. 2020, 40, 158–189. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, A.T.D.; Doger, C.; Ozturk, L.; Yungul, A.; Kurtsahin, M.; Neselioglu, S.; Ergin, M.; But, A. Comparison of the Effects of Sevoflurane and Desflurane on Thiol-Disulfide Homeostasis in Patients Undergoing Laparoscopic Cholecystectomy. Eurasian J. Med. 2019, 51, 70–74. [Google Scholar] [CrossRef]
- Cukurova, Z.; Cetingok, H.; Ozturk, S.; Gedikbasi, A.; Hergunsel, O.; Ozturk, D.; Don, B.; Cefle, K.; Palanduz, S.; Ertem, D.H. DNA damage effects of inhalation anesthetics in human bronchoalveolar cells. Medicine 2019, 98, e16518. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxidative Med. Cell. Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef]
- Veglia, F.; Cighetti, G.; De Franceschi, M.; Zingaro, L.; Boccotti, L.; Tremoli, E.; Cavalca, V. Age and gender related oxidative status determined in healthy subjects by means of OXY-SCORE, a potential new comprehensive index. Biomarkers 2006, 11, 562–573. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; de Pablo, A.L.L.; Condezo-Hoyos, L.; Martín-Cabrejas, M.A.; Aguilera, Y.; Ruiz-Hurtado, G.; Gutierrez-Arzapalo, P.Y.; Ramiro-Cortijo, D.; Fernández-Alfonso, M.S.; González, M.D.C.; et al. Fetal undernutrition is associated with perinatal sex-dependent alterations in oxidative status. J. Nutr. Biochem. 2015, 26, 1650–1659. [Google Scholar] [CrossRef]
- Quintana-Villamandos, B.; Pazó-Sayós, L.; Arribas, S.M.; Rodríguez-Rodríguez, P.; Böger, R.H.; Lüneburg, N.; Delgado-Baeza, E.; González, M.C. Dronedarone induces regression of coronary artery remodeling related to better global antioxidant status. Hypertens. Res. 2019, 42, 1485–1494. [Google Scholar] [CrossRef]
- Veglia, F.; Werba, J.P.; Tremoli, E.; Squellerio, I.; Sisillo, E.; Parolari, A.; Minardi, F.; Cavalca, V. Assessment of oxidative stress in coronary artery bypass surgery: Comparison between the global index OXY-SCORE and individual biomarkers. Biomarkers 2009, 14, 465–472. [Google Scholar] [CrossRef]
- Condezo-Hoyos, L.; Rubio, M.; Arribas, S.M.; España-Caparrós, G.; Rodríguez-Rodríguez, P.; Mujica-Pacheco, E.; González, M.C. A plasma oxidative stress global index in early stages of chronic venous insufficiency. J. Vasc. Surg. 2013, 57, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hurtado, G.; Condezo-Hoyos, L.; Pulido-Olmo, H.; Aranguez, I.; Del Carmen Gónzalez, M.; Arribas, S.; Cerezo, C.; Segura, J.; Praga, M.; Fernández-Alfonso, M.S.; et al. Development of albuminuria and enhancement of oxidative stress during chronic renin-angiotensin system suppression. J. Hypertens. 2014, 32, 2082–2091. [Google Scholar] [CrossRef] [PubMed]
- Quintana-Villamandos, B.; Pazó-Sayós, L.; González Del Pozo, I.; Rodríguez-Rodríguez, P.; Bellón, J.M.; Pedraz-Prieto, Á.; Pinto, Á.G.; González, M.C. OXY-SCORE: A new perspective for left ventricular hypertrophy diagnosis. Ther. Adv. Chronic Dis. 2020, 11, 2040622320936417. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, S.; Aydoğan, H.; Yuce, H.H.; Kucuk, A.; Karahan, M.A.; Vural, M.; Camuzcuoğlu, A.; Aksoy, N. Effects of sevoflurane and desflurane on oxidative stress during general anesthesia for elective cesarean section. Wien. Klin. Wochenschr. 2013, 125, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Kundović, S.A.; Rašić, D.; Popović, L.; Peraica, M.; Črnjar, K. Oxidative stress under general intravenous and inhalation anaesthesia. Arh. Hig. Rada Toksikol. 2020, 71, 169–177. [Google Scholar] [CrossRef]
- Vernooij, L.M.; van Klei, W.A.; Machina, M.; Pasma, W.; Beattie, W.S.; Peelen, L.M. Different methods of modelling intraoperative hypotension and their association with postoperative complications in patients undergoing non-cardiac surgery. Br. J. Anaesth. 2018, 120, 1080–1089. [Google Scholar] [CrossRef]
- Novalija, E.; Kevin, L.G.; Eells, J.T.; Henry, M.M.; Stowe, D.F. Anesthetic Preconditioning Improves Adenosine Triphosphate Synthesis and Reduces Reactive Oxygen Species Formation in Mitochondria after Ischemia by a Redox Dependent Mechanism. Anesthesiology 2003, 98, 1155–1163. [Google Scholar] [CrossRef]
- Sedlic, F.; Pravdic, D.; Ljubkovic, M.; Marinovic, J.; Stadnicka, A.; Bosnjak, Z.J. Differences in production of reactive oxygen species and mitochondrial uncoupling as events in the preconditioning signaling cascade between desflurane and sevoflurane. Anesth. Analg. 2009, 109, 405–411. [Google Scholar] [CrossRef]
- Ballester, M.; Llorens, J.; Garcia-de-la-Asuncion, J.; Perez-Griera, J.; Tebar, E.; Martinez-Leon, J.; Belda, J.; Juez, M. Myocardial oxidative stress protection by sevoflurane vs. propofol: A randomised controlled study in patients undergoing off-pump coronary artery bypass graft surgery. Eur. J. Anaesthesiol. 2011, 28, 874–881. [Google Scholar] [CrossRef]
- Lemoine, S.; Tritapepe, L.; Hanouz, J.L.; Puddu, P.E. The mechanisms of cardio-protective effects of desflurane and sevoflurane at the time of reperfusion: Anaesthetic post-conditioning potentially translatable to humans? Br. J. Anaesth. 2016, 116, 456–475. [Google Scholar] [CrossRef]
- Lemoine, S.; Buléon, C.; Rouet, R.; Ivascau, C.; Babatasi, G.; Massetti, M.; Gérard, J.; Hanouz, J. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: Role of reactive oxygen species. BMC Anesthesiol. 2010, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Pagel, P.S.; Crystal, G.J. The Discovery of Myocardial Preconditioning Using Volatile Anesthetics: A History and Contemporary Clinical Perspective. J. Cardiothorac. Vasc. Anesth. 2018, 32, 1112–1134. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, P.; Dierick, A.; Wilmin, S.; Bellens, B.; De Hert, S. A randomized controlled trial comparing an intraoperative goal-directed strategy with routine clinical practice in patients undergoing peripheral arterial surgery. Eur. J. Anaesthesiol. 2010, 27, 788–793. [Google Scholar] [CrossRef]
- Lindholm, E.E. Perioperative aspects of abdominal aortic surgery; focus on choice of anesthetics. Acta Anaesthesiol. Scand. 2016, 60, 411–412. [Google Scholar] [CrossRef] [PubMed]
- Zaugg, M.; Lucchinetti, E. Sevoflurane—Compared with propofol-based anesthesia reduces the need for inotropic support in patients undergoing abdominal aortic aneurysm repair: Evidence of cardioprotection by volatile anesthetics in noncardiac surgery. Anesthesiology 2014, 120, 1289–1290. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Med. Cell. Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal 2015, 23, 1144–1170. [Google Scholar] [CrossRef]
- Allaouchiche, B.; Debon, R.; Goudable, J.; Chassard, D.; Duflo, F. Oxidative stress status during exposure to propofol, sevoflurane and desflurane. Anesth. Analg. 2001, 93, 981–985. [Google Scholar] [CrossRef]
- Türkan, H.; Aydin, A.; Sayal, A.; Eken, A.; Akay, C.; Karahalil, B. Oxidative and antioxidative effects of desflurane and sevoflurane on rat tissue in vivo. Arch. Ind. Hyg. Toxicol. 2011, 62, 113–119. [Google Scholar] [CrossRef]
- Wong, C.H.; Liu, T.-Z.; Chye, S.-M.; Lu, F.-J.; Liu, Y.-C.; Lin, Z.-C.; Chen, C.-H. Sevoflurane-induced oxidative stress and cellular injury in human peripheral polymorphonuclear neutrophils. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2006, 44, 1399–1407. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; López de Pablo, A.L.; García-Prieto, C.F.; Somoza, B.; Quintana-Villamandos, B.; Gómez de Diego, J.J.; Gutierrez-Arzapalo, P.Y.; Ramiro-Cortijo, D.; González, M.C.; Arribas, S.M. Long term effects of fetal undernutrition on rat heart. Role of hypertension and oxidative stress. PLoS ONE 2017, 12, e0171544. [Google Scholar] [CrossRef] [PubMed]
- Papalambros, E.; Sigala, F.; Georgopoulos, S.; Paraskevas, K.I.; Andreadou, I.; Menenakos, X.; Sigalas, P.; Papalambros, A.L.; Vourliotakis, G.; Giannopoulos, A.; et al. Malondialdehyde as an indicator of oxidative stress during abdominal aortic aneurysm repair. Angiology 2007, 58, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Stoner, L.; Lucero, A.A.; Palmer, B.R.; Jones, L.M.; Young, J.M.; Faulkner, J. Inflammatory biomarkers for predicting cardiovascular disease. Clin. Biochem. 2013, 46, 1353–1371. [Google Scholar] [CrossRef] [PubMed]
- Arnalich-Montiel, A.; González, M.C.; Delgado-Baeza, E.; Delgado-Martos, M.J.; Condezo-Hoyos, L.; Martos-Rodríguez, A.; Rodríguez-Rodríguez, P.; Quintana-Villamandos, B. Short-term esmolol improves coronary artery remodeling in spontaneously hypertensive rats through increased nitric oxide bioavailability and superoxide dismutase activity. BioMed Res. Int. 2014, 2014, 531087. [Google Scholar] [CrossRef]
- Quintana-Villamandos, B.; Goukassian, D.A.; Sasi, S.P.; Delgado-Baeza, E. Short-Term Treatment with Esmolol Reverses Left Ventricular Hypertrophy in Adult Spontaneously Hypertensive Rats via Inhibition of Akt/NF-κB and NFATc4. BioMed Res. Int. 2018, 2018, 2691014. [Google Scholar] [CrossRef]
- McCormick, M.L.; Gavrila, D.; Weintraub, N.L. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 461–469. [Google Scholar] [CrossRef]
- Myles, P.S.; Leslie, K.; McNeil, J.; Forbes, A.; Chan, M.T.V. Bispectral index monitoring to prevent awareness during anaesthesia: The B-Aware randomised controlled trial. Lancet 2004, 363, 1757–1763. [Google Scholar] [CrossRef]
- Pestaña, D.; Espinosa, E.; Eden, A.; Nájera, D.; Collar, L.; Aldecoa, C.; Higuera, E.; Escribano, S.; Bystritski, D.; Pascual, J.; et al. Perioperative goal-directed hemodynamic optimization using noninvasive cardiac output monitoring in major abdominal surgery: A prospective, randomized, multicenter, pragmatic trial: POEMAS Study (PeriOperative goal-directed thErapy in Major Abdominal Surgery). Anesth. Analg. 2014, 119, 579–587. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Morgan, P.E.; Davies, M.J. Quantification of protein modification by oxidants. Free Radic. Biol. Med. 2009, 46, 965–988. [Google Scholar] [CrossRef]
- Hissin, P.J.; Hilf, R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976, 74, 214–226. [Google Scholar] [CrossRef]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef] [PubMed]
Desflurane Group (n = 40) | Sevoflurane Group (n = 40) | p Value | |
---|---|---|---|
Aneurysm size (mm) | 60.27 ± 10.69 | 59.90 ± 5.61 | 0.848 |
Operative time (min) | 182.38 ± 79.16 | 156.55 ± 59.31 | 0.103 |
Anesthesia duration (min) | 250.28 ± 87.15 | 220.28 ± 64.83 | 0.091 |
Duration of sevoflurane/desflurane administration (min) | 230.93 ± 86.80 | 197.85 ± 61.91 | 0.053 |
Hemoglobin (g/dL) | |||
Moment 0 | 13.73 ± 1.56 | 13.38 ± 1.48 | 0.320 |
Moment 1 | 11.71 ± 1.44 | 11.98 ± 1.52 | 0.423 |
Blood transfusion (%) | 1 (2.5%) | 3 (7.5%) | 0.610 |
Lactate (mmol/L) | |||
Moment 0 | 1.29 ± 0.40 | 1.40 ± 0.51 | 0.305 |
Moment 1 | 1.38 ± 0.86 | 1.28 ± 0.34 | 0.495 |
Plasma Biomarker | Desflurane Group (n = 40) | Sevoflurane Group (n = 40) | p Value |
---|---|---|---|
Protein carbonylation (nmol/mg protein) | 3.869 ± 0.349 | 3.459 ± 0.395 | 0.441 |
MDA (μM) | 18.681 ± 2.013 | 17.487 ± 0.824 | 0.592 |
Nitrates (μM) | 39.230 ± 4.296 | 49.153 ± 4.306 | 0.107 |
Total thiols (μmol/mg protein) | 0.008 ± 0.001 | 0.007 ± 0.001 | 0.568 |
GSH (μmol/mg protein) | 0.490 ± 0.088 | 0.319 ± 0.047 | 0.092 |
SOD (mU SOD/mg protein) | 33.992 ± 1.625 | 37.105 ± 2.615 | 0.328 |
Catalase (U catalase/mg protein) | 7.042 ± 0.496 | 7.116 ± 0.809 | 0.944 |
Plasma Biomarker | Desflurane Group (n = 40) | Sevoflurane Group (n = 40) | p Value |
---|---|---|---|
Protein carbonylation (nmol/mg protein) | 3.206 ± 0.217 | 3.507 ± 0.227 | 0.343 |
MDA (μM) | 14.012 ± 0.655 | 14.495 ± 0.861 | 0.657 |
Nitrates (μM) | 94.925 ± 5.688 | 88.695 ± 5.090 | 0.419 |
Total thiols (μmol/mg protein) | 0.008 ± 0.001 | 0.008 ± 0.001 | 0.249 |
GSH (μmol/mg protein) | 0.083 ± 0.004 | 0.083 ± 0.003 | 0.996 |
SOD (mU SOD/mg protein) | 24.381 ± 0.697 | 23.549 ± 0.592 | 0.366 |
Catalase (U catalase/mg protein) | 10.851 ± 0.278 | 10.793 ± 0.291 | 0.885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgos-Santamaría, A.; Rodríguez-Rodríguez, P.; Arnalich-Montiel, A.; Arribas, S.M.; Fernández-Riveira, C.; Barrio-Pérez, I.M.; Río, J.; Ligero, J.M.; Quintana-Villamandos, B. OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair—A Randomized Clinical Trial. Int. J. Mol. Sci. 2024, 25, 10770. https://doi.org/10.3390/ijms251910770
Burgos-Santamaría A, Rodríguez-Rodríguez P, Arnalich-Montiel A, Arribas SM, Fernández-Riveira C, Barrio-Pérez IM, Río J, Ligero JM, Quintana-Villamandos B. OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair—A Randomized Clinical Trial. International Journal of Molecular Sciences. 2024; 25(19):10770. https://doi.org/10.3390/ijms251910770
Chicago/Turabian StyleBurgos-Santamaría, Alba, Pilar Rodríguez-Rodríguez, Ana Arnalich-Montiel, Silvia M. Arribas, Carmen Fernández-Riveira, I. María Barrio-Pérez, Javier Río, José Manuel Ligero, and Begoña Quintana-Villamandos. 2024. "OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair—A Randomized Clinical Trial" International Journal of Molecular Sciences 25, no. 19: 10770. https://doi.org/10.3390/ijms251910770
APA StyleBurgos-Santamaría, A., Rodríguez-Rodríguez, P., Arnalich-Montiel, A., Arribas, S. M., Fernández-Riveira, C., Barrio-Pérez, I. M., Río, J., Ligero, J. M., & Quintana-Villamandos, B. (2024). OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair—A Randomized Clinical Trial. International Journal of Molecular Sciences, 25(19), 10770. https://doi.org/10.3390/ijms251910770