The Role of Key Amino Acids of the Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3 in Structural Dynamics and Repair Activity toward Methylated DNA
Abstract
:1. Introduction
2. Results
2.1. Enzymatic Activity of the Wild-Type and Mutant ALKBH3 Proteins
2.2. Conformational Dynamics of the ALKBH3-DNA Complex Revealed by SF Fluorescence Spectroscopy
2.3. Equilibrium Binding of ALKBH3 to Metal Ions, Co-Substrate, and Methylated DNA
2.4. Circular Dichroism for Protein Folding Analysis
2.5. Thermal Stability of ALKBH3
3. Discussion
4. Materials and Methods
4.1. Protein Expression and Purification
4.2. Oligonucleotides
4.3. Enzymatic Reaction
4.4. Equilibrium Fluorescence Spectroscopy
4.5. CD Spectroscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ploumakis, A.; Coleman, M.L. OH, the Places You’ll Go! Hydroxylation, Gene Expression, and Cancer. Mol. Cell 2015, 58, 729–741. [Google Scholar] [CrossRef]
- Martinez, S.; Hausinger, R.P. Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases. J. Biol. Chem. 2015, 290, 20702–20711. [Google Scholar] [CrossRef]
- Fedeles, B.I.; Singh, V.; Delaney, J.C.; Li, D.; Essigmann, J.M. The AlkB Family of Fe(II)/alpha-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J. Biol. Chem. 2015, 290, 20734–20742. [Google Scholar] [CrossRef]
- Aas, P.A.; Otterlei, M.; Falnes, P.O.; Vagbo, C.B.; Skorpen, F.; Akbari, M.; Sundheim, O.; Bjoras, M.; Slupphaug, G.; Seeberg, E.; et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 2003, 421, 859–863. [Google Scholar] [CrossRef]
- Falnes, P.O.; Bjoras, M.; Aas, P.A.; Sundheim, O.; Seeberg, E. Substrate specificities of bacterial and human AlkB proteins. Nucleic Acids Res. 2004, 32, 3456–3461. [Google Scholar] [CrossRef]
- Lee, D.H.; Jin, S.G.; Cai, S.; Chen, Y.; Pfeifer, G.P.; O’Connor, T.R. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J. Biol. Chem. 2005, 280, 39448–39459. [Google Scholar] [CrossRef]
- Kanazhevskaya, L.Y.; Smyshliaev, D.A.; Timofeyeva, N.A.; Ishchenko, A.A.; Saparbaev, M.; Kuznetsov, N.A.; Fedorova, O.S. Conformational Dynamics of Human ALKBH2 Dioxygenase in the Course of DNA Repair as Revealed by Stopped-Flow Fluorescence Spectroscopy. Molecules 2022, 27, 4960. [Google Scholar] [CrossRef]
- Li, X.; Xiong, X.; Wang, K.; Wang, L.; Shu, X.; Ma, S.; Yi, C. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 2016, 12, 311–316. [Google Scholar] [CrossRef]
- Dango, S.; Mosammaparast, N.; Sowa, M.E.; Xiong, L.J.; Wu, F.; Park, K.; Rubin, M.; Gygi, S.; Harper, J.W.; Shi, Y. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol. Cell. 2011, 44, 373–384. [Google Scholar] [CrossRef]
- Mohan, M.; Akula, D.; Dhillon, A.; Goyal, A.; Anindya, R. Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase. Nucleic Acids Res. 2019, 47, 11729–11745. [Google Scholar] [CrossRef]
- Koike, K.; Ueda, Y.; Hase, H.; Kitae, K.; Fusamae, Y.; Masai, S.; Inagaki, T.; Saigo, Y.; Hirasawa, S.; Nakajima, K.; et al. anti-tumor effect of AlkB homolog 3 knockdown in hormone- independent prostate cancer cells. Curr. Cancer Drug Targets 2012, 12, 847–856. [Google Scholar] [CrossRef]
- Yamato, I.; Sho, M.; Shimada, K.; Hotta, K.; Ueda, Y.; Yasuda, S.; Shigi, N.; Konishi, N.; Tsujikawa, K.; Nakajima, Y. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis. Cancer Res. 2012, 72, 4829–4839. [Google Scholar] [CrossRef]
- Nakao, S.; Mabuchi, M.; Shimizu, T.; Itoh, Y.; Takeuchi, Y.; Ueda, M.; Mizuno, H.; Shigi, N.; Ohshio, I.; Jinguji, K.; et al. Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs. Bioorg. Med. Chem. Lett. 2014, 24, 1071–1074. [Google Scholar] [CrossRef]
- Sundheim, O.; Vagbo, C.B.; Bjoras, M.; Sousa, M.M.; Talstad, V.; Aas, P.A.; Drablos, F.; Krokan, H.E.; Tainer, J.A.; Slupphaug, G. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J. 2006, 25, 3389–3397. [Google Scholar] [CrossRef]
- Yu, B.; Edstrom, W.C.; Benach, J.; Hamuro, Y.; Weber, P.C.; Gibney, B.R.; Hunt, J.F. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature 2006, 439, 879–884. [Google Scholar] [CrossRef]
- Yang, C.G.; Yi, C.; Duguid, E.M.; Sullivan, C.T.; Jian, X.; Rice, P.A.; He, C. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 2008, 452, 961–965. [Google Scholar] [CrossRef]
- Xu, B.F.; Liu, D.Y.; Wang, Z.R.; Tian, R.X.; Zuo, Y.C. Multi-substrate selectivity based on key loops and non-homologous domains: New insight into ALKBH family. Cell. Mol. Life Sci. 2021, 78, 129–141. [Google Scholar] [CrossRef]
- Chen, B.; Liu, H.; Sun, X.; Yang, C.G. Mechanistic insight into the recognition of single-stranded and double-stranded DNA substrates by ABH2 and ABH3. Mol. Biosyst. 2010, 6, 2143–2149. [Google Scholar] [CrossRef]
- Monsen, V.T.; Sundheim, O.; Aas, P.A.; Westbye, M.P.; Sousa, M.M.; Slupphaug, G.; Krokan, H.E. Divergent ss-hairpins determine double-strand versus single-strand substrate recognition of human AlkB-homologues 2 and 3. Nucleic Acids Res. 2010, 38, 6447–6455. [Google Scholar] [CrossRef]
- Schmidl, D.; Lindlar Ne Jonasson, N.S.W.; Menke, A.; Schneider, S.; Daumann, L.J. Spectroscopic and In Vitro Investigations of Fe2+/alpha-Ketoglutarate-Dependent Enzymes Involved in Nucleic Acid Repair and Modification. Chembiochem 2022, 23, e202100605. [Google Scholar] [CrossRef]
- Bleijlevens, B.; Shivarattan, T.; van den Boom, K.S.; de Haan, A.; van der Zwan, G.; Simpson, P.J.; Matthews, S.J. Changes in protein dynamics of the DNA repair dioxygenase AlkB upon binding of Fe2+ and 2-oxoglutarate. Biochemistry 2012, 51, 3334–3341. [Google Scholar] [CrossRef] [PubMed]
- Ergel, B.; Gill, M.L.; Brown, L.; Yu, B.; Palmer, A.G., III; Hunt, J.F. Protein dynamics control the progression and efficiency of the catalytic reaction cycle of the Escherichia coli DNA-repair enzyme AlkB. J. Biol. Chem. 2014, 289, 29584–29601. [Google Scholar] [CrossRef]
- Kanazhevskaya, L.Y.; Alekseeva, I.V.; Fedorova, O.S. A Single-Turnover Kinetic Study of DNA Demethylation Catalyzed by Fe(II)/alpha-Ketoglutarate-Dependent Dioxygenase AlkB. Molecules 2019, 24, 4576. [Google Scholar] [CrossRef]
- Kuzmic, P. Program DYNAFIT for the analysis of enzyme kinetic data: Application to HIV proteinase. Anal. Biochem. 1996, 237, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Kanazhevskaya, L.Y.; Smyshlyaev, D.A.; Alekseeva, I.V.; Fedorova, O.S. Conformational Dynamics of Dioxygenase AlkB and DNA in the Course of Catalytically Active Enzyme–Substrate Complex Formation. Russ. J. Bioorg. Chem. 2019, 45, 630–640. [Google Scholar] [CrossRef]
- Kanazhevskaya, L.Y.; Gorbunov, A.A.; Zhdanova, P.V.; Koval, V.V. Dataset for Spectroscopic, Structural and Dynamic Analysis of Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3. Data 2023, 8, 57. [Google Scholar] [CrossRef]
- Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.H.; Goto, Y.; Refregiers, M.; Kardos, J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA 2015, 112, E3095–E3103. [Google Scholar] [CrossRef]
- Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef]
- Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 1989, 6, 87–103. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 2006, 1, 2527–2535. [Google Scholar] [CrossRef]
- Waheed, S.O.; Ramanan, R.; Chaturvedi, S.S.; Ainsley, J.; Evison, M.; Ames, J.M.; Schofield, C.J.; Christov, C.Z.; Karabencheva-Christova, T.G. Conformational flexibility influences structure-function relationships in nucleic acid N-methyl demethylases. Org. Biomol. Chem. 2019, 17, 2223–2231. [Google Scholar] [CrossRef]
- Waheed, S.O.; Ramanan, R.; Chaturvedi, S.S.; Lehnert, N.; Schofield, C.J.; Christov, C.Z.; Karabencheva-Christova, T.G. Role of Structural Dynamics in Selectivity and Mechanism of Non-heme Fe(II) and 2-Oxoglutarate-Dependent Oxygenases Involved in DNA Repair. ACS Cent. Sci. 2020, 6, 795–814. [Google Scholar] [CrossRef]
- Chen, F.; Bian, K.; Tang, Q.; Fedeles, B.I.; Singh, V.; Humulock, Z.T.; Essigmann, J.M.; Li, D. Oncometabolites d- and l-2-Hydroxyglutarate Inhibit the AlkB Family DNA Repair Enzymes under Physiological Conditions. Chem. Res. Toxicol. 2017, 30, 1102–1110. [Google Scholar] [CrossRef]
- Aik, W.; Scotti, J.S.; Choi, H.; Gong, L.; Demetriades, M.; Schofield, C.J.; McDonough, M.A. Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. 2014, 42, 4741–4754. [Google Scholar] [CrossRef]
- Bleijlevens, B.; Shivarattan, T.; Flashman, E.; Yang, Y.; Simpson, P.J.; Koivisto, P.; Sedgwick, B.; Schofield, C.J.; Matthews, S.J. Dynamic states of the DNA repair enzyme AlkB regulate product release. EMBO Rep. 2008, 9, 872–877. [Google Scholar] [CrossRef]
wt ALKBH3 | Y143F ALKBH3 | |
---|---|---|
k1 × 10−6, M−1 s−1 | 19 ± 3 | 94 ± 3 |
k−1, s−1 | 64 ± 5 | 270 ± 26 |
k2, s−1 | 2.9 ± 0.9 | 6.1 ± 1.4 |
k−2, s−1 | 2.8 ± 0.5 | 7.7 ± 0.24 |
k3, s−1 | 0.57 ± 0.12 | 1.4 ± 0.1 |
k−3, s−1 | 0.13 ± 0.01 | 0.48 ± 0.03 |
kr, s−1 | 0.023 ± 0.003 | 0.013 ± 0.001 |
KdProduct, M | (7.2 ± 2.1) × 10−7 | (0.83 ± 0.21) × 10−7 |
Ka, M−1 | (1.9 ± 0.2) × 106 | (1.4 ± 0.1) × 106 |
Protein | wt | Y143F | Y143A | L177A | H191A | |
---|---|---|---|---|---|---|
Ligand | ||||||
Fe(II) | 25 ± 2 | 23 ± 2 | 25 ± 3 | 24 ± 2 | 20 ± 2 | |
Ni(II) | 42 ± 4 | 42 ± 3 | 60 ± 7 | 90 ± 10 | 50 ± 4 | |
Co(II) | 52 ± 4 | 40 ± 3 | 44 ± 4 | 98 ± 9 | 59 ± 6 | |
2OG | 52 ± 7 | 52 ± 4 | 53 ± 10 | 67 ± 8 | 34 ± 2 | |
m3C substrate | 2.8 ± 0.1 | 3.8 ± 0.5 | 6.3 ± 0.6 | 5.7 ± 0.3 | 4.3 ± 0.3 |
Protein Name | α-Helixes | Antiparallel β-Strands | Parallel β-Strands | Turns | Other | |||
---|---|---|---|---|---|---|---|---|
Regular | Distorted | Left-Twisted | Relaxed | Right-Twisted | ||||
WT | 3.5 | 1.7 | 3.4 | 15.2 | 19.0 | 0 | 12.6 | 44.7 |
Y143F | 8.2 | 2.9 | 1.9 | 8.8 | 20.3 | 0 | 11.8 | 46.1 |
Y143A | 9.1 | 5.9 | 0 | 1.4 | 15.2 | 0 | 19.2 | 49.2 |
L177A | 8.1 | 6.0 | 0 | 5.4 | 15.8 | 0 | 16.5 | 48.3 |
H191A | 8.4 | 7.9 | 0 | 1.6 | 14.5 | 1.1 | 16.6 | 49.8 |
wt | Y143F | Y143A | L177A | H191A | |
---|---|---|---|---|---|
Tm, °C | 45.6 ± 0.7 | 43.5 ± 0.4 | 44.2 ± 0.2 | 44.5 ± 0.6 | 42.7 ± 0.1 |
ΔH, kcal/mol | 43 ± 1 | 75 ± 5 | 54 ± 2 | 79 ± 5 | 127 ± 9 |
ΔS, cal/mol·K | 133 ± 2 | 236 ± 3 | 170 ± 0.6 | 249 ± 1.3 | 403 ± 0.4 |
ΔG298, kcal/mol * | 3.4 ± 0.1 | 4.7 ± 0.3 | 3.3 ± 0.1 | 4.8 ± 0.4 | 6.9 ± 0.5 |
Name | Sequence | Application |
---|---|---|
m3C | 5′-ACAGGATC(m3C)GGCATA-3′ | Equilibrium titration |
m3C_FAM | 5′-(6-FAM)-ACAGGATC(m3C)GGCATA-3′ | PAGE analysis of a catalytic activity |
m3C_FRET | 5′-(6-FAM)-ACAGGATC(m3C)GGCATA-(BHQ1)-3′ | Stopped-flow approach |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanazhevskaya, L.Y.; Gorbunov, A.A.; Lukina, M.V.; Smyshliaev, D.A.; Zhdanova, P.V.; Lomzov, A.A.; Koval, V.V. The Role of Key Amino Acids of the Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3 in Structural Dynamics and Repair Activity toward Methylated DNA. Int. J. Mol. Sci. 2024, 25, 1145. https://doi.org/10.3390/ijms25021145
Kanazhevskaya LY, Gorbunov AA, Lukina MV, Smyshliaev DA, Zhdanova PV, Lomzov AA, Koval VV. The Role of Key Amino Acids of the Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3 in Structural Dynamics and Repair Activity toward Methylated DNA. International Journal of Molecular Sciences. 2024; 25(2):1145. https://doi.org/10.3390/ijms25021145
Chicago/Turabian StyleKanazhevskaya, Lyubov Yu., Alexey A. Gorbunov, Maria V. Lukina, Denis A. Smyshliaev, Polina V. Zhdanova, Alexander A. Lomzov, and Vladimir V. Koval. 2024. "The Role of Key Amino Acids of the Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3 in Structural Dynamics and Repair Activity toward Methylated DNA" International Journal of Molecular Sciences 25, no. 2: 1145. https://doi.org/10.3390/ijms25021145
APA StyleKanazhevskaya, L. Y., Gorbunov, A. A., Lukina, M. V., Smyshliaev, D. A., Zhdanova, P. V., Lomzov, A. A., & Koval, V. V. (2024). The Role of Key Amino Acids of the Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3 in Structural Dynamics and Repair Activity toward Methylated DNA. International Journal of Molecular Sciences, 25(2), 1145. https://doi.org/10.3390/ijms25021145