4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile O-Hydroxylation Applications in the Biosynthesis of Phenolic Derivatives
Abstract
:1. Introduction
2. Characteristics of 4-Hydroxyphenylacetate 3-Hydroxylases
2.1. Classifications of 4-Hydroxyphenylacetate 3-Hydroxylases
2.2. Structural Features of 4HPA3H
2.2.1. Structural Features of 4HPA3Hs’ Oxygenase Components
2.2.2. Structural Features of 4HPA3Hs’ Reductase Components
2.3. Catalytic Mechanism of 4-Hydroxyphenylacetate 3-Hydroxylase
3. Biosynthesis of Phenolic Derivatives by 4HPA3Hs
3.1. Hydroxylation of Monocyclic Phenols
3.2. Hydroxylation of Polycyclic Phenols
4. Protein Engineering Strategies of 4-Hydroxyphenylacetate 3-Hydroxylases
5. Summary and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, M.; Ahmed, S.; Elasbali, A.M.; Adnan, M.; Alam, S.; Hassan, M.I.; Pasupuleti, V.R. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front. Oncol. 2022, 12, 860508. [Google Scholar] [CrossRef]
- Potter, G.A.; Patterson, L.H.; Wanogho, E.; Perry, P.J.; Butler, P.C.; Ijaz, T.; Ruparelia, K.C.; Lamb, J.H.; Farmer, P.B.; Stanley, L.A.; et al. The Cancer Preventative Agent Resveratrol Is Converted to the Anticancer Agent Piceatannol by the Cytochrome P450 Enzyme CYP1B1. Br. J. Cancer 2002, 86, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Bao, D.; Wang, J.; Liu, J.; Qin, T.; Liu, H. The Attenuation of HIV-1 Tat-Induced Neurotoxicity by Salvianic Acid A and Danshen Granule. Int. J. Biol. Macromol. 2019, 124, 863–870. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; Perez-Aranda, A.; Garcia, J.L. Characterization of an Escherichia coli Aromatic Hydroxylase with a Broad Substrate Range. J. Bacteriol. 1993, 175, 2162–2167. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhou, W.; Zhou, H.; Chen, X. Characterization of Enzymatic Properties of Two Novel Enzymes, 3,4-Dihydroxyphenylacetate Dioxygenase and 4-Hydroxyphenylacetate 3-Hydroxylase, from Sulfobacillus acidophilus TPY. BMC Microbiol. 2019, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Chaiyen, P.; Suadee, C.; Wilairat, P. A Novel Two-Protein Component Flavoprotein Hydroxylase. Eur. J. Biochem. 2001, 268, 5550–5561. [Google Scholar] [CrossRef] [PubMed]
- Allouche, N.; Damak, M.; Ellouz, R.; Sayadi, S. Use of Whole Cells of Pseudomonas aeruginosa for Synthesis of the Antioxidant Hydroxytyrosol via Conversion of Tyrosol. Appl. Environ. Microbiol. 2004, 70, 2105–2109. [Google Scholar] [CrossRef]
- Prieto, M.A.; Díaz, E.; García, J.L. Molecular Characterization of the 4-Hydroxyphenylacetate Catabolic Pathway of Escherichia coli W: Engineering a Mobile Aromatic Degradative Cluster. J. Bacteriol. 1996, 178, 111–120. [Google Scholar] [CrossRef]
- Adachi, K.; Takeda, Y.; Senoh, S.; Kita, H. Metabolism of P-Hydroxyphenylacetic Acid in Pseudomonas Ovalis. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1964, 93, 483–493. [Google Scholar] [CrossRef]
- Sparnins, V.L.; Chapman, P.J.; Dagley, S. Bacterial Degradation of 4-Hydroxyphenylacetic Acid and Homoprotocatechuic Acid. J. Bacteriol. 1974, 120, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.A.; Skinner, M.A. Catabolism of 3- and 4-Hydroxyphenylacetate by the 3,4-Dihydroxyphenylacetate Pathway in Escherichia coli. J. Bacteriol. 1980, 143, 302–306. [Google Scholar] [CrossRef]
- Arunachalam, U.; Massey, V.; Vaidyanathan, C.S. P-Hydroxyphenylacetate-3-Hydroxylase. A Two-Protein Component Enzyme. J. Biol. Chem. 1992, 267, 25848–25855. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; Garcia, J.L. Molecular Characterization of 4-Hydroxyphenylacetate 3-Hydroxylase of Escherichia coli. A Two-Protein Component Enzyme. J. Biol. Chem. 1994, 269, 22823–22829. [Google Scholar] [CrossRef] [PubMed]
- Xun, L.; Sandvik, E.R. Characterization of 4-Hydroxyphenylacetate 3-Hydroxylase (HpaB) of Escherichia coli as a Reduced Flavin Adenine Dinucleotide-Utilizing Monooxygenase. Appl. Environ. Microbiol. 2000, 66, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Gibello, A.; Ferrer, E.; Sanz, J.; Martin, M. Polymer Production by Klebsiella pneumoniae 4-Hydroxyphenylacetic Acid Hydroxylase Genes Cloned in Escherichia coli. Appl. Environ. Microbiol. 1995, 61, 4167–4171. [Google Scholar] [CrossRef]
- Gibello, A.; Suárez, M.; Allende, J.L.; Martín, M. Molecular Cloning and Analysis of the Genes Encoding the 4-Hydroxyphenylacetate Hydroxylase from Klebsiella Pneumoniae. Arch. Microbiol. 1997, 167, 160–166. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef]
- Ritika; Rizwana; Shukla, S.; Sondhi, A.; Tripathi, A.D.; Lee, J.-K.; Patel, S.K.S.; Agarwal, A. Valorisation of Fruit Waste for Harnessing the Bioactive Compounds and Its Therapeutic Application. Trends Food Sci. Technol. 2023, 144, 104302. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-Antioxidant Activity Relationship of Methoxy, Phenolic Hydroxyl, and Carboxylic Acid Groups of Phenolic Acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [PubMed]
- Siquet, C.; Paiva-Martins, F.; Lima, J.L.F.C.; Reis, S.; Borges, F. Antioxidant Profile of Dihydroxy- and Trihydroxyphenolic Acids-A Structure–Activity Relationship Study. Free Radic. Res. 2006, 40, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, J.; Li, J.; Xing, M.; Grierson, D.; Sun, C.; Xu, C.; Li, X.; Chen, K. Hydroxylation Decoration Patterns of Flavonoids in Horticultural Crops: Chemistry, Bioactivity, and Biosynthesis. Hortic. Res. 2022, 9, uhab068. [Google Scholar] [CrossRef] [PubMed]
- Heine, T.; van Berkel, W.; Gassner, G.; van Pée, K.-H.; Tischler, D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. Biology 2018, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- van Berkel, W.J.H.; Kamerbeek, N.M.; Fraaije, M.W. Flavoprotein Monooxygenases, a Diverse Class of Oxidative Biocatalysts. J. Biotechnol. 2006, 124, 670–689. [Google Scholar] [CrossRef]
- Huijbers, M.M.E.; Montersino, S.; Westphal, A.H.; Tischler, D.; van Berkel, W.J.H. Flavin Dependent Monooxygenases. Arch. Biochem. Biophys. 2014, 544, 2–17. [Google Scholar] [CrossRef]
- Paul, C.E.; Eggerichs, D.; Westphal, A.H.; Tischler, D.; van Berkel, W.J.H. Flavoprotein Monooxygenases: Versatile Biocatalysts. Biotechnol. Adv. 2021, 51, 107712. [Google Scholar] [CrossRef]
- Pimviriyakul, P.; Jaruwat, A.; Chitnumsub, P.; Chaiyen, P. Structural Insights into a Flavin-Dependent Dehalogenase HadA Explain Catalysis and Substrate Inhibition via Quadruple Pi-Stacking. J. Biol. Chem. 2021, 297, 100952. [Google Scholar] [CrossRef]
- Pimviriyakul, P.; Thotsaporn, K.; Sucharitakul, J.; Chaiyen, P. Kinetic Mechanism of the Dechlorinating Flavin-Dependent Monooxygenase HadA*. J. Biol. Chem. 2017, 292, 4818–4832. [Google Scholar] [CrossRef]
- Chenprakhon, P.; Pimviriyakul, P.; Tongsook, C.; Chaiyen, P. Chapter Ten—Phenolic Hydroxylases. In The Enzymes; Chaiyen, P., Tamanoi, F., Eds.; Flavin-Dependent Enzymes: Mechanisms, Structures and Applications; Academic Press: Cambridge, MA, USA, 2020; Volume 47, pp. 283–326. [Google Scholar]
- Kim, S.-H.; Hisano, T.; Takeda, K.; Iwasaki, W.; Ebihara, A.; Miki, K. Crystal Structure of the Oxygenase Component (HpaB) of the 4-Hydroxyphenylacetate 3-Monooxygenase from Thermus Thermophilus HB8. J. Biol. Chem. 2007, 282, 33107–33117. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Hisano, T.; Iwasaki, W.; Ebihara, A.; Miki, K. Crystal Structure of the Flavin Reductase Component (HpaC) of 4-Hydroxyphenylacetate 3-Monooxygenase from Thermus Thermophilus HB8: Structural Basis for the Flavin Affinity. Proteins Struct. Funct. Bioinform. 2008, 70, 718–730. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhou, D.; Lin, Y.; Wang, J.; Gao, S.; Kandavelu, P.; Zhang, H.; Zhang, R.; Wang, B.-C.; Rose, J.; et al. Structural Insights into Catalytic Versatility of the Flavin-Dependent Hydroxylase (HpaB) from Escherichia coli. Sci. Rep. 2019, 9, 7087. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Faivre, B.; Back, O.; Lombard, M.; Pecqueur, L.; Fontecave, M. Structural and Functional Characterization of 4-Hydroxyphenylacetate 3-Hydroxylase from Escherichia coli. ChemBioChem 2020, 21, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Furuya, T.; Kino, K. Catalytic Activity of the Two-Component Flavin-Dependent Monooxygenase from Pseudomonas Aeruginosa toward Cinnamic Acid Derivatives. Appl. Microbiol. Biotechnol. 2014, 98, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Hawumba, J.F.; Brözel, V.S.; Theron, J. Cloning and Characterization of a 4-Hydroxyphenylacetate 3-Hydroxylase From the Thermophile Geobacillus sp. PA-9. Curr. Microbiol. 2007, 55, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Barbe, V.; Cruveiller, S.; Kunst, F.; Lenoble, P.; Meurice, G.; Sekowska, A.; Vallenet, D.; Wang, T.; Moszer, I.; Médigue, C.; et al. From a Consortium Sequence to a Unified Sequence: The Bacillus Subtilis 168 Reference Genome a Decade Later. Microbiology 2009, 155, 1758–1775. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dong, Y.; Li, X.; Ren, Y.; Li, Y.; Wang, W.; Wang, L.; Feng, L. Characterization of the Anthranilate Degradation Pathway in Geobacillus Thermodenitrificans NG80-2. Microbiology 2010, 156, 589–595. [Google Scholar] [CrossRef]
- Okai, M.; Kudo, N.; Lee, W.C.; Kamo, M.; Nagata, K.; Tanokura, M. Crystal Structures of the Short-Chain Flavin Reductase HpaC from Sulfolobus tokodaii Strain 7 in Its Three States: NAD(P)+-Free, NAD+-Bound, and NADP+-Bound. Biochemistry 2006, 45, 5103–5110. [Google Scholar] [CrossRef]
- Arias-Barrau, E.; Sandoval, Á.; Naharro, G.; Olivera, E.R.; Luengo, J.M. A Two-Component Hydroxylase Involved in the Assimilation of 3-Hydroxyphenyl Acetate in Pseudomonas Putida. J. Biol. Chem. 2005, 280, 26435–26447. [Google Scholar] [CrossRef]
- Thotsaporn, K.; Sucharitakul, J.; Wongratana, J.; Suadee, C.; Chaiyen, P. Cloning and Expression of P-Hydroxyphenylacetate 3-Hydroxylase from Acinetobacter baumannii: Evidence of the Divergence of Enzymes in the Class of Two-Protein Component Aromatic Hydroxylases. Biochim. Biophys. Acta (BBA)—Gene Struct. Expr. 2004, 1680, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Furuya, T.; Sai, M.; Kino, K. Biocatalytic Synthesis of 3,4,5,3′,5′-Pentahydroxy-Trans-Stilbene from Piceatannol by Two-Component Flavin-Dependent Monooxygenase HpaBC. Biosci. Biotechnol. Biochem. 2016, 80, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, A.; Fersini, F.; Ruangchan, N.; Prongjit, M.; Chaiyen, P.; Mattevi, A. Structure of the Monooxygenase Component of a Two-Component Flavoprotein Monooxygenase. Proc. Natl. Acad. Sci. USA 2007, 104, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Oonanant, W.; Sucharitakul, J.; Chaiyen, P.; Yuvaniyama, J. Crystallization and Preliminary X-Ray Analysis of the Reductase Component of p-Hydroxyphenylacetate 3-Hydroxylase from Acinetobacter Baumannii. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Riley, C.; Chenprakhon, P.; Thotsaporn, K.; Winter, R.T.; Alfieri, A.; Forneris, F.; van Berkel, W.J.H.; Chaiyen, P.; Fraaije, M.W.; et al. Multiple Pathways Guide Oxygen Diffusion into Flavoenzyme Active Sites. Proc. Natl. Acad. Sci. USA 2009, 106, 10603–10608. [Google Scholar] [CrossRef]
- Thotsaporn, K.; Chenprakhon, P.; Sucharitakul, J.; Mattevi, A.; Chaiyen, P. Stabilization of C4a-Hydroperoxyflavin in a Two-Component Flavin-Dependent Monooxygenase Is Achieved through Interactions at Flavin N5 and C4a Atoms. J. Biol. Chem. 2011, 286, 28170–28180. [Google Scholar] [CrossRef]
- Dhammaraj, T.; Phintha, A.; Pinthong, C.; Medhanavyn, D.; Tinikul, R.; Chenprakhon, P.; Sucharitakul, J.; Vardhanabhuti, N.; Jiarpinitnun, C.; Chaiyen, P. P-Hydroxyphenylacetate 3-Hydroxylase as a Biocatalyst for the Synthesis of Trihydroxyphenolic Acids. ACS Catal. 2015, 5, 4492–4502. [Google Scholar] [CrossRef]
- Sucharitakul, J.; Chaiyen, P.; Entsch, B.; Ballou, D.P. Kinetic Mechanisms of the Oxygenase from a Two-Component Enzyme, p-Hydroxyphenylacetate 3-Hydroxylase from Acinetobacter Baumannii. J. Biol. Chem. 2006, 281, 17044–17053. [Google Scholar] [CrossRef]
- Chen, W.; Yao, J.; Meng, J.; Han, W.; Tao, Y.; Chen, Y.; Guo, Y.; Shi, G.; He, Y.; Jin, J.-M.; et al. Promiscuous Enzymatic Activity-Aided Multiple-Pathway Network Design for Metabolic Flux Rearrangement in Hydroxytyrosol Biosynthesis. Nat. Commun. 2019, 10, 960. [Google Scholar] [CrossRef]
- Wang, L.; Ma, X.; Ruan, H.; Chen, Y.; Gao, L.; Lei, T.; Li, Y.; Gui, L.; Guo, L.; Xia, T.; et al. Optimization of the Biosynthesis of B-Ring Ortho-Hydroxy Lated Flavonoids Using the 4-Hydroxyphenylacetate 3-Hydroxylase Complex (HpaBC) of Escherichia coli. Molecules 2021, 26, 2919. [Google Scholar] [CrossRef]
- Yuenyao, A.; Petchyam, N.; Kamonsutthipaijit, N.; Chaiyen, P.; Pakotiprapha, D. Crystal Structure of the Flavin Reductase of Acinetobacter Baumannii P-Hydroxyphenylacetate 3-Hydroxylase (HPAH) and Identification of Amino Acid Residues Underlying Its Regulation by Aromatic Ligands. Arch. Biochem. Biophys. 2018, 653, 24–38. [Google Scholar] [CrossRef]
- Sucharitakul, J.; Chaiyen, P.; Entsch, B.; Ballou, D.P. The Reductase of P-Hydroxyphenylacetate 3-Hydroxylase from Acinetobacter Baumannii Requires p-Hydroxyphenylacetate for Effective Catalysis. Biochemistry 2005, 44, 10434–10442. [Google Scholar] [CrossRef] [PubMed]
- Sucharitakul, J.; Phongsak, T.; Entsch, B.; Svasti, J.; Chaiyen, P.; Ballou, D.P. Kinetics of a Two-Component p-Hydroxyphenylacetate Hydroxylase Explain How Reduced Flavin Is Transferred from the Reductase to the Oxygenase. Biochemistry 2007, 46, 8611–8623. [Google Scholar] [CrossRef] [PubMed]
- Phongsak, T.; Sucharitakul, J.; Thotsaporn, K.; Oonanant, W.; Yuvaniyama, J.; Svasti, J.; Ballou, D.P.; Chaiyen, P. The C-Terminal Domain of 4-Hydroxyphenylacetate 3-Hydroxylase from Acinetobacter Baumannii Is an Autoinhibitory Domain. J. Biol. Chem. 2012, 287, 26213–26222. [Google Scholar] [CrossRef] [PubMed]
- Ballou, D.P.; Entsch, B.; Cole, L.J. Dynamics Involved in Catalysis by Single-Component and Two-Component Flavin-Dependent Aromatic Hydroxylases. Biochem. Biophys. Res. Commun. 2005, 338, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Chenprakhon, P.; Wongnate, T.; Chaiyen, P. Monooxygenation of Aromatic Compounds by Flavin-Dependent Monooxygenases. Protein Sci. 2019, 28, 8–29. [Google Scholar] [CrossRef]
- Maenpuen, S.; Pongsupasa, V.; Pensook, W.; Anuwan, P.; Kraivisitkul, N.; Pinthong, C.; Phonbuppha, J.; Luanloet, T.; Wijma, H.J.; Fraaije, M.W.; et al. Creating Flavin Reductase Variants with Thermostable and Solvent-Tolerant Properties by Rational-Design Engineering. ChemBioChem 2020, 21, 1481–1491. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Wang, J.; Shen, X.; Feng, X.; Yuan, S.; Sun, X.; Yuan, Q. Engineering a Prokaryotic Non-P450 Hydroxylase for 3′-Hydroxylation of Flavonoids. ACS Synth. Biol. 2022, 11, 3865–3873. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, Y. Biotechnological Production of Plant-Specific Hydroxylated Phenylpropanoids. Biotechnol. Bioeng. 2014, 111, 1895–1899. [Google Scholar] [CrossRef]
- Herrmann, S.; Dippe, M.; Pecher, P.; Funke, E.; Pietzsch, M.; Wessjohann, L.A. Engineered Bacterial Flavin-Dependent Monooxygenases for the Regiospecific Hydroxylation of Polycyclic Phenols. ChemBioChem 2022, 23, e202100480. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, X.; Wu, J.; Li, X.; Li, W.; Sun, X.; Wang, J.; Yan, Y.; Shen, X.; Yuan, Q. Targeting Cofactors Regeneration in Methylation and Hydroxylation for High Level Production of Ferulic Acid. Metab. Eng. 2022, 73, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jin, Y.; Yang, K.; Hu, S.; Lv, C.; Huang, J.; Mei, J.; Zhao, W.; Mei, L. Modification of the 4-Hydroxyphenylacetate-3-Hydroxylase Substrate Pocket to Increase Activity towards Resveratrol. Molecules 2023, 28, 5602. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zheng, P.; Sun, P.; Chen, P.; Wu, D. Biosynthesis of 3-Hydroxyphloretin Using Rational Design of 4-Hydroxyphenylacetate 3-Monooxygenase. J. Agric. Food Chem. 2023, 71, 19457–19464. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhang, Y.; Grace, S.; He, Q. Functional Expression of an Arabidopsis P450 Enzyme, p-Coumarate-3-Hydroxylase, in the Cyanobacterium Synechocystis PCC 6803 for the Biosynthesis of Caffeic Acid. J. Appl. Phycol. 2014, 26, 219–226. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, J.; Hu, D.; Liu, G.; Sun, L. High-density fermentation of Escherichia coli to express 4-hydroxyphenylacetate 3-hydroxylase and efficient biosynthesis of caffeic acid. Sheng Wu Gong Cheng Xue Bao 2022, 38, 3466–3477. [Google Scholar] [CrossRef] [PubMed]
- Furuya, T.; Arai, Y.; Kino, K. Biotechnological Production of Caffeic Acid by Bacterial Cytochrome P450 CYP199A2. Appl. Environ. Microbiol. 2012, 78, 6087–6094. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; Soler-Rivas, C.; Cantos, E.; Tomás-Barberán, F.A.; Wichers, H.J. Synthesis of the Antioxidant Hydroxytyrosol Using Tyrosinase as Biocatalyst. J. Agric. Food Chem. 2001, 49, 1187–1193. [Google Scholar] [CrossRef]
- Humphreys, J.M.; Hemm, M.R.; Chapple, C. New Routes for Lignin Biosynthesis Defined by Biochemical Characterization of Recombinant Ferulate 5-Hydroxylase, a Multifunctional Cytochrome P450-Dependent Monooxygenase. Proc. Natl. Acad. Sci. USA 1999, 96, 10045–10050. [Google Scholar] [CrossRef]
- Lee, N.; Kim, E.J.; Kim, B.-G. Regioselective Hydroxylation of Trans-Resveratrol via Inhibition of Tyrosinase from Streptomyces Avermitilis MA4680. ACS Chem. Biol. 2012, 7, 1687–1692. [Google Scholar] [CrossRef]
- Furuya, T.; Kino, K. Regioselective Synthesis of Piceatannol from Resveratrol: Catalysis by Two-Component Flavin-Dependent Monooxygenase HpaBC in Whole Cells. Tetrahedron Lett. 2014, 55, 2853–2855. [Google Scholar] [CrossRef]
- Gao, S.; Xu, X.; Zeng, W.; Xu, S.; Lyv, Y.; Feng, Y.; Kai, G.; Zhou, J.; Chen, J. Efficient Biosynthesis of (2 S)-Eriodictyol from (2 S)-Naringenin in Saccharomyces cerevisiae through a Combination of Promoter Adjustment and Directed Evolution. ACS Synth. Biol. 2020, 9, 3288–3297. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, J.; Liu, D.; Yuwen, M.; Koffas, M.A.G.; Zha, J. Biosynthesis of Eriodictyol from Tyrosine by Corynebacterium Glutamicum. Microb. Cell Factories 2022, 21, 86. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.L.; Pandey, R.P.; Jung, N.; Jung, H.J.; Kim, E.-H.; Sohng, J.K. Hydroxylation of Diverse Flavonoids by CYP450 BM3 Variants: Biosynthesis of Eriodictyol from Naringenin in Whole Cells and Its Biological Activities. Microb. Cell Factories 2016, 15, 135. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.L.; Pandey, R.P.; Lim, H.N.; Jung, H.J.; Thuan, N.H.; Kim, T.-S.; Sohng, J.K. Synthesis of Umbelliferone Derivatives in Escherichia coli and Their Biological Activities. J. Biol. Eng. 2017, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.A.; Jang, J.; Le, T.-K.; Nguyen, T.H.H.; Woo, S.-M.; Yoo, S.-K.; Lee, Y.J.; Park, K.D.; Yeom, S.-J.; Kim, G.-J.; et al. Biocatalytic Production of a Potent Inhibitor of Adipocyte Differentiation from Phloretin Using Engineered CYP102A1. J. Agric. Food Chem. 2020, 68, 6683–6691. [Google Scholar] [CrossRef]
- Niwa, T.; Akiyama, H.; Echikawa, M.; Yokoyama, S.; Mochizuki, M.; Osawa, T. Equol Inhibits Mushroom Tyrosinase in Vitro through Tight Binding. Biol. Pharm. Bull. 2020, 43, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, D.; Matsuyama, A.; Furuya, T. Biocatalytic Synthesis and Evaluation of Antioxidant and Antibacterial Activities of Hydroxyequols. Bioorganic Med. Chem. Lett. 2022, 73, 128908. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kwon, T.; Yang, H.J.; Kim, W.; Youn, H.; Lee, J.Y.; Youn, B. Gene Engineering, Purification, Crystallization and Preliminary X-Ray Diffraction of Cytochrome P450 p-Coumarate-3-Hydroxylase (C3H), the Arabidopsis Membrane Protein. Protein Expr. Purif. 2011, 79, 149–155. [Google Scholar] [CrossRef]
- Li, Y.; Mao, J.; Liu, Q.; Song, X.; Wu, Y.; Cai, M.; Xu, H.; Qiao, M. De Novo Biosynthesis of Caffeic Acid from Glucose by Engineered Saccharomyces cerevisiae. ACS Synth. Biol. 2020, 9, 756–765. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, Y. Biosynthesis of Caffeic Acid in Escherichia coli Using Its Endogenous Hydroxylase Complex. Microb. Cell Factories 2012, 11, 42. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, Y.; Yan, Y. Caffeic Acid Production Enhancement by Engineering a Phenylalanine Over-producing Escherichia coli Strain. Biotechnol. Bioeng. 2013, 110, 3188–3196. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.A.; Collins, S.M.; Vernacchio, V.R.; Lachance, D.M.; Koffas, M.A.G. Optimization of Naringenin and P-Coumaric Acid Hydroxylation Using the Native E. Coli Hydroxylase Complex, HpaBC. Biotechnol. Prog. 2016, 32, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, H.; Zhang, W.; Yao, M.; Li, B.; Liu, D.; Yuan, Y. Engineering the Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae with Heterologous Enzyme Combinations. Engineering 2019, 5, 287–295. [Google Scholar] [CrossRef]
- Orenes-Piñero, E.; García-Carmona, F.; Sánchez-Ferrer, Á. A New Process for Obtaining Hydroxytyrosol Using Transformed Escherichia coli Whole Cells with Phenol Hydroxylase Gene from Geobacillus Thermoglucosidasius. Food Chem. 2013, 139, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.-F.; Wang, C.-S.; Qiao, J.; Zhao, G.-R. Metabolic Engineering of Escherichia coli for Production of Salvianic Acid A via an Artificial Biosynthetic Pathway. Metab. Eng. 2013, 19, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Lai, Y.; Liu, L.; Cheng, J.; Zhang, Y.; Yuan, J. Engineering Escherichia coli for High-Yielding Hydroxytyrosol Synthesis from Biobased l -Tyrosine. J. Agric. Food Chem. 2020, 68, 7691–7696. [Google Scholar] [CrossRef] [PubMed]
- Bisquert, R.; Planells-Cárcel, A.; Valera-García, E.; Guillamón, J.M.; Muñiz-Calvo, S. Metabolic Engineering of Saccharomyces cerevisiae for Hydroxytyrosol Overproduction Directly from Glucose. Microb. Biotechnol. 2021, 15, 1499–1510. [Google Scholar] [CrossRef]
- Lopatriello, A.; Previtera, R.; Pace, S.; Werner, M.; Rubino, L.; Werz, O.; Taglialatela-Scafati, O.; Forino, M. NMR-Based Identification of the Major Bioactive Molecules from an Italian Cultivar of Lycium barbarum. Phytochemistry 2017, 144, 52–57. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, W.-N.; Yang, M.-L. Chemical Constituents of Opuntia Milpa Alta Haw. Nat. Prod. Res. Dev. 2011, 23, 1038–1040. [Google Scholar]
- Suzuki, S.; Tuyet Lam†, T.B.; Iiyama, K. 5-Hydroxyguaiacyl Nuclei as Aromatic Constituents of Native Lignin. Phytochemistry 1997, 46, 695–700. [Google Scholar] [CrossRef]
- Amić, A.; Dimitrić Marković, J.M.; Marković, Z.; Milenković, D.; Milanović, Ž.; Antonijević, M.; Mastiľák Cagardová, D.; Rodríguez-Guerra Pedregal, J. Theoretical Study of Radical Inactivation, LOX Inhibition, and Iron Chelation: The Role of Ferulic Acid in Skin Protection against UVA Induced Oxidative Stress. Antioxidants 2021, 10, 1303. [Google Scholar] [CrossRef] [PubMed]
- Kylli, P.; Nousiainen, P.; Biely, P.; Sipilä, J.; Tenkanen, M.; Heinonen, M. Antioxidant Potential of Hydroxycinnamic Acid Glycoside Esters. J. Agric. Food Chem. 2008, 56, 4797–4805. [Google Scholar] [CrossRef] [PubMed]
- Grand, C. Ferulic Acid Shydroxylase: A New Cytochrome P-450-Dependent Enzyme from Higher Plant Microsomes Involved in Lignin Synthesis. Febs Lett. 1984, 169, 5. [Google Scholar] [CrossRef]
- Meyer, K.; Cusumano, J.C.; Somerville, C.; Chapple, C.C. Ferulate-5-Hydroxylase from Arabidopsis Thaliana Defines a New Family of Cytochrome P450-Dependent Monooxygenases. Proc. Natl. Acad. Sci. USA 1996, 93, 6869–6874. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, K.; Tsao, C.C.; Li, L.; Popko, J.L.; Umezawa, T.; Carraway, D.T.; Smeltzer, R.H.; Joshi, C.P.; Chiang, V.L. Coniferyl Aldehyde 5-Hydroxylation and Methylation Direct Syringyl Lignin Biosynthesis in Angiosperms. Proc. Natl. Acad. Sci. USA 1999, 96, 8955–8960. [Google Scholar] [CrossRef] [PubMed]
- Dhammaraj, T.; Pinthong, C.; Visitsatthawong, S.; Tongsook, C.; Surawatanawong, P.; Chaiyen, P. A Single-Site Mutation at Ser146 Expands the Reactivity of the Oxygenase Component of p-Hydroxyphenylacetate 3-Hydroxylase. ACS Chem. Biol. 2016, 11, 2889–2896. [Google Scholar] [CrossRef]
- Chenprakhon, P.; Dhammaraj, T.; Chantiwas, R.; Chaiyen, P. Hydroxylation of 4-Hydroxyphenylethylamine Derivatives by R263 Variants of the Oxygenase Component of p-Hydroxyphenylacetate-3-Hydroxylase. Arch. Biochem. Biophys. 2017, 620, 1–11. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef]
- Piver, B.; Fer, M.; Vitrac, X.; Merillon, J.-M.; Dreano, Y.; Berthou, F.; Lucas, D. Involvement of Cytochrome P450 1A2 in the Biotransformation of Trans-Resveratrol in Human Liver Microsomes. Biochem. Pharmacol. 2004, 68, 773–782. [Google Scholar] [CrossRef]
- Kim, D.-H.; Ahn, T.; Jung, H.-C.; Pan, J.-G.; Yun, C.-H. Generation of the Human Metabolite Piceatannol from the Anticancer-Preventive Agent Resveratrol by Bacterial Cytochrome P450 BM3. Drug Metab. Dispos. 2009, 37, 932–936. [Google Scholar] [CrossRef]
- Koyani, R.D.; Vazquez-Duhalt, R. Enzymatic Activation of the Emerging Drug Resveratrol. Appl. Biochem. Biotechnol. 2018, 185, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Baba, S.A.; Ashraf, N. Functional Characterization of Flavonoid 3′-Hydroxylase, CsF3′H, from Crocus Sativus L: Insights into Substrate Specificity and Role in Abiotic Stress. Arch. Biochem. Biophys. 2019, 667, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, M.J.; Lee, J.Y.; Kim, J.K.; Ha, S.-H.; Lim, S.-H. Molecular and Biochemical Analysis of Two Rice Flavonoid 3′-Hydroxylase to Evaluate Their Roles in Flavonoid Biosynthesis in Rice Grain. Int. J. Mol. Sci. 2016, 17, 1549. [Google Scholar] [CrossRef]
- Rüfer, C.E.; Glatt, H.; Kulling, S.E. Structural elucidation of hydroxylated metabolites of the isoflavan equol by gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry. Drug Metab. Dispos. 2006, 34, 51–60. [Google Scholar] [CrossRef]
- Song, H.; Lee, P.-G.; Kim, J.; Kim, J.; Lee, S.-H.; Kim, H.; Lee, U.-J.; Kim, J.Y.; Kim, E.-J.; Kim, B.-G. Regioselective One-Pot Synthesis of Hydroxy-(S)-Equols Using Isoflavonoid Reductases and Monooxygenases and Evaluation of the Hydroxyequol Derivatives as Selective Estrogen Receptor Modulators and Antioxidants. Front. Bioeng. Biotechnol. 2022, 10, 830712. [Google Scholar] [CrossRef]
- Hashimoto, T.; Nozawa, D.; Mukai, K.; Matsuyama, A.; Kuramochi, K.; Furuya, T. Monooxygenase-Catalyzed Regioselective Hydroxylation for the Synthesis of Hydroxyequols. RSC Adv. 2019, 9, 21826–21830. [Google Scholar] [CrossRef]
- Yao, J.; He, Y.; Su, N.; Bharath, S.R.; Tao, Y.; Jin, J.-M.; Chen, W.; Song, H.; Tang, S.-Y. Developing a Highly Efficient Hydroxytyrosol Whole-Cell Catalyst by de-Bottlenecking Rate-Limiting Steps. Nat. Commun. 2020, 11, 1515. [Google Scholar] [CrossRef]
- Sawasdee, K.; Sucharitakul, J.; Dhammaraj, T.; Niamsiri, N.; Chaiyen, P.; Prapainop, K. Encapsulation of the Reductase Component of p-Hydroxyphenylacetate Hydroxylase in Poly(Lactide-Co-Glycolide) Nanoparticles by Three Different Emulsification Techniques. IET Nanobiotechnol. 2018, 12, 423–428. [Google Scholar] [CrossRef]
- Liao, J.; Han, S.; Li, X.; He, J.; Secundo, F.; Liang, H. Co-Immobilization of Two-Component Hydroxylase Monooxygenase by Functionalized Magnetic Nanoparticles for Preserving High Catalytic Activity and Enhancing Enzyme Stabilty. Int. J. Biol. Macromol. 2020, 164, 3163–3170. [Google Scholar] [CrossRef]
- Johnston, T.G.; Yuan, S.-F.; Wagner, J.M.; Yi, X.; Saha, A.; Smith, P.; Nelson, A.; Alper, H.S. Compartmentalized Microbes and Co-Cultures in Hydrogels for on-Demand Bioproduction and Preservation. Nat. Commun. 2020, 11, 563. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Hu, H.; Ng, K.R.; Yang, R.; Lyu, X. De Novo Production of Hydroxytyrosol by Metabolic Engineering of Saccharomyces Cerevisiae. J. Agric. Food Chem. 2022, 70, 7490–7499. [Google Scholar] [CrossRef] [PubMed]
- Muñiz-Calvo, S.; Bisquert, R.; Puig, S.; Guillamón, J.M. Overproduction of Hydroxytyrosol in Saccharomyces cerevisiae by Heterologous Overexpression of the Escherichia coli 4-Hydroxyphenylacetate 3-Monooxygenase. Food Chem. 2020, 308, 125646. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Tang, J.; Wang, J.; Wang, C.; Chen, W. A Novel Microbial Consortia Catalysis Strategy for the Production of Hydroxytyrosol from Tyrosine. Int. J. Mol. Sci. 2023, 24, 6944. [Google Scholar] [CrossRef]
Organism | Uniprot ID (Oxygenase Component) | Reductase Component | Oxygenase Component | References |
---|---|---|---|---|
Acinetobacter baumannii | Q6Q272 | C1 | C2 | [7] |
(35.5 kDa) | (47 kDa) | |||
Thermus thermophilus | Q5SJP8 | HpaC | HpaB | [32,33] |
(16.1 kDa) | (54.3 kDa) | |||
Escherichia coli | Q57160 | HpaC | HpaB | [14,34,35] |
(17 kDa) | (59 kDa) | |||
FAD | FAD | |||
Pseudomonas aeruginosa | Q9HWT7 | HpaC | HpaB | [36] |
(19.4 kDa) | (58 kDa) | |||
Geobacillus sp. | Q4L1M7 | HpaH | [37] | |
(56.3 kDa) | ||||
Bacillus subtilis | C0SPC0 | yoaI | [38] | |
Geobacillus thermodenitrificans | A4IT51 | GTNG_3160 | [39] | |
Sulfolobus tokodaii | HpaC | HpaB | ||
(18 kDa) | - | [40] | ||
Pseudomonas putida | MhaB | MhaA | [41] | |
(6 kDa) | (63 kDa) | |||
Klebsiella Pneumoniae | Q48440 | HpaH | HpaA | [16,17] |
(19 kDa) | (59 kDa) |
Gene | Domains of the Oxygenase Component | Key Conserved Residues | UniProt ID | PDB ID | Reference | ||
---|---|---|---|---|---|---|---|
N-Terminal α-Helix Domain | Intermediate Domain | C-Terminal Domain | |||||
AbHpaB | 24–143 | 144–237 | 238–422 | —— | Q6Q272 | 2jbr, 2jbs, 2jbt | [44] |
TtHpaB | 2–138 | 139–266 | 267–481 | R100-Y104-H142 | Q5SJP8 | 2yyg, 2yyi, 2yyj | [32] |
EcHpaB | 12–148 | 155–281 | 296–489 | R113-Y117-H155 | Q57160 | 6qyh, 6qyi | [34,35] |
Gene | Length (aa) | UniProt ID | PDB ID | Reference |
---|---|---|---|---|
AbHpaC | 315 | Q6Q271 | 5ZYR (unpublished); 5ZC2 | [52] |
TtHpaC | 149 | Q5SJP7 | 2ECR; 2ECU; 2ED4 | [33] |
StHpaC | 156 | Q974C9 | 2D36; 2D37; 2D38 | [40] |
Gene | Substrates | T (°C) | pH | Km (μM) | Kcat (min−1) | Kcat/Km (s−1mM−1) | Reference |
---|---|---|---|---|---|---|---|
EcHpaB | 4-HPA | RT | 7.5 | 9.4 ± 1.6 | 264 ±12 | 470.000 | [35] |
4-HPA | 30 | 7.0 | 31 ± 4 | 283.2 ± 5.8 | 152.250 | [59] | |
4-HPA | 30 | 7.0 | 18.4 ± 1.1 | 64.8 ± 1.0 | 58.6957 | [60] | |
DHPA | RT | 7.5 | 46.1 ± 5.3 | 126 ± 5.4 | 46.000 | [35] | |
Hydroxymandelic acid | RT | 7.5 | 24.7 ± 6.5 | 162 ± 12 | 110.000 | [35] | |
Tyrosol | RT | 7.5 | 33.9 ± 7.0 | 90 ± 6 | 44.000 | [35] | |
p-Coumaric acid | RT | 7.5 | 53.9 ± 16.6 | 36 ± 4.2 | 11.000 | [35] | |
p-Coumaric acid | 30 | 7.0 | 137.6 ± 21.0 | 23.2 ± 0.7 | 2.800 | [34] | |
p-Coumaric acid | 30 | 7.0 | 648.26 ± 111.82 | 8.95 a | 0.2308 a | [62] | |
phenol | RT | 7.5 | 252.9 ± 54.6 | 18 ± 0.6 | 1.100 | [35] | |
Methyl hydroxybenzoate | RT | 7.5 | 514.8 ± 103.0 | 12 ± 0.6 | 0.390 | [35] | |
Umbelliferone | 30 | 7.0 | 217.0 ± 60.6 | 25.1 ± 2.4 | 1.900 | [34] | |
Umbelliferone | 30 | 7.0 | 262.2 ± 40.3 | 4.0 ± 0.2 | 0.2543 | ||
Naringenin | 30 | 7.0 | 349.8 ± 77.6 | 9.0 ± 0.3 | 0.400 | [34] | |
Naringenin | 30 | 7.0 | 281 ± 68 | 0.25 ± 0.03 | 0.015 | [59] | |
Resveratrol | 30 | 7.0 | 174.3 ± 17.9 | 26.2 ± 0.6 | 2.500 | [34] | |
Resveratrol | 30 | 7.0 | 145.1 ± 19.2 | 5.6 ± 0.2 | 0.6432 | [60] | |
Resveratrol | 30 | 7.4 | 670 ± 120 | 0.81 ± 0.057 | 0.020 | [63] | |
RoHpaB | 4-HPA | 30 | 7.0 | 170 ± 32 | 6.4 ± 0.4 | 0.627 | [59] |
Naringenin | 30 | 7.0 | 116 ± 4 | 1.68 ± 0.04 | 0.241 | [59] | |
PpHpaB | 4-HPA | 30 | 7.0 | 30 ± 5 | 287.3 ± 4.7 | 159.617 | [59] |
Naringenin | 30 | 7.0 | 79 ± 11 | 0.25 ± 0.01 | 0.053 | [59] | |
PaHpaB | Phloretin | 30 | 7.4 | 0.213 | 0.781 | 0.061 | [64] |
KpHpaB | 4-HPA | 30 | 7.0 | 26 ± 0.2 | 494.0 ± 0.5 | 316.667 | [59] |
p-Coumaric acid | 30 | 7.0 | 725.19 ± 6.82 | 2.22 ± 0.001 a | 0.05107± 0.00164 | [62] | |
Naringenin | 30 | 7.0 | 364 ± 20 | 0.22 ± 0.01 | 0.010 | [59] |
Enzyme | Origin | Substrate | Product | Yield a | Yield b (4HPA3H) |
---|---|---|---|---|---|
p-Coumarate 3-hydroxylase (C3H) | Arabidopsis | p-Coumaric acid | Caffeic acid | 7.2 mg/L [65] | 18.74 g/L [66] |
CYP199A2_F185L | Rhodopseudomonas palustris | p-Coumaric acid | Caffeic acid | 2.8 g/L [67] | |
Tyrosinase | mushroom | Tyrosol | Hydroxytyrosol | N/A c [68] | 6.6 mM [36] |
CYP84A1(F5H) | Arabidopsis | Ferulic acid | 5-hydroxyferulic acid | N/A [69] | 5.3 mM [36] |
Tyrosinase | Saccharothrix espanaensis MA4680 | Resveratrol | Piceatannol | N/A [70] | 23 mM (5.2 g·L−1) [71] |
Flavonoid 3′-hydroxylase (F3′H) | Silybum marianum | Naringenin | Eriodictyol | 3.3 g/L [72] | 14.10 mg/L [73] |
CYP102A1 mutant M13 | Bacillus megaterium | Naringenin | Eriodictyol | 13.5 mg/L [74] | 14.10 mg/L [73] |
Umbelliferone | Esculetin | 337.10 μM (67.62%) [75] | N/A [61] | ||
CYP102A1 mutant M10 | Bacillus megaterium | phloretin | 3-hydroxyphloretin | 3.1 mM [76] | 2.03 g/L [64] |
Tyrosinase | Mushroom | Equol | 3′-hydroxyequol | N/A [77] | 1.06 g/L [78] |
Gene | Substrates | T (°C) | pH | Km (μM) | Kcat (min−1) | Kcat/Km (s−1mM−1) | Reference |
---|---|---|---|---|---|---|---|
EcHpaB I157L | Resveratrol | 30 | 7.4 | 330 ± 56 | 0.77 ± 0.036 | 0.039 | [63] |
EcHpaB A211D | Resveratrol | 30 | 7.4 | 600 ± 30 | 1.89 ± 0.040 | 0.053 | |
EcHpaB I157L/A211D | Resveratrol | 30 | 7.4 | 1360 ± 300 | 7.79 ± 0.35 | 0.095 | |
XS2 | p-Coumaric acid | 30 | 7.0 | 387.9 ± 32.7 | 11.0 ± 0.4 | 0.470 | [34] |
Umbelliferone | 30 | 7.0 | 490.8 ± 17.3 | 16.9 ± 2.6 | 0.600 | ||
Resveratrol | 30 | 7.0 | 404.6 ± 93.8 | 24.3 ± 2.4 | 1.000 | ||
Naringenin | 30 | 7.0 | 1061.7 ± 21.1 | 6.5 ± 0.3 | 0.100 | ||
XS3 | p-Coumaric acid | 30 | 7.0 | 235.6 ± 40.2 | 29.8 ± 1.3 | 2.100 | |
Umbelliferone | 30 | 7.0 | 266.2 ± 41.1 | 14.8 ± 0.6 | 0.900 | ||
Resveratrol | 30 | 7.0 | 235.8 ± 52.8 | 33.9 ± 2.8 | 2.400 | ||
Naringenin | 30 | 7.0 | 417.2 ± 10.2 | 9.0 ± 0.4 | 0.400 | ||
XS4 | p-Coumaric acid | 30 | 7.0 | 210.8 ± 85.3 | 30.7 ± 3.7 | 2.400 | |
Umbelliferone | 30 | 7.0 | 204.5 ± 16.3 | 22.3 ± 0.5 | 1.800 | ||
Resveratrol | 30 | 7.0 | 441.8 ± 22.1 | 50.8 ± 8.8 | 1.900 | ||
Naringenin | 30 | 7.0 | 627.5 ± 75.0 | 6.1 ± 0.1 | 0.200 | ||
XS5 | p-Coumaric acid | 30 | 7.0 | 235.3 ± 52.5 | 22.5 ± 1.3 | 1.560 | |
Umbelliferone | 30 | 7.0 | 346.4 ± 11.2 | 13.0 ± 1.6 | 0.600 | ||
Resveratrol | 30 | 7.0 | 319.8 ± 9.9 | 20.0 ± 2.4 | 1.000 | ||
Naringenin | 30 | 7.0 | 661.0 ± 93 | 7.8 ± 0.2 | 0.200 | ||
XS6 | p-Coumaric acid | 30 | 7.0 | 132.1 ± 29.1 | 21.9 ± 1.0 | 2.800 | |
Umbelliferone | 30 | 7.0 | 176.9 ± 35.9 | 20.9 ± 1.4 | 2.000 | ||
Resveratrol | 30 | 7.0 | 144.0 ± 22.9 | 25.0 ± 1.2 | 2.900 | ||
Naringenin | 30 | 7.0 | 191.6 ± 33.6 | 9.0 ± 0.2 | 0.800 | ||
PaHpaB F292A | Phloretin | 30 | 7.4 | 0.150 | 0.922 | 0.102 | [64] |
PaHpaB Q212G | Phloretin | 30 | 7.4 | 0.205 | 2.027 | 0.165 | |
PaHpaB Q212G/Q376N | Phloretin | 30 | 7.4 | 0.523 | 2.520 | 0.080 | |
PaHpaB Q212G/F292A | Phloretin | 30 | 7.4 | 0.124 | 1.368 | 0.184 | |
PaHpaB Q212G/F292A/Q376N | Phloretin | 30 | 7.4 | 0.261 | 2.677 | 0.171 | |
RoHpaB Y215A | 4-HPA | 30 | 7.0 | 13 ± 5 | 22.03 ± 2.85 | 27.380 | [59] |
Naringenin | 30 | 7.0 | 3 ± 1 | 1.29 ± 0.03 | 6.361 | ||
Apigenin | 30 | 7.0 | 27 ± 1 | 0.025 ± 0.0002 | 0.016 | ||
Kaempferol | 30 | 7.0 | 519 ± 105 | 0.33 ± 0.04 | 0.011 |
Gene | Strategies | Engineered Enzymes | Advantages | Reference |
---|---|---|---|---|
Oxygenase component | ||||
EcHpaB | Rational design | XS6 | 56.1% increased conversion (1.89 mg/L/OD) | [34] |
EcHpaB | Rational design | Y301, S462 and M293 | Expanded substrate range (e.g., ferulic acid) | [61] |
EcHpaB | Semi-rational design | H7 (S210T, A211M, Q212G) | Dual functionality (tyrosine and tyramine hydroxylase); 17-fold higher activity on tyrosol; 271-fold higher on tyramine | [50] |
EcHpaB | Directed evolution | 23F9-M4 (T15P, S210F, A211K, Q212F, D284E) | 15-fold increase in L-DOPA yield | [109] |
EcHpaB | Semi-rational design | I157L, A211D, and I157L/A211D | 1.94-, 2.6-, and 4.7-fold increase in catalytic efficiency (Kcat/Km-resveratrol); 1.84-, 2.07-, and 2.46-times increase in catalytic activity for resveratrol | [63] |
PaHpaB | Rational design | Q212G/F292A/Q376N | 3-hydroxyphloretin yield increased to 2.03 g/L | [64] |
AbHpaB | Rational engineering | Y398S | Stability improved (30 °C: 24 h, 35 °C: 15 h); 3,4,5-THCA yield increased from 26% to 50% | [48] |
AbHpaB | Rational design | S146A | Improved catalytic efficiency | [97] |
AbHpaB | Rational design | R263D | Double substrate specificity: 57% tyramine and 86% 4-HPA | [98] |
R263D/Y398D | Expanded substrate range (e.g., octopamine) | |||
Reductase component | ||||
AbHpaC | Rational design | A58P and A166L | Improvements in thermostability (Tm increased by 3–5 °C) and catalytic efficiency | [58] |
4HPA3H | ||||
EcHpaC(Fre) and KpHpaB | Fusion strategy | Fre-FL-KpHpaBC and Fre-RL-KpHpaBC | 7- and 9.1-fold increase in caffeic acid yield | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Xu, S.; Tian, Y.; Chen, P.; Wu, D.; Zheng, P. 4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile O-Hydroxylation Applications in the Biosynthesis of Phenolic Derivatives. Int. J. Mol. Sci. 2024, 25, 1222. https://doi.org/10.3390/ijms25021222
Sun P, Xu S, Tian Y, Chen P, Wu D, Zheng P. 4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile O-Hydroxylation Applications in the Biosynthesis of Phenolic Derivatives. International Journal of Molecular Sciences. 2024; 25(2):1222. https://doi.org/10.3390/ijms25021222
Chicago/Turabian StyleSun, Ping, Shuping Xu, Yuan Tian, Pengcheng Chen, Dan Wu, and Pu Zheng. 2024. "4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile O-Hydroxylation Applications in the Biosynthesis of Phenolic Derivatives" International Journal of Molecular Sciences 25, no. 2: 1222. https://doi.org/10.3390/ijms25021222
APA StyleSun, P., Xu, S., Tian, Y., Chen, P., Wu, D., & Zheng, P. (2024). 4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile O-Hydroxylation Applications in the Biosynthesis of Phenolic Derivatives. International Journal of Molecular Sciences, 25(2), 1222. https://doi.org/10.3390/ijms25021222