Regenerative Peripheral Nerve Interfaces (RPNIs) in Animal Models and Their Applications: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria (Figure 1)
2.3. Data Extraction
3. Results
Reference No. | PMID | First Author | Database | University | Publication Year | Study Groups | Follow-Up Time (Months) | Quality Score |
---|---|---|---|---|---|---|---|---|
[23] | 36729137 | Ian C. Sando | PubMed | Michigan | 2022 | 1—Control Full-thickness Skin (CFS), 2—Control De-epithelialized Skin (CDS), 3—Control Transected Nerve (CTN), 4—Dermal Sensory Interface (DS-RPNII) | 5 | 9 |
[24] | 34359056 | Carrie A. Kubiak | PubMed | Michigan | 2021 | 1—8 mm MC-RPNI with epineural window, 2—8 mm MC-RPNI without epineural window, 3—13 mm MC-RPNI with epineural window, 4—13 mm MC-RPNI without epineural window | 3 | 10 |
[15] | 32176203 | Shelby R. Svientek | PubMed | Michigan | 2021 | 1—C-RPNI (compound regenerative peripheral nerve interface) | 9 | 6 |
[25] | 36161173 | Zheng Wang | PubMed | Wuhan | 2022 | 1—Control, 2—NSR (nerve stump implantation inside a fully innervated muscle), 3—RPNI | 1.5 | 10 |
[26] | 35875668 | Jiaqing Wu | PubMed | Beijing | 2022 | 1—Control, 2—RPNI | 2 | 10 |
[11] | 30458876 | Christopher M. Frost | PubMed | Michigan | 2018 | 1—Control, 2—Denervated, 3—RPNI | 5 | 9 |
[27] | 26859115 | Daniel Ursu | PubMed | Michigan | 2016 | 1—Control, 2—Denervated, 3—RPNI | 4 | 8 |
[28] | 28438166 | Daniel Ursu | PubMed | Michigan | 2017 | 1—Control, 2—RPNI | 4 | 8 |
[29] | 25569986 | Christopher M. Frost | PubMed | Michigan/IEEE | 2014 | 1—NerveStim, 2—DirectStim, 3—DirectSIS, 4—DirectPEDOT | 0 | 9 |
[30] | 25570372 | Nicholas B. Langhals | PubMed | Michigan/IEEE | 2014 | 1—RPNI | 14 | 7 |
[62] | 27247270 | Zachary T. Irwin | PubMed | Michigan | 2016 | 1—RPNI | 20 | 7 |
[13] | 33290586 | Yaxi Hu | PubMed | Michigan and Groningen | 2020 | 1—RPNI 150 mg, 2—RPNI 300 mg, 3—RPNI 600 mg, 4—RPNI 1200 mg, 5—Control | 3 | 9 |
[1] | 27294122 | Melanie G. Urbanchek | PubMed | Michigan and Delaware | 2016 | 1—Silicone mesh, 2—Acellular muscle, 3—Acellular muscle with a conductive polymer (PEDOT) | 3 | 7 |
[31] | 35098950 | Shelby R. Svientek | PubMed | Michigan | 2022 | 1—MC-RPNI, 2—Control | 3 | 7 |
[3] | 29432117 | Philip P. Vu | PubMed | Michigan/IEEE | 2018 | 1—RPNI, 2—Control (ECR) | 12 | 9 |
[32] | 25570963 | Shoshana L. Woo | PubMed | Michigan/IEEE | 2014 | 1—RPNI, 2—RPNI with Tibial anterior (TA) and Extensor hallucis longus (EHL) muscles excision | 1.5 | 8 |
[9] | 24867721 | Theodore A. Kung | PubMed | Michigan | 2013 | 1—RPNI with steel electrode, 2—RPNI + PEDOT, 3—Control with steel electrode, 4—RPNI + PEDOT | 7 | 8 |
[33] | 25942171 | Andrej Nedic | PubMed | Michigan | 2014 | 1—Control, 2—RPNI, 3—Denevated | Not specified | 8 |
[34] | 25942129 | Christopher M. Frost | PubMed | Michigan | 2014 | 1—Control, 2—RPNI, 3—Denervated | 5 | 8 |
[35] | 25942128 | John V Larson | PubMed | Michigan | 2014 | 1—Control, 2—RPNI | 4 | 8 |
[36] | 22456363 | Christopher M. Frost | PubMed | Michigan | 2012 | 1—RPNI with steel electrode, 2—RPNI + PEDOT | Not specified | 10 |
[10] | 26502083 | Ian C. Sando | PubMed | Michigan | 2016 | 1—Epimysial electrode + bipolar/monopolar stimulation, 2—Intramuscular electrode + bipolar/monopolar stimulation | 4 | 8 |
[37] | 32413377 | Benjamin S. Spearman | PubMed | University of Florida | 2020 | 1—RPNI TEENI | Not specified | 6 |
[38] | 36204848 | Zheng Wang | PubMed | Wuhan | 2022 | 1—RPNI, 2—NSM (nerve stump implantation inside a fully innervated muscle), 3—Denervated/control | 2 | 10 |
[39] | 25942172 | Zachary P French | PubMed | Michigan | 2014 | 1—Control, 2—RPNI | 5 | 8 |
[40] | 35998559 | Eric W Atkinson | PubMed | University of Florida | 2022 | 1—RPNI MARTEENI | 2.5 | 8 |
[41] | 19744916 | Stéphanie P. Lacour | PubMed | Cambridge | 2009 | 1—Group 1, 2—Group 2, 3—Group 3 | 3 | 8 |
[63] | L71587711 | Zachary T. Irwin | Embase | Michigan | 2014 | 1—RPNI | 6 | 5 |
[42] | L71676463 | Shoshana Woo | Embase | Michigan | 2014 | 1—Extensor digitorum longus (EDL), 2—Biceps femoris, 3—Rectus femoris, 4—Gastrocnemius, 5—Vastus medialis | 4 | 8 |
[43] | L71254630 | Ziya Baghmanli | Embase | Michigan | 2011 | 1—Exposed soleus muscle not transferred or neurotized, 2—Soleus muscle transferred and neurotized, 3—Soleus muscle transferred, but not neurotized | 1 | 5 |
[45] | L71606159 | Ian C Sando | Embase | Michigan | 2014 | 1—Control, 2—RPNI | 5 | 6 |
[44] | L71587616 | Bongkyun Kim | Embase | Texas | 2014 | 1- RPNI | Not specified | 5 |
[46] | 37265342 | Jenna-Lynn B. Senger | PubMed | Michigan, Alberta and British Columbia | 2023 | 1—Target muscle reinnervation (TMR), 2—RPNI, 3—Neuroma excision, 4—Neuroma in situ | 1.5 | 10 |
[47] | 37227138 | Amir Dehdashtian | PubMed | Michigan | 2023 | 1—Neuroma, 2—RPNI, 3—Control | 2 | 9 |
[48] | 37400949 | Jenna-Lynn Senger | PubMed | Michigan, Alberta and British Columbia | 2023 | 1—Inlay-RPNI, 2—Burrito-RPNI, 3—Control | 4 | 9 |
3.1. Type of Models (Table 2)
3.1.1. Species Selection and Sample Size
Reference No. | Animal | No. of Animals | RPNI Design | Nerve | Muscle | RPNI Model | Aim |
---|---|---|---|---|---|---|---|
[23] | Rat | 40 | Burrito RPNI | Sural | Not specified | Sensible (DS-RPNI) | HA, NA |
[24] | Rat | 37 | Burrito RPNI (nerve in-continuity) | Common peroneal | EDL (Extensor digitorum longus) | Motor (MC-RPNI) | HA, NA |
[15] | Rat | Not specified | Inlay RPNI | Common peroneal | EDL | Mixed (C-RPNI) | HA, NA |
[25] | Rat | 60 | Inlay RPNI | Sciatic | Adductor magnus | Motor | NP |
[26] | Rat | 22 | Burrito RPNI | Sciatic | EDL | Motor | NP, HA |
[11] | Rat | 6 | Inlay RPNI | Common peroneal | EDL | Motor | MP, NA |
[27] | Rat | 6 | Inlay RPNI | Peroneal and tibial | EDL | Motor | NA |
[28] | Rat | 4 | Inlay RPNI | Common peroneal and tibial | EDL | Motor | NA |
[29] | Rat | 5 | Not specified | Common peroneal | EDL | Motor | NA |
[30] | Rat | Not specified | Inlay RPNI | Common peroneal | EDL | Motor | HA, NA |
[62] | Rhesus macaque | 2 (9 RPNIs in total) | Burrito RPNI | Median and radial | Flexor carpi radialis (FCR), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) | Motor | MP, HA, NA |
[13] | Rat | 30 | Inlay RPNI | Common peroneal | Semimembranosus | Motor | HA, NA |
[1] | Rat | 25 | Burrito RPNI | Common peroneal | Soleus | Motor | NP, HA |
[31] | Rat | 12 | Burrito RPNI (without nerve section) | Common peroneal | EDL | Motor | HA, NA |
[3] | Rhesus macaque | 2 (7 RPNIs in total) | Burrito RPNI | Median and radial | Flexor digitorum profundus (FDP), FDS, and EDC | Motor | MP, NA |
[32] | Rat | 18 | Inlay RPNI | Common peroneal | EDL | Motor | NA |
[9] | Rat | 16 | Inlay RPNI | Common peroneal | EDL | Motor | HA, NA |
[33] | Rat | 9 | Not specified | Tibial | Soleus | Motor | NA |
[34] | Rat | 6 | Not specified | Tibial | Soleus | Motor | MP, NA |
[35] | Rat | 12 | Not specified | Sural | EDL | Motor | HA, NA |
[36] | Rat | 18 | Inlay RPNI | Common peroneal | EDL | Motor | NA |
[10] | Rat | 8 | Not specified | Common peroneal and tibial | EDL | Motor | MP, HA, NA |
[37] | Rat | 3 | Not specified | Sciatic | Not specified | Motor | NA |
[38] | Rat | 90 | Burrito RPNI | Sciatic | Adductor magnus | Motor | NP, HA |
[39] | Rat | 10 | Not specified | Common peroneal | EDL | Motor | NA |
[40] | Rat | 5 | Not specified | Sciatic | Not specified | Motor | NA |
[41] | Rat | 30 | Not specified | Sciatic | Not specified | Motor | HA |
[63] | Rhesus macaque | Not specified | Not specified | Median | FDS, FDP, and flexor pollicis longus (FPL) | Motor | MP, NA |
[42] | Rat | 20 | Not specified | Common peroneal | EDL, biceps femoris, rectus femoris, gastrocnemius, and vastus medialis | Motor | NA |
[43] | Rat | Not specified | Not specified | Tibial | Soleus | Motor | NA |
[45] | Rat | 5 | Not specified | Common peroneal | EDL | Motor | NA |
[44] | Rat | Not specified | Not specified | Sciatic | Tibialis anterior, soleus, and vastus lateralis | Motor | NA |
[46] | Rat | 36 | Inlay RPNI | Tibial | EDL and biceps femoris | Motor | NP, HA |
[47] | Rat | 36 | Inlay RPNI | Tibial | EDL | Motor | NP, HA |
[48] | Rat | 18 | Inlay RPNI and Burrito RPNI | Tibial | EDL | Motor | NP, HA |
3.1.2. RPNI Construction Designs
3.1.3. Nerve and Muscle Selection
3.1.4. Motor vs. Sensory Model
3.2. Aim of the Study
- Aim 4: Neurophysiological analysis (NA) [3,9,10,11,13,15,23,24,27,28,29,30,31,32,33,34,35,36,37,39,40,42,43,44,45,62,63]. This research group of twenty-seven (77%) articles is dedicated to enhancing and streamlining the acquisition and amplification of electrical signals from the RPNI muscle, aiming to optimize their application.
3.3. Histological Analysis (Table 3)
Reference No. | Histology | ||||
---|---|---|---|---|---|
Muscular Neoangiogenesis | Tissue Viability | Axonal Regeneration | Neuroma Formation | Fibrosis Formation | |
[23] | Good in all (Hematoxylin-eosin (HE) and trichrome stains) | Good in all (Hematoxylin-eosin (HE) and trichrome stains) | Yes (Anti-filament antibodies) | Small neuromas in control transected nerve group | No (Antifilament antibodies) |
[24] | Good (HE stain) | Good (HE stain) | Yes (HE stain) | No (HE stain) | No (HE stain) |
[15] | Good | Good | Yes | No | No |
[25] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[26] | Not evaluated | Good | Yes (Anti-neurofilament 200 antibodies) | Lower risk (Ultrasounds) | No in RPNI group (α-SMA immunohistochemistry) |
[11] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[27] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[28] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[29] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[30] | Good (HE stain) | Good (HE stain) | No denervation data (HE stain) | Not evaluated | No (HE stain) |
[62] | Good (HE stain) | Good (HE stain) | Good reinnervation (Electrical stimulation) | Not evaluated | No (HE stain) |
[13] | Good in group 1 and 2 (HE stain, Masson’s trichrome and von Willebrand factor (vwf)) | Good in group 1 and 2. Fibrosis and central atrophy in groups 3 and 4 (HE stain and Masson’s trichrome) | Best in group 1 and 2 (Toluidine blue) | Present in group 5 (Toluidine blue) | Fibrosis and central atrophy in groups 3 and 4 (HE and Masson’s trichrome stain). |
[1] | Good (HE stain) | Good (HE stain and anti-desmin staining protocol) | Good (Acetylcholinesterase stain) | No (HE stain) | No (HE stain) |
[31] | Good (HE stain) | Good (HE stain) | Yes (Anti-filament and alpha-bungarotoxin antibodies) | No (HE stain) | No (HE stain) |
[3] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[32] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[9] | Good (Masson’s trichrome and electron microscopy) | Good (Masson’s trichrome, RPNI initial/final weight comparison, and electron microscopy) | Good (Anti-neurofilament 200 and anti-alpha-bungarotoxin antibodies) | No (Anti-neurofilament 200 and anti-alpha-bungarotoxin antibodies) | No (Masson’s trichrome and electron microscopy) |
[33] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[34] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[35] | Good (Histomorphometric and immunohistochemical techniques) | Good (Histomorphometric and immunohistochemical techniques) | Good reinnervation (Electrical stimulation) | Not evaluated | No (Histomorphometric and immunohistochemical techniques) |
[36] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[10] | Good (Masson’s Trichrome) | Good (Masson’s Trichrome) | Not evaluated | Not evaluated | Fibrous capsule in group 1 and fibrosis in group 2 (Masson’s trichrome) |
[37] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[38] | Not evaluated | Good (Masson’s Trichrome) | Not evaluated | Present in groups 2 and 3. No neuromas in group 1 (Masson trichrome and Toluidine blue) | Lower in RPNI (Anti-α-SMA antibodies) |
[39] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[40] | Not evaluated | Not evaluated | Good (Anti-neurofilament H, neurofilament S100, and DNA antibodies) | Not evaluated | Fibrous capsule present around the electrode |
[41] | Good (DAPI protocol, anti-Pzero antibodies, and anti-RECA1 antibodies) | Good (DAPI protocol, anti-Pzero antibodies, and anti-RECA1 antibodies) | Good (DAPI protocol, anti-Pzero antibodies, and anti-RECA1 antibodies) | Not evaluated | Not evaluated |
[63] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[42] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[43] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[45] | Not evaluated | Not evaluated | Not evaluated | Not evaluated | Not evaluated |
[44] | Not evaluated | Good (Response to electrical stimulation) | Good reinnervation (Electrical stimulation) | Not evaluated | Not evaluated |
[46] | Good | Good | Good (Anti-neurofilament 200 and alpha-bungarotoxin antibodies) | Lower in RPNI and TMR, although similar between both groups | Lower in RPNI |
[47] | Good (HE stain) | Good (HE stain) | Good (HE stain) | No in RPNI group | No in RPNI group |
[48] | Not evaluated | Good | Not evaluated | Greater in Burrito-RPNI than in Inlay-RPNI | Not evaluated |
3.4. Neurophysiological Analysis (Table 4)
Reference No. | Principal Test | Neurophysiology | ||||
---|---|---|---|---|---|---|
Stimulus Intensity | Stimulus Location | CMAP/MUP/CSNAP | Latency | Maximum Muscle Contraction Strength | ||
[23] | Electrical and mechanical stimulation | 0–800 μA | Sural nerve | Mechanical stimulation: 0.06 mV. Electrical stimulation: 0.015 to 0.04 mV | Not specified | Not specified |
[24] | Electrical stimulation | Until reaching the maximum CMAP | Peroneal nerve | 3.67 ± 0.58 mV to 6.04 ± 1.01 mV | Not specified | 1—2341 ± 114.3, 2—2398 ± 143.7, 3—2351 ± 290.2, 4—2832 ± 101.9 mN |
[15] | Electrical stimulation | Until reaching the maximum CMAP/CSNAP | Peroneal nerve | 8.7 +/− 1.6 mV at 3 months and 10.2 +/− 2.1 mV at 9 months | Not specified | Not specified |
[25] | Not specified | Not specified | Not specified | Not specified | Not specified | Not specified |
[26] | Not specified | Not specified | Not specified | Not specified | Not specified | Not specified |
[11] | Mechanical stimulation (monofilament) | Not specified | Peroneal nerve | Not specified | Not specified | Not specified |
[27] | Mechanical stimulation (treadmill at 8.5–9 m/min) | Not specified | Peroneal and tibial nerve | 0.75 to 1.0 mV during walking and <0.1 mV during rest | Not specified | Not specified |
[28] | Mechanical stimulation (treadmill at 8.5–9 m/min) | Not specified | Peroneal and tibial nerve | 0.75 to 1.0 mV during running | Not specified | Not specified |
[29] | Electrical stimulation | Until reaching the maximum muscle contraction strength | Peroneal nerve and EDL | Not specified | Not specified | The maximum specific muscle force was statistically greater in group 1 than group 2 |
[30] | Electrical stimulation | 400–1500 μA | Peroneal nerve and EDL | Until >4 mV | Not specified | Not specified |
[62] | Electrical stimulation | 1000–20,000 μA in nerve y 30,000–60,000 μA in muscle | FCR, FDS and EDC | Not specified | Not specified | Not specified |
[13] | Electrical stimulation | 0–15,000 μA with periodic increments of 30 μA | Peroneal nerve | 1—6.6 ± 1.3 mV; 2—4.7 ± 0.8 mV; 3—3.1 ± 0.6 mV; 4—2.3 ± 0.7 mV | Not specified | 1—289.0 ± 43.3 mN, 2—257.7 ± 49.1 mN, 3—198.8 ± 71.7 mN, 4—116.4 ± 31.0 mN |
[1] | Mechanical stimulation (painful stimulus) | Not specified | Peroneal nerve | Not specified | Not specified | Not specified |
[31] | Electrical stimulation | Not specified | Peroneal nerve | 3.28 mV ± 0.49 mV. (CNAP 119.47 μV ± 14.87 μV) | 0.8–1.55 ms | 2451 ± 115 mN en RPNI y 2497 ± 122 mN in control |
[3] | Mechanical stimulation (finger movements) | Not specified | FDP, FDS, and EDC | Not specified | Not specified | Not specified |
[32] | Electrical stimulation | 5–505 μA | Peroneal nerve | 1—21.6 ± 9.7 mV. 2—14. ± 6.5 mV | 1—3.21 ± 0.53 ms. 2—3.56 ± 0.53 ms | Not specified |
[9] | Electrical stimulation | Until reaching the maximum CMAP | Peroneal nerve | 1—3.52–6.05 mV, 2—5.3–8.19 mV, 3—10.18–11.59 mV, 4—10.5–11.33 mV | Not specified | Not specified |
[33] | Mechanical stimulation (treadmill) | Not specified | Not specified | Not specified | Not specified | Not specified |
[34] | Mechanical stimulation (monofilament) | Not specified | Not specified | Not specified | Not specified | Not specified |
[35] | Electrical stimulation | 143.8 μA at 3 months and 99.6 μA at 4 months | Sural nerve | 0.68 mV, at 3 months and 2.27 mV at 4 months | Similar to control group | Not specified |
[36] | Electrical stimulation | 1—140 ± 50 μA, 2—51 ± 20 μA | Peroneal nerve | 1—19.4 ± 4.8 mV, 2—23.4 ± 11.9 mV | 1—1.21 ± 0.16 ms, 2—1.2 ± 0.16 ms | Not specified |
[10] | Electrical stimulation | Until reaching the maximum CMAP | Peroneal and tibial nerve | Not specified | Not specified | Not specified |
[37] | Not specified | Not specified | Not specified | Not specified | Not specified | Not specified |
[38] | Not specified | Not specified | Not specified | Not specified | Not specified | Not specified |
[39] | Electrical stimulation | Until reaching the maximum CMAP | Peroneal nerve | Not specified | Not specified | Not specified |
[40] | Electrical stimulation | 200–3000 μA | Sciatic nerve | 50–500 μV | Not specified | Not specified |
[41] | Not specified | Not specified | Not specified | Not specified | Not specified | Not specified |
[63] | Mechanical stimulation (finger movements) | Not specified | Median nerve | 0.4–0.6 mV | Not specified | Not specified |
[42] | Electrical stimulation | Not specified | Peroneal nerve | 1—6.7 mV; 2—5–1.16 mV | Not specified | 1—500 mN; 2—5–137 mN |
[43] | Electrical stimulation | Not specified | Tibial nerve | 1—5.8 ± 3.82 mV; 2—1.4 ± 0.9 mV | 1—1.9 ± 0.49 ms; 2—2.2 ± 0.66 ms | Not specified |
[45] | Electrical stimulation | Not specified | Peroneal nerve | 1—24.2 ± 9.4 mV; 2—6.8 ± 7.1 mV | Not specified | 1—2658 ± 558 mN; 2—1627 ± 493 mN |
[44] | Electrical stimulation | Not specified | Not specified | Not specified | Not specified | Not specified |
[46] | Not specified | Not specified | Not specified | Not specified | Not specified | Not specified |
[47] | Not specified | Not specified | Not specified | Not specified | Not specified | Not specified |
[48] | Not specified | Not specified | Not specified | Not specified | Not specified | Not specified |
4. Discussion
4.1. Type of Model
4.2. Aim of the Study
4.3. Histological Analysis
4.4. Neurophysiological Analysis
4.5. Limitations and Future Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Urbanchek, M.G.; Kung, T.A.; Frost, C.M.; Martin, D.C.; Larkin, L.M.; Wollstein, A.; Cederna, P.S. Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb. BioMed Res. Int. 2016, 2016, 5726730. [Google Scholar] [CrossRef] [PubMed]
- Kung, T.A.; Bueno, R.A.; Alkhalefah, G.K.; Langhals, N.B.; Urbanchek, M.G.; Cederna, P.S. Innovations in Prosthetic Interfaces for the Upper Extremity. Plast. Reconstr. Surg. 2013, 132, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Vu, P.P.; Irwin, Z.T.; Bullard, A.J.; Ambani, S.W.; Sando, I.C.; Urbanchek, M.G.; Cederna, P.S.; Chestek, C.A. Closed-Loop Continuous Hand Control via Chronic Recording of Regenerative Peripheral Nerve Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.L.; Kung, T.A.; Brown, D.L.; Leonard, J.A.; Kelly, B.M.; Cederna, P.S. Regenerative Peripheral Nerve Interfaces for the Treatment of Postamputation Neuroma Pain: A Pilot Study. Plast. Reconstr. Surg. Glob. Open 2016, 4, e1038. [Google Scholar] [CrossRef] [PubMed]
- Ganesh Kumar, N.; Kung, T.A. Regenerative Peripheral Nerve Interfaces for the Treatment and Prevention of Neuromas and Neuroma Pain. Hand Clin. 2021, 37, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, C.A.; Kemp, S.W.P.; Cederna, P.S. Regenerative Peripheral Nerve Interface for Management of Postamputation Neuroma. JAMA Surg. 2018, 153, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Hooper, R.C.; Cederna, P.S.; Brown, D.L.; Haase, S.C.; Waljee, J.F.; Egeland, B.M.; Kelley, B.P.; Kung, T.A. Regenerative Peripheral Nerve Interfaces for the Management of Symptomatic Hand and Digital Neuromas. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2792. [Google Scholar] [CrossRef]
- Biddiss, E.A.; Chau, T.T. Upper Limb Prosthesis Use and Abandonment: A Survey of the Last 25 Years. Prosthet. Orthot. Int. 2007, 31, 236–257. [Google Scholar] [CrossRef]
- Kung, T.A.; Langhals, N.B.; Martin, D.C.; Johnson, P.J.; Cederna, P.S.; Urbanchek, M.G. Regenerative Peripheral Nerve Interface Viability and Signal Transduction with an Implanted Electrode. Plast. Reconstr. Surg. 2014, 133, 1380–1394. [Google Scholar] [CrossRef]
- Sando, I.C.; Leach, M.K.; Woo, S.L.; Moon, J.D.; Cederna, P.S.; Langhals, N.B.; Urbanchek, M.G. Regenerative Peripheral Nerve Interface for Prostheses Control: Electrode Comparison. J. Reconstr. Microsurg. 2016, 32, 194–199. [Google Scholar] [CrossRef]
- Frost, C.M.; Ursu, D.C.; Flattery, S.M.; Nedic, A.; Hassett, C.A.; Moon, J.D.; Buchanan, P.J.; Brent Gillespie, R.; Kung, T.A.; Kemp, S.W.P.; et al. Regenerative Peripheral Nerve Interfaces for Real-Time, Proportional Control of a Neuroprosthetic Hand. J. Neuroeng. Rehabil. 2018, 15, 108. [Google Scholar] [CrossRef]
- Vu, P.P.; Vaskov, A.K.; Irwin, Z.T.; Henning, P.T.; Lueders, D.R.; Laidlaw, A.T.; Davis, A.J.; Nu, C.S.; Gates, D.H.; Gillespie, R.B.; et al. A Regenerative Peripheral Nerve Interface Allows Real-Time Control of an Artificial Hand in Upper Limb Amputees. Sci. Transl. Med. 2020, 12, eaay2857. [Google Scholar] [CrossRef]
- Hu, Y.; Ursu, D.C.; Sohasky, R.A. Regenerative Peripheral Nerve Interface (RPNI) Free Muscle Graft Mass and Function. Muscle Nerve 2021, 63, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, J.; Moon, J.D.; Cederna, P.S.; Urbanchek, M.G. Early Muscle Revascularization and Regeneration at the Regenerative Peripheral Nerve Interface. Plast. Reconstr. Surg. 2012, 130, 73. [Google Scholar] [CrossRef]
- Svientek, S.R.; Ursu, D.C.; Cederna, P.S.; Kemp, S.W.P. Fabrication of the Composite Regenerative Peripheral Nerve Interface (C-RPNI) in the Adult Rat. J. Vis. Exp. 2020, 156, e60841. [Google Scholar] [CrossRef]
- Urbanchek, M.G.; Wei, B.; Baghmanli, Z.; Sugg, K.B.; Cederna, P.S. Long-Term Stability of Regenerative Peripheral Nerve Interfaces (RPNI). Plast. Reconstr. Surg. 2011, 128, 88–89. [Google Scholar] [CrossRef]
- Urbanchek, M.G.; Baghmanli, Z.; Moon, J.D.; Sugg, K.B.; Langhals, N.B.; Cederna, P.S. Quantification of Regenerative Peripheral Nerve Interface Signal Transmission. Plast. Reconstr. Surg. 2012, 130, 55–56. [Google Scholar] [CrossRef]
- Urbanchek, M.G.; Moon, J.D.; Sugg, K.B.; Langhals, N.B.; Cederna, P.S.; Baghmanli, Z. Regenerative Peripheral Nerve Interface Function at 1 and 3 Months after Implantation. Plast. Reconstr. Surg. 2012, 130, 84. [Google Scholar] [CrossRef]
- Kuiken, T.A.; Li, G.; Lock, B.A.; Lipschutz, R.D.; Miller, L.A.; Stubblefield, K.A.; Englehart, K.B. Targeted Muscle Reinnervation for Real-Time Myoelectric Control of Multifunction Artificial Arms. JAMA 2009, 301, 619–628. [Google Scholar] [CrossRef]
- Ohnishi, K.; Weir, R.F.; Kuiken, T.A. Neural Machine Interfaces for Controlling Multifunctional Powered Upperlimb Prostheses. Expert Rev. Med. Devices 2007, 4, 43–53. [Google Scholar] [CrossRef]
- Urbanchek, M.G.; Wei, B.; Egeland, B.M.; Abidian, M.R.; Kipke, D.R.; Cederna, P.S. Microscale Electrode Implantation during Nerve Repair: Effects on Nerve Morphology, Electromyography, and Recovery of Muscle Contractile Function. Plast. Reconstr. Surg. 2011, 128, 270e–278e. [Google Scholar] [CrossRef] [PubMed]
- Baghmanli, Z.; Sugg, K.B.; Wei, B.; Shim, B.S.; Martin, D.C.; Cederna, P.S.; Urbanchek, M.G. Biological and Electrophysiologic Effects of Poly(3,4- Ethylenedioxythiophene) on Regenerating Peripheral Nerve Fibers Plast. Plast. Reconstr. Surg. 2013, 132, 374–385. [Google Scholar] [CrossRef]
- Sando, I.C.; Adidharma, W.; Nedic, A.; Ursu, D.C.; Mays, E.A.; Hu, Y.; Kubiak, C.A.; Sugg, K.B.; Kung, T.A.; Cederna, P.S.; et al. Dermal Sensory Regenerative Peripheral Nerve Interface for Reestablishing Sensory Nerve Feedback in Peripheral Afferents in the Rat. Plast. Reconstr. Surg. 2023, 151, 804e–813e. [Google Scholar] [CrossRef]
- Kubiak, C.A.; Svientek, S.R.; Dehdashtian, A.; Lawera, N.G.; Nadarajan, V.; Bratley, J.V.; Kung, T.A.; Cederna, P.S.; Kemp, S.W.P. Physiologic Signaling and Viability of the Muscle Cuff Regenerative Peripheral Nerve Interface (MC-RPNI) for Intact Peripheral Nerves. J. Neural Eng. 2021, 18, 0460d5. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, D.; Yi, X.Z.; Zhao, Y.; Yu, A. Effects of Regenerative Peripheral Nerve Interface on Dorsal Root Ganglia Neurons Following Peripheral Axotomy. Front. Neurosci. 2022, 16, 914344. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhang, X.; Lin, Z.; Li, G. Regenerative Peripheral Nerve Interfaces Effectively Prevent Neuroma Formation After Sciatic Nerve Transection in Rats. Front. Mol. Neurosci. 2022, 15, 938930. [Google Scholar] [CrossRef] [PubMed]
- Ursu, D.C.; Urbanchek, M.G.; Nedic, A.; Cederna, P.S.; Gillespie, R.B. In Vivo Characterization of Regenerative Peripheral Nerve Interface Function. J. Neural Eng. 2016, 13, 026012. [Google Scholar] [CrossRef] [PubMed]
- Ursu, D.; Nedic, A.; Urbanchek, M.; Cederna, P.; Gillespie, R.B. Adjacent Regenerative Peripheral Nerve Interfaces Produce Phase-Antagonist Signals during Voluntary Walking in Rats. J. Neuroeng. Rehabil. 2017, 14, 33. [Google Scholar] [CrossRef]
- Frost, C.M.; Cederna, P.S.; Martin, D.C.; Shim, B.S.; Urbanchek, M.G. Decellular Biological Scaffold Polymerized with PEDOT for Improving Peripheral Nerve Interface Charge Transfer. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 2014, 422–425. [Google Scholar]
- Langhals, N.B.; Woo, S.L.; Moon, J.D.; Larson, J.V.; Leach, M.K.; Cederna, P.S.; Urbanchek, M.G. Electrically Stimulated Signals from a Long-Term Regenerative Peripheral Nerve Interface. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 2014, 1989–1992. [Google Scholar]
- Svientek, S.R.; Wisely, J.P.; Dehdashtian, A.; Bratley, J.V.; Cederna, P.S.; Kemp, S.W.P. The Muscle Cuff Regenerative Peripheral Nerve Interface for the Amplification of Intact Peripheral Nerve Signals. J. Vis. Exp. 2022, 179, e63222. [Google Scholar] [CrossRef]
- Woo, S.L.; Urbanchek, M.G.; Leach, M.K.; Moon, J.D.; Cederna, P.; Langhals, N.B. Quantification of Muscle-Derived Signal Interference during Monopolar Needle Electromyography of a Peripheral Nerve Interface in the Rat Hind Limb. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 2014, 4382–4385. [Google Scholar]
- Nedic, A.; Ursu, D.; Moon, J.D.; Hassett, C.A.; Gillespie, R.B.; Langhals, N.B.; Cederna, P.S.; Urbanchek, M.G. Abstract 60: Signal Strength, Reliability, and Validity of Active Regenerative Peripheral Nerve Interface Device Operation during Voluntary Movement. Plast. Reconstr. Surg. 2014, 133, 71. [Google Scholar] [CrossRef]
- Frost, C.M.; Ursu, D.; Nedic, A.; Hassett, C.A.; Moon, J.D.; Gillespie, B.; Langhals, N.; Cederna, P.S.; Urbanchek, M.G. Abstract 18: Real-Time Proportional Control of a Neuroprosthetic Hand by a Rodent Regenerative Peripheral Nerve Interface. Plast. Reconstr. Surg. 2014, 133, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.V.; Urbanchek, M.G.; Moon, J.D.; Hunter, D.A.; Newton, P.; Johnson, P.J.; Wood, M.D.; Kung, T.A.; Cederna, P.S.; Langhals, N.B. Abstract 17: Prototype Sensory Regenerative Peripheral Nerve Interface for Artificial Limb Somatosensory Feedback. Plast. Reconstr. Surg. 2014, 133, 26–27. [Google Scholar] [CrossRef]
- Frost, C.M.; Wei, B.; Baghmanli, Z.; Cederna, P.S.; Urbanchek, M.G. PEDOT Electrochemical Polymerization Improves Electrode Fidelity and Sensitivity. Plast. Reconstr. Surg. 2012, 129, 933–942. [Google Scholar] [CrossRef] [PubMed]
- pearman, B.S.; Kuliasha, C.A.; Judy, J.W.; Schmidt, C.E. Integration of Flexible Polyimide Arrays into Soft Extracellular Matrix-Based Hydrogel Materials for a Tissue-Engineered Electronic Nerve Interface (TEENI). J. Neurosci. Methods 2020, 341, 108762. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yi, X.-Z.; Yu, A.-X. Regenerative Peripheral Nerve Interface Prevents Neuroma Formation after Peripheral Nerve Transection. Neural Regen. Res. 2023, 18, 814–818. [Google Scholar]
- French, Z.P.; Carrothers, N.S.; Hassett, C.A.; Moon, J.D.; Langhals, N.B.; Cederna, P.S.; Urbanchek, M.G. Abstract 61: Characterization of Regenerative Peripheral Nerve Device Signaling during Evoked Maximal and Submaximal Fatiguing Conditions. Plast. Reconstr. Surg. 2014, 133, 72. [Google Scholar] [CrossRef]
- Atkinson, E.W.; Kuliasha, C.A.; Kasper, M.; Furniturewalla, A.; Lim, A.S.; Jiracek-Sapieha, L.; Brake, A.; Gormaley, A.; Rivera-Llabres, V.; Singh, I.; et al. Examining Thein Vivofunctionality of the Magnetically Aligned Regenerative Tissue-Engineered Electronic Nerve Interface (MARTEENI). J. Neural Eng. 2022, 19, 056010. [Google Scholar] [CrossRef]
- Lacour, S.P.; Fitzgerald, J.J.; Lago, N.; Tarte, E.; McMahon, S.; Fawcett, J. Long Micro-Channel Electrode Arrays: A Novel Type of Regenerative Peripheral Nerve Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Urbanchek, M.G.; Leach, M.K.; Moon, J.D.; Cederna, P.S.; Langhals, N.B. Utilizing Nonvascularized Partial Skeletal Muscle Grafts in Peripheral Nerve Interfaces for Prosthetic Control. J. Am. Coll. Surg. 2014, 219, e136. [Google Scholar] [CrossRef]
- Baghmanli, Z.; Urbanchek, M.G.; Wei, B.; Sugg, K.B.; Kuzonv, W.M.; Cederna, P.S. Neurotization of Freely Transferred Muscle Grafts in a Regenerative Peripheral Nerve Interface. J. Am. Coll. Surg. 2011, 213, S98. [Google Scholar] [CrossRef]
- Kim, B.; Reyes, A.; Garza, B.; Ibarra, E.; Luna, R.; Flores, D.; Choi, Y. A Microchannel Neural Interface with Microwires for Recording and Stimulating Peripheral Nerves. In Proceedings of the 41st Neural Interfaces Conference, Dallas, TX, USA, 23–25 June 2014. [Google Scholar]
- Sando, I.C.; French, Z.P.; Hassett, C.A.; Moon, J.D.; Langhals, N.B.; Cederna, P.S.; Urbanchek, M.G. Regenerative Peripheral Nerve Signal During Fatigue Conditions. J. Am. Coll. Surg. 2014, 219, S88. [Google Scholar] [CrossRef]
- Senger, J.-L.B.; Hardy, P.; Thorkelsson, A.; Duia, S.; Hsiao, R.; Kemp, S.W.P.; Tenorio, G.; Rajshekar, M.; Kerr, B.J.; Chan, K.M.; et al. A Direct Comparison of Targeted Muscle Reinnervation and Regenerative Peripheral Nerve Interfaces to Prevent Neuroma Pain. Neurosurgery 2023, 93, 1180–1191. [Google Scholar] [CrossRef]
- Dehdashtian, A.; Timek, J.H.; Svientek, S.R.; Risch, M.J.; Bratley, J.V.; Riegger, A.E.; Kung, T.A.; Cederna, P.S.; Kemp, S.W.P. Sexually Dimorphic Pattern of Pain Mitigation Following Prophylactic Regenerative Peripheral Nerve Interface (RPNI) in a Rat Neuroma Model. Neurosurgery 2023, 93, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Senger, J.-L.; Thorkelsson, A.; Wang, B.Y.; Chan, K.M.; Kemp, S.W.P.; Webber, C.A. “Inlay” Regenerative Peripheral Nerve Interface (RPNI) Is Superior to “Burrito” RPNI for Successful Treatment of Rat Neuroma Pain. Plast. Reconstr. Surg. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Kubiak, C.A.; Adidharma, W.; Kung, T.A.; Kemp, S.W.P.; Cederna, P.S.; Vemuri, C. Decreasing Postamputation Pain with the Regenerative Peripheral Nerve Interface (RPNI). Ann. Vasc. Surg. 2022, 79, 421–426. [Google Scholar] [CrossRef]
- Pejkova, S.; Nikolovska, B.; Srbov, B.; Tusheva, S.; Jovanoski, T.; Jovanovska, K.; Georgieva, G. Prophylactic Regenerative Peripheral Nerve Interfaces in Elective Lower Limb Amputations. Pril. Makedon Akad. Nauk. Umet. Odd. Med. Nauki 2022, 43, 41–48. [Google Scholar] [CrossRef]
- Sayegh, A.; Jaloux, C.; Witters, M.; Mayoly, A.; Kachouh, N. Update on Upper Limb Neuroma Management. J. Craniofac. Surg. 2023, 34, 1140–1143. [Google Scholar] [CrossRef]
- Richards, J.T.; Baird, M.D.; Tintle, S.M.; Souza, J.M.; Renninger, C.H.; Potter, B.K. Peripheral Nerve Management in Extremity Amputations. Orthop. Clin. N. Am. 2022, 53, 155–166. [Google Scholar] [CrossRef]
- de Lange, J.W.D.; Hundepool, C.A.; Power, D.M.; Rajaratnam, V.; Duraku, L.S.; Zuidam, J.M. Prevention Is Better than Cure: Surgical Methods for Neuropathic Pain Prevention Following Amputation—A Systematic Review. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Ganesh Kumar, N.; Kung, T.A.; Cederna, P.S. Regenerative Peripheral Nerve Interfaces for Advanced Control of Upper Extremity Prosthetic Devices. Hand Clin. 2021, 37, 425–433. [Google Scholar] [CrossRef]
- Hobusch, G.M.; Döring, K.; Brånemark, R.; Windhager, R. Advanced Techniques in Amputation Surgery and Prosthetic Technology in the Lower Extremity. EFORT Open Rev. 2020, 5, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Valerio, I.; Schulz, S.A.; West, J.; Westenberg, R.F.; Eberlin, K.R. Targeted Muscle Reinnervation Combined with a Vascularized Pedicled Regenerative Peripheral Nerve Interface. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2689. [Google Scholar] [CrossRef] [PubMed]
- Santosa, K.B.; Oliver, J.D.; Cederna, P.S.; Kung, T.A. Regenerative Peripheral Nerve Interfaces for Prevention and Management of Neuromas. Clin. Plast. Surg. 2020, 47, 311–321. [Google Scholar] [CrossRef]
- Lin, Z.; Yu, P.; Chen, Z.; Li, G. Regenerative Peripheral Nerve Interface Reduces the Incidence of Neuroma in the Lower Limbs after Amputation: A Retrospective Study Based on Ultrasound. J. Orthop. Surg. Res. 2023, 18, 619. [Google Scholar] [CrossRef]
- Xu, W.; Toyoda, Y.; Lin, I.C. Upper Extremity Prosthetics: Current Options and Future Innovations. J. Hand Surg. Am. 2023, 48, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting Animal Research: Explanation and Elaboration for the ARRIVE Guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef]
- Irwin, Z.T.; Schroeder, K.E.; Vu, P.P.; Tat, D.M.; Bullard, A.J.; Woo, S.L.; Sando, I.C.; Urbanchek, M.G.; Cederna, P.S.; Chestek, C.A. Chronic Recording of Hand Prosthesis Control Signals via a Regenerative Peripheral Nerve Interface in a Rhesus Macaque. J. Neural Eng. 2016, 13, 046007. [Google Scholar] [CrossRef]
- Irwin, Z.T.; Schroeder, K.E.; Thompson, D.E.; Woo, S.L.; Langhals, N.B.; Urbanchek, M. GExtracting neuroprosthetic control signals from a regenerative peripheral nerve interface in a rhesus macaque. In Proceedings of the 100th Annual Clinical Congress of the American College of Surgeons, San Francisco, CA, USA, 26–30 October 2014. [Google Scholar]
- Vu, P.P.; Vaskov, A.K.; Lee, C.; Jillala, R.R.; Wallace, D.M.; Davis, A.J.; Kung, T.A.; Kemp, S.W.P.; Gates, D.H.; Chestek, C.A.; et al. Long-Term Upper-Extremity Prosthetic Control Using Regenerative Peripheral Nerve Interfaces and Implanted EMG Electrodes. J. Neural Eng. 2023, 20, 026039. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.; Sassu, P.; Reinholdt, C.; Dahm, P.; Rolfson, O.; Björkman, A.; Innocenti, M.; Pedrini, F.A.; Breyer, J.M.; Roche, A.; et al. Surgical Treatments for Postamputation Pain: Study Protocol for an International, Double-Blind, Randomised Controlled Trial. Trials 2023, 24, 304. [Google Scholar] [CrossRef] [PubMed]
- Forgan, L.G.; Forster, M.E. Oxygen Dependence of Metabolism and Cellular Adaptation in Vertebrate Muscles: A Review. J. Comp. Physiol. B 2012, 182, 177–188. [Google Scholar] [CrossRef]
- Hoppeler, H.; Weibel, E.R. Structural and Functional Limits for Oxygen Supply to Muscle. Acta Physiol. Scand. 2000, 168, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Suresh, V.; Schaefer, E.J.; Calotta, N.A.; Giladi, A.M.; Tuffaha, S.H. Use of Vascularized, Denervated Muscle Targets for Prevention and Treatment of Upper-Extremity Neuromas. J. Hand Surg. Glob. Online 2023, 5, 92–96. [Google Scholar] [CrossRef]
- Calotta, N.A.; Hanwright, P.J.; Giladi, A.; Tuffaha, S.H. Vascularized, Denervated Muscle Targets for Treatment of Symptomatic Neuromas in the Upper Extremity: Description of Operative Technique. Tech. Hand Up. Extrem. Surg. 2022, 26, 141–145. [Google Scholar] [CrossRef]
- Hui Ling Khoo, K.; Suresh, V.; Lee, E.; Harris, T.; Glass, C.; Tuffaha, S. Vascularized Denervated Muscle Targets: A Comparison with Regenerative Peripheral Nerve Interfaces to Determine Association Between Muscle Graft Size and Pain. Plast. Reconstr. Surg. Glob. Open 2022, 10, 16–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Prieto, J.; Cristóbal, L.; Arenillas, M.; Giannetti, R.; Muñoz Frías, J.D.; Alonso Rivas, E.; Sanz Barbero, E.; Gutiérrez-Pecharromán, A.; Díaz Montero, F.; Maldonado, A.A. Regenerative Peripheral Nerve Interfaces (RPNIs) in Animal Models and Their Applications: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 1141. https://doi.org/10.3390/ijms25021141
González-Prieto J, Cristóbal L, Arenillas M, Giannetti R, Muñoz Frías JD, Alonso Rivas E, Sanz Barbero E, Gutiérrez-Pecharromán A, Díaz Montero F, Maldonado AA. Regenerative Peripheral Nerve Interfaces (RPNIs) in Animal Models and Their Applications: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(2):1141. https://doi.org/10.3390/ijms25021141
Chicago/Turabian StyleGonzález-Prieto, Jorge, Lara Cristóbal, Mario Arenillas, Romano Giannetti, José Daniel Muñoz Frías, Eduardo Alonso Rivas, Elisa Sanz Barbero, Ana Gutiérrez-Pecharromán, Francisco Díaz Montero, and Andrés A. Maldonado. 2024. "Regenerative Peripheral Nerve Interfaces (RPNIs) in Animal Models and Their Applications: A Systematic Review" International Journal of Molecular Sciences 25, no. 2: 1141. https://doi.org/10.3390/ijms25021141
APA StyleGonzález-Prieto, J., Cristóbal, L., Arenillas, M., Giannetti, R., Muñoz Frías, J. D., Alonso Rivas, E., Sanz Barbero, E., Gutiérrez-Pecharromán, A., Díaz Montero, F., & Maldonado, A. A. (2024). Regenerative Peripheral Nerve Interfaces (RPNIs) in Animal Models and Their Applications: A Systematic Review. International Journal of Molecular Sciences, 25(2), 1141. https://doi.org/10.3390/ijms25021141