Genome-Wide Identification of Vitellogenin Gene Family and Comparative Analysis of Their Involvement in Ovarian Maturation in Exopalaemon carinicauda
Abstract
:1. Introduction
2. Results
2.1. Identification and Physicochemical Characterization of the EcVtg Gene Family
2.2. Chromosome Location and Phylogenetics of the EcVtg Gene Family
2.3. Gene Structures and Conserved Motifs of the EcVtg Gene Family
2.4. Gene Duplication and Synteny Analysis
2.5. Expression of EcVtg Genes in Different Tissues and Developmental Stages
2.6. EcVtg Genes Related to Ovarian Development of E. carinicauda
2.7. Expression of the EcVtgs after Eyestalk Ablation
3. Discussion
4. Materials and Methods
4.1. Genome-Wide Identification and Sequence Analysis of Vtg Genes in E. carinicauda
4.2. Phylogenetic Analysis and Molecular Evolution
4.3. Chromosome Distribution, Gene Structure, and Protein Motif Analyses of EcVtg Genes
4.4. Subcellular-Localization and Protein-Structure Prediction
4.5. Expression Analyses of EcVtg Genes
4.6. Quantitative RT-PCR Analysis
4.7. Expression-Pattern Analysis of EcVtg Genes during Embryonic Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carducci, F.; Biscotti, M.A.; Canapa, A. Vitellogenin gene family in vertebrates: Evolution and functions. Eur. Zool. J. 2019, 86, 233–240. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015, 7, 8818–8829. [Google Scholar] [CrossRef]
- Dietrich, M.A.; Adamek, M.; Teitge, F.; Teich, L.; Jung-Schroers, V.; Malinowska, A.; Świderska, B.; Rakus, K.; Kodzik, N.; Chadzińska, M.; et al. Proteomic analysis of carp seminal plasma provides insights into the immune response to bacterial infection of the male reproductive system. Fish Shellfish Immunol. 2022, 127, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, X.J.; Wu, Y.M.; Yang, L.; Li, W.; Wang, Q. Vitellogenin regulates antimicrobial responses in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol. 2017, 69, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Chen, Y.-Z.; Lou, Y.-H.; Zhang, C.-X. Vitellogenin and Vitellogenin-Like Genes in the Brown Planthopper. Front. Physiol. 2019, 10, 1181. [Google Scholar] [CrossRef]
- Roth, Z.; Weil, S.; Aflalo, E.D.; Manor, R.; Sagi, A.; Khalaila, I. Identification of Receptor-Interacting Regions of Vitellogenin within Evolutionarily Conserved β-Sheet Structures by Using a Peptide Array. ChemBioChem 2013, 14, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Sadasivam, M.; Ding, J.L. Receptor-Ligand Interaction between Vitellogenin Receptor (VtgR) and Vitellogenin (Vtg), Implications on Low Density Lipoprotein Receptor and Apolipoprotein. J. Biol. Chem. 2003, 278, 2799–2806. [Google Scholar] [CrossRef]
- Sun, W.; Li, H.; Zhao, Y.; Bai, L.; Qin, Y.; Wang, Q.; Li, W. Distinct vitellogenin domains differentially regulate immunological outcomes in invertebrates. J. Biol. Chem. 2021, 296, 100060. [Google Scholar] [CrossRef]
- Wu, B.; Liu, Z.; Zhou, L.; Ji, G.; Yang, A. Molecular cloning, expression, purification and characterization of vitellogenin in scallop Patinopecten yessoensis with special emphasis on its antibacterial activity. Dev. Comp. Immunol. 2015, 49, 249–258. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, X.; Yu, S.; Li, Y.; Wu, S.; Liu, J.; Wang, L.; Song, L. The DUF1943 and VWD domains endow Vitellogenin from Crassostrea gigas with the agglutination and inhibition ability to microorganism. Dev. Comp. Immunol. 2023, 143, 104679. [Google Scholar] [CrossRef]
- Yilmaz, O.; Patinote, A.; Nguyen, T.; Com, E.; Pineau, C.; Bobe, J. Genome editing reveals reproductive and developmental dependencies on specific types of vitellogenin in zebrafish (Danio rerio). Mol. Reprod. Dev. 2019, 86, 1168–1188. [Google Scholar] [CrossRef]
- Williams, V.N.; Reading, B.J.; Hiramatsu, N.; Amano, H.; Glassbrook, N.; Hara, A.; Sullivan, C.V. Multiple vitellogenins and product yolk proteins in striped bass, Morone saxatilis: Molecular characterization and processing during oocyte growth and maturation. Fish Physiol. Biochem. 2014, 40, 395–415. [Google Scholar] [CrossRef]
- Yilmaz, O.; Patinote, A.; Com, E.; Pineau, C.; Bobe, J. Knock out of specific maternal vitellogenins in zebrafish (Danio rerio) evokes vital changes in egg proteomic profiles that resemble the phenotype of poor quality eggs. BMC Genom. 2021, 22, 308. [Google Scholar] [CrossRef] [PubMed]
- Kung, S.Y.; Chan, S.M.; Hui, J.H.; Tsang, W.S.; Mak, A.; He, J.G. Vitellogenesis in the sand shrimp, metapenaeus ensis: The contribution from the hepatopancreas-specific vitellogenin gene (MeVg2). Biol. Reprod. 2004, 71, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-M.; Kim, B.-K.; Kim, Y.-J.; Kim, H.-W. Structural Similarity and Expression Differences of Two Pj-Vg Genes from the Pandalus Shrimp Pandalopsis japonica. Fish. Aquat. Sci. 2011, 14, 22–30. [Google Scholar] [CrossRef]
- Xu, W.; Xie, J.; Shi, H.; Li, C. Hematodinium infections in cultured ridgetail white prawns, Exopalaemon carinicauda, in eastern China. Aquaculture 2010, 300, 25–31. [Google Scholar] [CrossRef]
- Wang, J.; Ge, Q.; Li, J.; Li, J. Effects of inbreeding on growth and survival rates, and immune responses of ridgetail white prawn Exopalaemon carinicauda against the infection of Vibrio parahaemolyticus. Aquaculture 2020, 519, 734755. [Google Scholar] [CrossRef]
- Yuan, J.; Gao, Y.; Zhang, X.; Wei, J.; Liu, C.; Li, F.; Xiang, J. Genome Sequences of Marine Shrimp Exopalaemon carinicauda Holthuis Provide Insights into Genome Size Evolution of Caridea. Mar. Drugs 2017, 15, 213. [Google Scholar] [CrossRef]
- Liang, J.-P.; Zhang, W.-L.; Li, H.; Li, J.-T.; Li, J. Abundances of vitellogenin and heat shock protein 90 during ovarian and embryonic development of Exopalaemon carinicauda. Anim. Reprod. Sci. 2020, 223, 106633. [Google Scholar] [CrossRef]
- Uengwetwanit, T.; Pootakham, W.; Nookaew, I.; Sonthirod, C.; Angthong, P.; Sittikankaew, K.; Rungrassamee, W.; Arayamethakorn, S.; Wongsurawat, T.; Jenjaroenpun, P.; et al. A chromosome-level assembly of the black tiger shrimp (Penaeus monodon) genome facilitates the identification of growth-associated genes. Mol. Ecol. Resour. 2021, 21, 1620–1640. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, Y.; Yuan, J.; Zhang, X.; Ventura, T.; Ma, K.Y.; Sun, S.; Song, C.; Zhan, D.; Yang, Y.; et al. The Chinese mitten crab genome provides insights into adaptive plasticity and developmental regulation. Nat. Commun. 2021, 12, 2395. [Google Scholar] [CrossRef]
- Jiang, K.; Fang, X.; Li, Y.-L.; Qiu, G.-F. Genome-wide identification, phylogeny, expression and eyestalk neuroendocrine regulation of vitellogenin gene family in the freshwater giant prawn Macrobrachium rosenbergii. Gen. Comp. Endocrinol. 2023, 340, 114306. [Google Scholar] [CrossRef]
- Innan, H.; Kondrashov, F. The evolution of gene duplications: Classifying and distinguishing between models. Nat. Rev. Genet. 2010, 11, 97–108. [Google Scholar] [CrossRef]
- Gao, X.-M.; Zhou, Y.; Zhang, D.-D.; Hou, C.-C.; Zhu, J.-Q. Multiple vitellogenin genes (vtgs) in large yellow croaker (Larimichthys crocea): Molecular characterization and expression pattern analysis during ovarian development. Fish Physiol. Biochem. 2019, 45, 829–848. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, T.; Tan, J.T.T.; Gong, Z. A zebrafish vitellogenin gene (vg3) encodes a novel vitellogenin without a phosvitin domain and may represent a primitive vertebrate vitellogenin gene. Gene 2000, 256, 303–310. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, W.; Wang, C.; Shi, L.; Wang, G.; Sun, C.; Chan, S.F. The presence of multiple copies of the vitellogenin gene in Fenneropenaeus merguiensis (De Man, 1888) (Decapoda: Dendrobranchiata: Penaeidae): Evidence for gene expansion and functional diversification in shrimps. J. Crustac. Biol. 2021, 41, 100. [Google Scholar] [CrossRef]
- Wang, W.; Li, B.; Zhou, T.; Wang, C.; Kyei, A.B.; Shi, L.; Chan, S. Investigation of Gene Sequence Divergence, Expression Dynamics, and Endocrine Regulation of the Vitellogenin Gene Family in the Whiteleg Shrimp Litopenaeus vannamei. Front. Endocrinol. 2020, 11, 577745. [Google Scholar] [CrossRef] [PubMed]
- El-Desoky, M.S.; Jogatani, T.; Yamane, F.; Izumikawa, K.; Kakinuma, M.; Sakamoto, T.; Tsutsui, N. Identification of an additional vitellogenin gene showing hepatopancreas-specific expression in the kuruma prawn Marsupenaeus japonicus. Fish. Sci. 2023, 89, 613–623. [Google Scholar] [CrossRef]
- Manfrin, C.; Tom, M.; Avian, M.; Battistella, S.; Pallavicini, A.; Giulianini, P.G. Characterization and Gene Expression of Vitellogenesis-Related Transcripts in the Hepatopancreas and Ovary of the Red Swamp Crayfish, Procambarus clarkii (Girard, 1852), during Reproductive Cycle. Diversity 2021, 13, 445. [Google Scholar] [CrossRef]
- Leipart, V.; Montserrat-Canals, M.; Cunha, E.S.; Luecke, H.; Herrero-Galán, E.; Halskau, Ø.; Amdam, G.V. Structure prediction of honey bee vitellogenin: A multi-domain protein important for insect immunity. FEBS Open Bio 2022, 12, 51–70. [Google Scholar] [CrossRef]
- Mengal, K.; Kor, G.; Siino, V.; Buřič, M.; Kozák, P.; Levander, F.; Niksirat, H. Quantification of proteomic profile changes in the hemolymph of crayfish during in vitro coagulation. Dev. Comp. Immunol. 2023, 147, 104760. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Xi, G.-S.; Zhao, J. Vitellogenin regulates estrogen-related receptor expression by crosstalk with the JH and IIS-TOR signaling pathway in Polyrhachis vicina Roger (Hymenoptera, Formicidae). Gen. Comp. Endocrinol. 2021, 310, 113836. [Google Scholar] [CrossRef]
- Huo, Y.; Yu, Y.; Chen, L.; Li, Q.; Zhang, M.; Song, Z.; Chen, X.; Fang, R.; Zhang, L. Insect tissue-specific vitellogenin facilitates transmission of plant virus. PLoS Pathog. 2018, 14, e1006909. [Google Scholar] [CrossRef] [PubMed]
- Kodrík, D.; Ibrahim, E.; Gautam, U.K.; Čapková Frydrychová, R.; Bednářová, A.; Krištůfek, V.; Jedlička, P. Changes in vitellogenin expression caused by nematodal and fungal infections in insects. J. Exp. Biol. 2019, 222, jeb202853. [Google Scholar] [CrossRef] [PubMed]
- Havukainen, H.; Münch, D.; Baumann, A.; Zhong, S.; Halskau, Ø.; Krogsgaard, M.; Amdam, G.V. Vitellogenin Recognizes Cell Damage through Membrane Binding and Shields Living Cells from Reactive Oxygen Species. J. Biol. Chem. 2013, 288, 28369–28381. [Google Scholar] [CrossRef]
- Sun, W.; Li, L.; Li, H.; Zhou, K.; Li, W.; Wang, Q. Vitellogenin receptor expression in ovaries controls innate immunity in the Chinese mitten crab (Eriocheir sinensis) by regulating vitellogenin accumulation in the hemolymph. Fish Shellfish Immunol. 2020, 107, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Tsang, W.-S.; Quackenbush, L.S.; Chow, B.K.C.; Tiu, S.H.K.; He, J.-G.; Chan, S.-M. Organization of the shrimp vitellogenin gene: Evidence of multiple genes and tissue specific expression by the ovary and hepatopancreas. Gene 2003, 303, 99–109. [Google Scholar] [CrossRef]
- Tiu, S.H.K.; Hui, J.H.L.; Mak, A.S.C.; He, J.-G.; Chan, S.-M. Equal contribution of hepatopancreas and ovary to the production of vitellogenin (PmVg1) transcripts in the tiger shrimp, Penaeus monodon. Aquaculture 2006, 254, 666–674. [Google Scholar] [CrossRef]
- Tiu, S.H.K.; Hui, H.-L.; Tsukimura, B.; Tobe, S.S.; He, J.-G.; Chan, S.-M. Cloning and expression study of the lobster (Homarus americanus) vitellogenin: Conservation in gene structure among decapods. Gen. Comp. Endocrinol. 2009, 160, 36–46. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Ghosh, P.; Das, D.; Juin, S.K.; Hajra, S.; Kachari, A.; Das, D.N.; Nath, P.; Maitra, S. Identification and partial characterization of Olyra longicaudata (McClelland, 1842) vitellogenins: Seasonal variation in plasma, relative to estradiol-17β and ovarian growth. Aquac. Rep. 2016, 3, 120–130. [Google Scholar] [CrossRef]
- Tufail, M.; Takeda, M. Molecular characteristics of insect vitellogenins. J. Insect Physiol. 2008, 54, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, L.; Zhou, Z.; Li, E.; Zhao, X.; Guo, H. The site of vitellogenin synthesis in Chinese mitten-handed crab Eriocheir sinensis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006, 143, 453–458. [Google Scholar] [CrossRef]
- Kang, B.J.; Nanri, T.; Lee, J.M.; Saito, H.; Han, C.H.; Hatakeyama, M.; Saigusa, M. Vitellogenesis in both sexes of gonochoristic mud shrimp, Upogebia major (Crustacea): Analyses of vitellogenin gene expression and vitellogenin processing. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 149, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Subramoniam, T. Mechanisms and control of vitellogenesis in crustaceans. Fish. Sci. 2011, 77, 1–21. [Google Scholar] [CrossRef]
- Raviv, S.; Parnes, S.; Segall, C.; Davis, C.; Sagi, A. Complete sequence of Litopenaeus vannamei (Crustacea: Decapoda) vitellogenin cDNA and its expression in endocrinologically induced sub-adult females. Gen. Comp. Endocrinol. 2006, 145, 39–50. [Google Scholar] [CrossRef]
- Hiransuchalert, R.; Thamniemdee, N.; Khamnamtong, B.; Yamano, K.; Klinbunga, S. Expression profiles and localization of vitellogenin mRNA and protein during ovarian development of the giant tiger shrimp Penaeus monodon. Aquaculture 2013, 412, 193–201. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, W.; Xiong, Y.; Cheng, D.; Wang, J.; Jin, S.; Gong, Y.; Wu, Y.; Qiao, H.; Fu, H. Hepatopancreas transcriptome analyses provide new insights into the molecular regulatory mechanism of fast ovary maturation in Macrobrachium nipponense. BMC Genom. 2022, 23, 625. [Google Scholar] [CrossRef]
- Jia, X.; Chen, Y.; Zou, Z.; Lin, P.; Wang, Y.; Zhang, Z. Characterization and expression profile of Vitellogenin gene from Scylla paramamosain. Gene 2013, 520, 119–130. [Google Scholar] [CrossRef]
- Yang, W.; Ohira, T.; Tsutsui, N.; Subramoniam, T.; Do, H.; Aida, K.; Wilder, M. Determination of amino acid sequence and site of mRNA expression of four vitellins in the giant freshwater prawn, Macrobrachium rosenbergii. J. Exp. Zool. 2000, 287, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, N.; Saido-Sakanaka, H.; Yang, W.-J.; Jayasankar, V.; Jasmani, S.; Okuno, A.; Ohira, T.; Okumura, T.; Aida, K.; Wilder, M.N. Molecular characterization of a cDNA encoding vitellogenin in the coonstriped shrimp, Pandalus hypsinotus and site of vitellogenin mRNA expression. J. Exp. Zool. Part A Comp. Exp. Biol. 2004, 301A, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-M.; Lee, S.-O.; Kim, K.S.; Baek, H.-J.; Kim, S.; Kim, I.-K.; Mykles, D.L.; Kim, H.-W. Characterization of two vitellogenin cDNAs from a Pandalus shrimp (Pandalopsis japonica): Expression in hepatopancreas is down-regulated by endosulfan exposure. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010, 157, 102–112. [Google Scholar] [CrossRef]
- Zmora, N.; Trant, J.; Chan, S.-M.; Chung, J.S. Vitellogenin and Its Messenger RNA During Ovarian Development in the Female Blue Crab, Callinectes sapidus: Gene Expression, Synthesis, Transport, and Cleavage1. Biol. Reprod. 2007, 77, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Nagaraju, G.P.C.; Novotney, D.; Lovett, D.L.; Borst, D.W. Yolk protein expression in the green crab, Carcinus maenas. Aquaculture 2010, 298, 325–331. [Google Scholar] [CrossRef]
- Mak, A.S.C.; Choi, C.L.; Tiu, S.H.K.; Hui, J.H.L.; He, J.-G.; Tobe, S.S.; Chan, S.-M. Vitellogenesis in the red crab Charybdis feriatus: Hepatopancreas-specific expression and farnesoic acid stimulation of vitellogenin gene expression. Mol. Reprod. Dev. 2005, 70, 288–300. [Google Scholar] [CrossRef]
- Rani, K.; Subramoniam, T. Vitellogenesis in the Mud Crab Scylla serrata: An in Vivo Isotope Study. J. Crust. Biol. 1997, 17, 659. [Google Scholar] [CrossRef]
- Girish, B.P.; Swetha, C.H.; Reddy, P.S. Hepatopancreas but not ovary is the site of vitellogenin synthesis in female fresh water crab, Oziothelphusa senex senex. Biochem. Biophys. Res. Commun. 2014, 447, 323–327. [Google Scholar] [CrossRef]
- Abdu, U.; Davis, C.; Khalaila, I.; Sagi, A. The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. Gen. Comp. Endocrinol. 2002, 127, 263–272. [Google Scholar] [CrossRef]
- Tiu, S.H.K.; Hui, J.H.L.; HE, J.-G.; Tobe, S.S.; Chan, S.-M. Characterization of vitellogenin in the shrimp Metapenaeus ensis: Expression studies and hormonal regulation of MeVg1 transcription in vitro. Mol. Reprod. Dev. 2006, 73, 424–436. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Gao, X.; Cai, L. Studies on site of vitellogenin synthesis in the shrimp Fenneropenaeus chinensis. Mar. Fish. Res. 2006, 27, 7–13. [Google Scholar]
- Yi Kyung, K.; Naoaki, T.; Ichiro, K.; Takuji, O.; Toyoji, K.; Katsumi, A. Localization and Developmental Expression of mRNA for Cortical Rod Protein in Kuruma Prawn Marsupenaeus japonicus. Zool. Sci. 2005, 22, 675–680. [Google Scholar] [CrossRef]
- Khayat, M.; Lubzens, E.; Tietz, A.; Funkenstein, B. Cell-Free Synthesis of Vitellin in the Shrimp Penaeus semisulcatus (de Haan). Gen. Comp. Endocrinol. 1994, 93, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Phiriyangkul, P.; Puengyam, P.; Jakobsen, I.B.; Utarabhand, P. Dynamics of vitellogenin mRNA expression during vitellogenesis in the banana shrimp Penaeus (Fenneropenaeus) merguiensis using real-time PCR. Mol. Reprod. Dev. 2007, 74, 1198–1207. [Google Scholar] [CrossRef]
- Sittikankaew, K.; Pootakham, W.; Sonthirod, C.; Sangsrakru, D.; Yoocha, T.; Khudet, J.; Nookaew, I.; Uawisetwathana, U.; Rungrassamee, W.; Karoonuthaisiri, N. Transcriptome analyses reveal the synergistic effects of feeding and eyestalk ablation on ovarian maturation in black tiger shrimp. Sci. Rep. 2020, 10, 3239. [Google Scholar] [CrossRef]
- Amankwah, B.K.; Wang, C.; Zhou, T.; Liu, J.; Shi, L.; Wang, W.; Chan, S. Eyestalk Ablation, a Prerequisite for Crustacean Reproduction: A review. Isr. J. Aquac.-Bamidgeh 2019, 71, 1–14. [Google Scholar]
- Takuji, O. Effects of Bilateral and Unilateral Eyestalk Ablation on Vitellogenin Synthesis in Immature Female Kuruma Prawns, Marsupenaeus japonicus. Zool. Sci. 2007, 24, 233–240. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, M.; Gao, B.; Lv, J.; Li, J.; Liu, P. Integrative Proteomic and MicroRNA Analysis: Insights into Mechanisms of Eyestalk Ablation-Induced Ovarian Maturation in the Swimming Crab Portunus trituberculatus. Front. Endocrinol. 2020, 11, 00533. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, M.; Ruan, Y.; Chen, X.; Ren, C.; Yang, H.; Zhang, X.; Liu, J.; Li, H.; Zhang, L.; et al. Transcriptomic analysis reveals yolk accumulation mechanism from the hepatopancreas to ovary in the pacific white shrimp Litopenaeus vannamei. Front. Mar. Sci. 2022, 9, 948105. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Chen, Y.; Zhao, Y. A preliminary study on artificial ripening of Exopalaemon carinicauda. J. Zhejiang Coll. Fish. 1995, 14, 243–246. [Google Scholar]
- Jia, S.; Li, J.; Lv, J.; Ren, X.; Wang, J.; Wang, Q.; Liu, P.; Li, J. Molecular Characterization Related to Ovary Early Development Mechanisms after Eyestalk Ablation in Exopalaemon carinicauda. Biology 2023, 12, 596. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Zhang, P.; Li, Z.; Zhao, L.; Lai, X.; Gao, H.; Li, J.; Yan, B. Cloning, expression and stability analysis of the reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in Exopalaemon carinicauda. J. Fish Sci. China 2017, 24, 1003–1012. [Google Scholar] [CrossRef]
- Wang, X.E. Early embryonis development on Exopalaemon carinicauda and relation of its incubation with temperature and salinity. J. Fish. China 1989, 13, 59–64. [Google Scholar]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
Group | Gene | Chr | aa Number | MW (Da) | pI | Domain (From-To) |
---|---|---|---|---|---|---|
Vtg1 | Vtg1a | 23 | 2543 | 287.76 | 9.14 | LPD_N (41-588), DUF1943 (623-917) VWD (2311-2451) |
Vtg1b | 23 | 2543 | 287.30 | 9.02 | LPD_N (43-588), DUF1943 (623-917) VWD (2311-2451) | |
Vtg2 | Vtg2 | 1 | 2573 | 291.37 | 7.94 | LPD_N (44-588), DUF1943 (621-910) VWD (2346-2488) |
Vtg3 | Vtg3 | 10 | 2533 | 284.05 | 9.03 | LPD_N (42-586), DUF1943 (619-916) VWD (2298-2437) |
Vtg4 | Vtg4 | 10 | 2574 | 290.60 | 8.22 | LPD_N (48-589), DUF1943 (622-925) VWD (2345-2484) |
Vtg5 | Vtg5 | 10 | 2421 | 275.06 | 7.74 | LPD_N (45-521), DUF1943 (549-840) VWD (2191-2329) |
Vtg6 | Vtg6a | 10 | 2530 | 283.70 | 7.72 | LPD_N (51-598), DUF1943 (631-929) VWD (2298-2438) |
Vtg6b | 10 | 2546 | 285.61 | 7.27 | LPD_N (51-598), DUF1943 (631-929) VWD (2322-2454) | |
Vtg7 | Vtg7 | 14 | 2573 | 289.13 | 7.86 | LPD_N (77-597), DUF1943 (630-928) VWD (2335-2481) |
Vtg8 | Vtg8 | 6 | 2581 | 290.69 | 8.11 | LPD_N (43-591), DUF1943 (624-922) VWD (2341-2487) |
Gene | Alpha Helix | Extended Strand | Beta Turn | Random Coil | Subcellular Location |
---|---|---|---|---|---|
EcVtg1a | 39.68% | 19.90% | 4.68% | 35.75% | endoplasmic reticulum |
EcVtg1b | 39.44% | 20.02% | 4.44% | 36.10% | extracellular matrix |
EcVtg2 | 39.14% | 19.78% | 5.16% | 35.92% | extracellular matrix |
EcVtg3 | 39.76% | 19.98% | 4.90% | 35.37% | extracellular matrix |
EcVtg4 | 40.09% | 19.54% | 5.01% | 35.35% | endoplasmic reticulum |
EcVtg5 | 38.00% | 20.16% | 4.58% | 37.26% | extracellular matrix |
EcVtg6a | 39.37% | 19.84% | 4.94% | 35.85% | extracellular matrix |
EcVtg6b | 39.51% | 19.84% | 4.91% | 35.74% | extracellular matrix |
EcVtg7 | 38.63% | 20.25% | 5.25% | 35.87% | endoplasmic reticulum |
EcVtg8 | 39.05% | 19.88% | 4.69% | 36.38% | nuclear |
Species | Suborder | Family | Synthesis Site | Reference |
---|---|---|---|---|
Exopalaemon carinicauda | Pleocyemata | Palaemonidae | hepatopancreas | [19] |
Macrobrachium nipponensis | Pleocyemata | Palaemonidae | hepatopancreas, ovary | [48] |
Macrobrachium rosenbergii | Pleocyemata | Palaemonidae | hepatopancreas | [50] |
Pandalus hypsinotus | Pleocyemata | Pandalidae | hepatopancreas | [51] |
Pandalopsis japonica | Pleocyemata | Pandalidae | hepatopancreas | [52] |
Callinectes sapidus | Pleocyemata | Portunidae | hepatopancreas, ovary | [53] |
Carcinus maenas | Pleocyemata | Portunidae | hepatopancreas, ovary | [54] |
Charybdis feriatus | Pleocyemata | Portunidae | hepatopancreas | [55] |
Portunus trituberculatus | Pleocyemata | Portunidae | hepatopancreas | [51] |
Scylla paramamosain | Pleocyemata | Portunidae | hepatopancreas, ovary | [49] |
Scylla serrata | Pleocyemata | Portunidae | hepatopancreas | [56] |
Oziothelphusa senex senex | Pleocyemata | Potamoidea | hepatopancreas | [57] |
Eriocheir sinensis | Pleocyemata | Grapsidae | hepatopancreas, ovary | [43] |
Cherax quadricarinatus | Pleocyemata | Parastacidae | hepatopancreas | [58] |
Procambarus clarkii | Pleocyemata | Cambaridae | hepatopancreas, ovary | [29] |
Homarus americanus | Pleocyemata | Palinuridae | hepatopancreas, ovary | [39] |
Upogebia major | Pleocyemata | Upogebiidae | hepatopancreas, ovary | [44] |
Litopenaeus vannamei | Dendrobranchiata | Penaeidae | hepatopancreas, ovary | [46] |
Metapenaeus ensis | Dendrobranchiata | Penaeidae | hepatopancreas, ovary | [59] |
Penaeus chinensis | Dendrobranchiata | Penaeidae | hepatopancreas, ovary | [60] |
Penaeus japonicus | Dendrobranchiata | Penaeidae | hepatopancreas, ovary | [28,61] |
Penaeus monodon | Dendrobranchiata | Penaeidae | hepatopancreas, ovary | [38,47] |
Penaeus semisulcatus | Dendrobranchiata | Penaeidae | hepatopancreas, ovary | [62] |
Fenneropenaeus merguiensis | Dendrobranchiata | Penaeidae | hepatopancreas, ovary | [26,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Tang, S.; Ge, Q.; Wang, Q.; He, Y.; Ren, X.; Li, J.; Li, J. Genome-Wide Identification of Vitellogenin Gene Family and Comparative Analysis of Their Involvement in Ovarian Maturation in Exopalaemon carinicauda. Int. J. Mol. Sci. 2024, 25, 1089. https://doi.org/10.3390/ijms25021089
Wang J, Tang S, Ge Q, Wang Q, He Y, Ren X, Li J, Li J. Genome-Wide Identification of Vitellogenin Gene Family and Comparative Analysis of Their Involvement in Ovarian Maturation in Exopalaemon carinicauda. International Journal of Molecular Sciences. 2024; 25(2):1089. https://doi.org/10.3390/ijms25021089
Chicago/Turabian StyleWang, Jiajia, Shuai Tang, Qianqian Ge, Qiong Wang, Yuying He, Xianyun Ren, Jian Li, and Jitao Li. 2024. "Genome-Wide Identification of Vitellogenin Gene Family and Comparative Analysis of Their Involvement in Ovarian Maturation in Exopalaemon carinicauda" International Journal of Molecular Sciences 25, no. 2: 1089. https://doi.org/10.3390/ijms25021089
APA StyleWang, J., Tang, S., Ge, Q., Wang, Q., He, Y., Ren, X., Li, J., & Li, J. (2024). Genome-Wide Identification of Vitellogenin Gene Family and Comparative Analysis of Their Involvement in Ovarian Maturation in Exopalaemon carinicauda. International Journal of Molecular Sciences, 25(2), 1089. https://doi.org/10.3390/ijms25021089