Transcriptomic and Phenotypic Analyses Reveal the Molecular Mechanism of Dwarfing in Tetraploid Robinia pseudoacacia L.
Abstract
:1. Introduction
2. Results
2.1. Ploidy Identification
2.2. Morphological and Physiological Characteristics of Plants
2.3. Properties Related to Photosynthesis
2.4. Endogenous Hormone Content Determination
2.5. RNA Sequencing and qRT-PCR
2.6. Enrichment Analysis of Differentially Expressed Genes
2.7. Weighted Gene Coexpression Network Analysis (WGCNA)
2.8. Circadian Rhythm Is Associated with Ploidy
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Confirmation of Polyploidy
4.3. Plant Phenotype Determination
4.4. Chlorophyll Content Determination
4.5. Histological Observations
4.6. Plant Endogenous Hormone Content Determination
4.7. Transcriptome Sequencing, Function Annotation, and Differentially Expressed Genes
4.8. Identification of Differentially Expressed Genes by qRT-PCR
4.9. Weighted Gene Coexpression Network Analysis (WGCNA)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Song, Q.; Chen, Z.J. Epigenetic and Developmental Regulation in Plant Polyploids. Curr. Opin. Plant Biol. 2015, 24, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The Polyploidy and Its Key Role in Plant Breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Wei, H. Breeding Polyploid Populus: Progress and Perspective. J. For. Res. 2022, 2, 4. [Google Scholar] [CrossRef]
- Yuan, Y.; Scheben, A.; Edwards, D.; Chan, T.-F. Toward Haplotype Studies in Polyploid Plants to Assist Breeding. Mol Plant 2021, 14, 1969–1972. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Zhang, B.; Tian, J.-R.; Chen, M.-M.; Zhang, Y.-Y.; Zhang, Z.-H.; Ma, Y. Comparison of the Morphology, Growth and Development of Diploid and Autotetraploid ‘Hanfu’ Apple Trees. Sci. Hortic. 2017, 225, 277–285. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, M.; Liu, L.; Meng, F. Physiological and Proteomic Responses of Diploid and Tetraploid Black Locust (Robinia Pseudoacacia L.) Subjected to Salt Stress. Int. J. Mol. Sci. 2013, 14, 20299–20325. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yang, N.; Li, L.; Qin, G.; Ren, K.; Wang, H.; Deng, J.; Ding, D. Tetraploidy in Citrus Wilsonii Enhances Drought Tolerance via Synergistic Regulation of Photosynthesis, Phosphorylation, and Hormonal Changes. Front. Plant Sci. 2022, 13, 875011. [Google Scholar] [CrossRef]
- Comai, L. The Advantages and Disadvantages of Being Polyploid. Nat. Rev. Genet. 2005, 6, 836–846. [Google Scholar] [CrossRef]
- Ma, Y.; Xue, H.; Zhang, L.; Zhang, F.; Ou, C.; Wang, F.; Zhang, Z. Involvement of Auxin and Brassinosteroid in Dwarfism of Autotetraploid Apple (Malus × Domestica). Sci. Rep. 2016, 6, 26719. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, C.; Ko, D.K.; Chen, Z.J. Genome-Wide Dosage-Dependent and -Independent Regulation Contributes to Gene Expression and Evolutionary Novelty in Plant Polyploids. Mol. Biol. Evol. 2015, 32, 2351–2366. [Google Scholar] [CrossRef]
- Ni, Z.; Kim, E.-D.; Ha, M.; Lackey, E.; Liu, J.; Zhang, Y.; Sun, Q.; Chen, Z.J. Altered Circadian Rhythms Regulate Growth Vigour in Hybrids and Allopolyploids. Nature 2009, 457, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Zhang, C.; Chen, Z.J. Ploidy and Hybridity Effects on Growth Vigor and Gene Expression in Arabidopsis Thaliana Hybrids and Their Parents. G3-Genes Genomes Genet. 2012, 2, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Yang, J.; Liao, T.; Zhu, X.; Suo, Y.; Zhang, P.; Wang, J.; Kang, X. Transcriptomic Changes Following Synthesis of a Populus Full-Sib Diploid and Allotriploid Population with Different Heterozygosities Driven by Three Types of 2n Female Gamete. Plant Mol. Biol. 2015, 89, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hai, Z.; Wang, R.; Yu, Y.; Chen, X.; Liang, W.; Wang, H. Genome-Wide Analysis of HSP20 Gene Family and Expression Patterns under Heat Stress in Cucumber (Cucumis Sativus L.). Front. Plant Sci. 2022, 13, 968418. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yu, W.; Xiao, Y.; Zhang, Y.; Peng, F. Overexpression of PpSnRK1α in Tomato Increased Autophagy Activity under Low Nutrient Stress. Int. J. Mol. Sci. 2022, 23, 5464. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Qi, S.; Dong, M.; Wang, Z.; Li, Y.; Chen, S.; Li, B.; Zhang, J. Ploidy and Hybridity Effects on Leaf Size, Cell Size and Related Genes Expression in Triploids, Diploids and Their Parents in Populus. Planta 2019, 249, 635–646. [Google Scholar] [CrossRef]
- Bian, W.; Liu, X.; Zhang, Z.; Zhang, H. Transcriptome Analysis of Diploid and Triploid Populus Tomentosa. PeerJ 2020, 8, e10204. [Google Scholar] [CrossRef]
- Wu, W.; Liao, T.; Du, K.; Wei, H.; Kang, X. Transcriptome Comparison of Different Ploidy Reveals the Mechanism of Photosynthetic Efficiency Superiority of Triploid Poplar. Genomics 2021, 113, 2211–2220. [Google Scholar] [CrossRef]
- Liao, T.; Cheng, S.; Zhu, X.; Min, Y.; Kang, X. Effects of Triploid Status on Growth, Photosynthesis, and Leaf Area in Populus. Trees 2016, 30, 1137–1147. [Google Scholar] [CrossRef]
- Dai, F.; Wang, Z.; Luo, G.; Tang, C. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus Alba L.). Int. J. Mol. Sci. 2015, 16, 22938–22956. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Zhang, T.; Zhan, D.; Pang, Z.; Zhao, J.; Zhang, J. Comparative Transcriptomic, Anatomical and Phytohormone Analyses Provide New Insights Into Hormone-Mediated Tetraploid Dwarfing in Hybrid Sweetgum (Liquidambar Styraciflua × L. Formosana). Front. Plant Sci. 2022, 13, 924044. [Google Scholar] [CrossRef] [PubMed]
- Dudits, D.; Török, K.; Cseri, A.; Paul, K.; Nagy, A.V.; Nagy, B.; Sass, L.; Ferenc, G.; Vankova, R.; Dobrev, P.; et al. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix Viminalis. Plant Physiol. 2016, 170, 1504–1523. [Google Scholar] [CrossRef] [PubMed]
- Sun, T. The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Curr. Biol. 2011, 21, R338–R345. [Google Scholar] [CrossRef] [PubMed]
- Sakhanokho, H.F.; Rajasekaran, K.; Tabanca, N.; Sampson, B.J.; Nyochembeng, L.M.; Pounders, C.T.; Wedge, D.E.; Islam-Faridi, N.; Spiers, J.M. Induced Polyploidy and Mutagenesis of Embryogenic Cultures of Ornamental Ginger (Hedychium, J. Koenig). Acta Hortic. 2012, 935, 121–128. [Google Scholar] [CrossRef]
- Hejnák, V.; Hniličková, H.; Hnilička, F.; Andr, J. Gas Exchange and Triticum Sp. with Different Ploidy in Relation to Irradiance. Plant Soil Environ. 2016, 62, 47–52. [Google Scholar] [CrossRef]
- Marfil, C.F.; Duarte, P.F.; Masuelli, R.W. Phenotypic and Epigenetic Variation Induced in Newly Synthesized Allopolyploids and Autopolyploids of Potato. Sci. Hortic. 2018, 234, 101–109. [Google Scholar] [CrossRef]
- Allario, T.; Brumos, J.; Colmenero-Flores, J.M.; Tadeo, F.; Froelicher, Y.; Talon, M.; Navarro, L.; Ollitrault, P.; Morillon, R. Large Changes in Anatomy and Physiology between Diploid Rangpur Lime (Citrus Limonia) and Its Autotetraploid Are Not Associated with Large Changes in Leaf Gene Expression. J. Exp. Bot. 2011, 62, 2507–2519. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, Y.; Zhang, J.; Li, Y. Variation of Phenotypic and Physiological Traits of Robinia Pseudoacacia L. from 20 Provenances. PLoS ONE 2022, 17, e0262278. [Google Scholar] [CrossRef]
- Frantík, T.; Trylč, L. Recovery of Grassland after Clear-Cutting of Invasive Robinia Pseudoacacia—Long-Term Study in Prague (Czech Republic). J. Nat. Conserv. 2023, 73, 126420. [Google Scholar] [CrossRef]
- Nicolescu, V.-N.; Rédei, K.; Mason, W.L.; Vor, T.; Pöetzelsberger, E.; Bastien, J.-C.; Brus, R.; Benčať, T.; Đodan, M.; Cvjetkovic, B.; et al. Ecology, Growth and Management of Black Locust (Robinia Pseudoacacia L.), a Non-Native Species Integrated into European Forests. J. For. Res. 2020, 31, 1081–1101. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Cao, S.; Guo, Q.; Sun, Y.; Niu, D.; Long, C.; Fan, Y.; Li, Y. The RpTOE1-RpFT Module Is Involved in Rejuvenation during Root-Based Vegetative Propagation in Robinia Pseudoacacia. Int. J. Mol. Sci. 2022, 23, 5079. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Munir, M.Z.; Gull, S.; Khan, A.H.; Khan, A.; Khan, D.; Khan, M.A.; Wu, Y.; Sun, Y.; Li, Y. Transcriptome Profiling Reveals Role of MicroRNAs and Their Targeted Genes during Adventitious Root Formation in Dark-Pretreated Micro-Shoot Cuttings of Tetraploid Robinia Pseudoacacia L. Genes 2022, 13, 441. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.Z.; Ud Din, S.; Imran, M.; Zhang, Z.; Pervaiz, T.; Han, C.; Un Nisa, Z.; Bakhsh, A.; Atif Muneer, M.; Sun, Y.; et al. Transcriptomic and Anatomic Profiling Reveal Etiolation Promotes Adventitious Rooting by Exogenous Application of 1-Naphthalene Acetic Acid in Robinia Pseudoacacia L. Forests 2021, 12, 789. [Google Scholar] [CrossRef]
- Parisod, C.; Holderegger, R.; Brochmann, C. Evolutionary Consequences of Autopolyploidy. New Phytol. 2010, 186, 5–17. [Google Scholar] [CrossRef]
- Venkat, A.; Muneer, S. Role of Circadian Rhythms in Major Plant Metabolic and Signaling Pathways. Front. Plant Sci. 2022, 13, 836244. [Google Scholar] [CrossRef]
- Matsuda, R.; Iehisa, J.C.M.; Sakaguchi, K.; Ohno, R.; Yoshida, K.; Takumi, S. Global Gene Expression Profiling Related to Temperature-Sensitive Growth Abnormalities in Interspecific Crosses between Tetraploid Wheat and Aegilops Tauschii. PLoS ONE 2017, 12, e0176497. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, Y.; Huang, Z.; Yao, P.; Li, Y.; Kang, X. Impact of the Leaf Cut Callus Development Stages of Populus on the Tetraploid Production Rate by Colchicine Treatment. J. Plant Growth Regul. 2018, 37, 635–644. [Google Scholar] [CrossRef]
- Oustric, J.; Quilichini, Y.; Morillon, R.; Herbette, S.; Luro, F.; Giannettini, J.; Berti, L.; Santini, J. Tetraploid Citrus Seedlings Subjected to Long-Term Nutrient Deficiency Are Less Affected at the Ultrastructural, Physiological and Biochemical Levels than Diploid Ones. Plant Physiol. Biochem. 2019, 135, 372–384. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, S.; Xu, T.; Kang, X. Morphological, Transcriptome, and Hormone Analysis of Dwarfism in Tetraploids of Populus Alba × P. Glandulosa. Int. J. Mol. Sci. 2022, 23, 9762. [Google Scholar] [CrossRef]
- Fei, L.; Chu, J.; Zhang, X.; Dong, S.; Dai, X.; He, M. Physiological and Proteomic Analyses Indicate Delayed Sowing Improves Photosynthetic Capacity in Wheat Flag Leaves Under Heat Stress. Front. Plant Sci. 2022, 13, 848464. [Google Scholar] [CrossRef]
- Monden, Y.; Tanaka, H.; Funakoshi, R.; Sunayama, S.; Yabe, K.; Kimoto, E.; Matsumiya, K.; Yoshikawa, T. Comprehensive Survey of Transposon mPing Insertion Sites and Transcriptome Analysis for Identifying Candidate Genes Controlling High Protein Content of Rice. Front. Plant Sci. 2022, 13, 969582. [Google Scholar] [CrossRef] [PubMed]
- Coate, J.E.; Luciano, A.K.; Seralathan, V.; Minchew, K.J.; Owens, T.G.; Doyle, J.J. Anatomical, Biochemical, and Photosynthetic Responses to Recent Allopolyploidy in Glycine Dolichocarpa (Fabaceae). Am. J. Bot. 2012, 99, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Doheny-Adams, T.; Hunt, L.; Franks, P.J.; Beerling, D.J.; Gray, J.E. Genetic Manipulation of Stomatal Density Influences Stomatal Size, Plant Growth and Tolerance to Restricted Water Supply across a Growth Carbon Dioxide Gradient. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, J.; Liu, L.; Wang, Z.; Li, Y.; Guo, L.; Li, Y.; Zhang, X.; Ren, S.; Zhao, B.; et al. SlTLFP8 Reduces Water Loss to Improve Water-use Efficiency by Modulating Cell Size and Stomatal Density via Endoreduplication. Plant Cell Environ. 2020, 43, 2666–2679. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, Z.; Wang, L.; Deng, W.; Wei, H.; Liu, P.; Liu, M. Morphological, Cytological and Nutritional Changes of Autotetraploid Compared to Its Diploid Counterpart in Chinese Jujube (Ziziphus Jujuba Mill.). Sci. Hortic. 2019, 249, 263–270. [Google Scholar] [CrossRef]
- Castro, H.; Dias, M.C.; Castro, M.; Loureiro, J.; Castro, S. Impact of Genome Duplications in Drought Tolerance and Distribution of the Diploid-Tetraploid Jasione Maritima. Front. Plant Sci. 2023, 14, 1144678. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, Z.; Du, K.; Kang, X. Oryzalin-Induced Chromosome Doubling in Triploid Populus and Its Effect on Plant Morphology and Anatomy. Plant Cell Tissue Organ Cult. 2019, 138, 571–581. [Google Scholar] [CrossRef]
- Saja, D.; Janeczko, A.; Barna, B.; Skoczowski, A.; Dziurka, M.; Kornaś, A.; Gullner, G. Powdery Mildew-Induced Hormonal and Photosynthetic Changes in Barley Near Isogenic Lines Carrying Various Resistant Genes. Int. J. Mol. Sci. 2020, 21, 4536. [Google Scholar] [CrossRef]
- Chao, H.-W.; Doi, M.; Fustin, J.-M.; Chen, H.; Murase, K.; Maeda, Y.; Hayashi, H.; Tanaka, R.; Sugawa, M.; Mizukuchi, N.; et al. Circadian Clock Regulates Hepatic Polyploidy by Modulating Mkp1-Erk1/2 Signaling Pathway. Nat. Commun. 2017, 8, 2238. [Google Scholar] [CrossRef]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black Locust (Robinia Pseudoacacia) Beloved and Despised: A Story of an Invasive Tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Shao, J.; Chen, C.; Deng, X. In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell Tissue Organ Cult. 2003, 75, 241–246. [Google Scholar] [CrossRef]
- Doležel, J.; Greilhuber, J.; Suda, J. Estimation of Nuclear DNA Content in Plants Using Flow Cytometry. Nat. Protoc. 2007, 2, 2233–2244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Qi, S.; Wang, X.; Zhao, J.; Zhang, J.; Li, B.; Zhang, Y.; Liu, X.; Yuan, W. In Vitro Tetraploid Induction from Leaf and Petiole Explants of Hybrid Sweetgum (Liquidambar Styraciflua × Liquidambar Formosana). Forests 2017, 8, 264. [Google Scholar] [CrossRef]
- Niu, Z.; Li, G.; Hu, H.; Lv, J.; Zheng, Q.; Liu, J.; Wan, D. A Gene That Underwent Adaptive Evolution, LAC2 (LACCASE), in Populus Euphratica Improves Drought Tolerance by Improving Water Transport Capacity. Hortic. Res. 2021, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Kulus, D. Shoot Tip Cryopreservation of Lamprocapnos Spectabilis (L.) Fukuhara Using Different Approaches and Evaluation of Stability on the Molecular, Biochemical, and Plant Architecture Levels. Int. J. Mol. Sci. 2020, 21, 3901. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, R.; Yoshida, Y.; Tsukaya, H. Multiple Steps of Leaf Thickening during Sun-Leaf Formation in Arabidopsis. Plant J. 2019, 100, 738–753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Du, Q.; Sun, P.; Lou, J.; Li, X.; Li, Q.; Wei, M. Physiological and Transcriptomic Analyses Revealed the Implications of Abscisic Acid in Mediating the Rate-Limiting Step for Photosynthetic Carbon Dioxide Utilisation in Response to Vapour Pressure Deficit in Solanum Lycopersicum (Tomato). Front. Plant Sci. 2021, 12, 745110. [Google Scholar] [CrossRef]
- Yan, N.; Yang, T.; Yu, X.-T.; Shang, L.-G.; Guo, D.-P.; Zhang, Y.; Meng, L.; Qi, Q.-Q.; Li, Y.-L.; Du, Y.-M.; et al. Chromosome-Level Genome Assembly of Zizania Latifolia Provides Insights into Its Seed Shattering and Phytocassane Biosynthesis. Commun. Biol. 2022, 5, 36. [Google Scholar] [CrossRef]
- Vennapusa, A.R.; Somayanda, I.M.; Doherty, C.J.; Jagadish, S.V.K. A Universal Method for High-Quality RNA Extraction from Plant Tissues Rich in Starch, Proteins and Fiber. Sci. Rep. 2020, 10, 16887. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, M.; Liu, W.; Li, J.; Liao, Y.; Liu, D.; Jin, M.; Fu, C.; Wang, F. Bulk Segregant Analysis Coupled with Transcriptomics and Metabolomics Revealed Key Regulators of Bacterial Leaf Blight Resistance in Rice. BMC Plant Biol. 2023, 23, 332. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Wang, L.; Ma, Z.; Du, X. Physiological Responses and Transcriptome Analysis of Spirodela Polyrhiza under Red, Blue, and White Light. Planta 2022, 255, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Lou, Y.; Sun, H.; Li, L.; Wang, L.; Dong, L.; Gao, Z. Transcriptome and Comparative Gene Expression Analysis of Phyllostachys Edulis in Response to High Light. BMC Plant Biol 2016, 16, 34. [Google Scholar] [CrossRef]
- Lu, C.; Pu, Y.; Liu, Y.; Li, Y.; Qu, J.; Huang, H.; Dai, S. Comparative Transcriptomics and Weighted Gene Co-Expression Correlation Network Analysis (WGCNA) Reveal Potential Regulation Mechanism of Carotenoid Accumulation in Chrysanthemum × Morifolium. Plant Physiol. Biochem. 2019, 142, 415–428. [Google Scholar] [CrossRef]
- Zhou, X.; Xiang, X.; Zhang, M.; Cao, D.; Du, C.; Zhang, L.; Hu, J. Combining GS-Assisted GWAS and Transcriptome Analysis to Mine Candidate Genes for Nitrogen Utilization Efficiency in Populus Cathayana. BMC Plant Biol 2023, 23, 182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Guo, Q.; Long, C.; El-Kassaby, Y.A.; Sun, Y.; Li, Y. Transcriptomic and Phenotypic Analyses Reveal the Molecular Mechanism of Dwarfing in Tetraploid Robinia pseudoacacia L. Int. J. Mol. Sci. 2024, 25, 1312. https://doi.org/10.3390/ijms25021312
Wu Y, Guo Q, Long C, El-Kassaby YA, Sun Y, Li Y. Transcriptomic and Phenotypic Analyses Reveal the Molecular Mechanism of Dwarfing in Tetraploid Robinia pseudoacacia L. International Journal of Molecular Sciences. 2024; 25(2):1312. https://doi.org/10.3390/ijms25021312
Chicago/Turabian StyleWu, Yue, Qi Guo, Cui Long, Yousry A. El-Kassaby, Yuhan Sun, and Yun Li. 2024. "Transcriptomic and Phenotypic Analyses Reveal the Molecular Mechanism of Dwarfing in Tetraploid Robinia pseudoacacia L." International Journal of Molecular Sciences 25, no. 2: 1312. https://doi.org/10.3390/ijms25021312
APA StyleWu, Y., Guo, Q., Long, C., El-Kassaby, Y. A., Sun, Y., & Li, Y. (2024). Transcriptomic and Phenotypic Analyses Reveal the Molecular Mechanism of Dwarfing in Tetraploid Robinia pseudoacacia L. International Journal of Molecular Sciences, 25(2), 1312. https://doi.org/10.3390/ijms25021312