Advancements in Allergen Immunotherapy for the Treatment of Atopic Dermatitis
Abstract
:1. Introduction
2. Overview of Atopic Dermatitis
2.1. Epidemiology of AD
2.1.1. Prevalence and Incidence of AD
2.1.2. Risk Factors Associated with AD
2.2. Pathogenesis of AD
2.2.1. Epidermal Barrier Dysfunction and Genetic Risk Factors
2.2.2. Skin Microbiome
2.2.3. Immunological Dysregulation and Inflammation
2.2.4. Environmental Factors
2.3. Clinical Manifestations of AD
2.3.1. Common Features and Diagnosis of AD
2.3.2. Severity of AD
3. Overview of AIT for the Treatment of Allergic Diseases
3.1. Mechanism of AIT
3.2. Methods Employed in the Administration of AIT
3.3. Attributes of AIT
3.4. Efficacy of AIT Treatment on Atopic Diseases
4. AIT for the Treatment of AD
4.1. Outcomes of Recent Clinical Studies on AIT Treatment for AD
4.1.1. The Efficacy of AIT in the Treatment of AD
4.1.2. Change in the Daily Rescue Medication Scores after AIT in Patients with AD
4.1.3. Alteration of Visual Analog Scale (VAS) Score after AIT for the Treatment of AD
4.1.4. Variation in Biomarkers after AIT for the Treatment of AD
5. Future Prospect of AIT for the Treatment of AD
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avena-Woods, C. Overview of atopic dermatitis. Am. J. Manag. Care 2017, 23, S115–S123. [Google Scholar]
- Eichenfield, L.F.; Tom, W.L.; Chamlin, S.L.; Feldman, S.R.; Hanifin, J.M.; Simpson, E.L.; Berger, T.G.; Bergman, J.N.; Cohen, D.E.; Cooper, K.D. Guidelines of care for the management of atopic dermatitis: Section 1. Diagnosis and assessment of atopic dermatitis. J. Am. Acad. Dermatol. 2014, 70, 338–351. [Google Scholar] [CrossRef]
- Yang, G.; Seok, J.K.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Lee, J.Y. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 2867. [Google Scholar] [CrossRef]
- Persaud, Y.; Memon, R.J.; Savliwala, M.N. Allergy Immunotherapy. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Campana, R.; Moritz, K.; Neubauer, A.; Huber, H.; Henning, R.; Brodie, T.M.; Kaider, A.; Sallusto, F.; Wöhrl, S.; Valenta, R. Epicutaneous allergen application preferentially boosts specific T cell responses in sensitized patients. Sci. Rep. 2017, 7, 11657. [Google Scholar] [CrossRef]
- Frew, A.J. Allergen immunotherapy. J. Allergy Clin. Immunol. 2010, 125, S306–S313. [Google Scholar] [CrossRef]
- Lee, H.H.; Patel, K.R.; Singam, V.; Rastogi, S.; Silverberg, J.I. A systematic review and meta-analysis of the prevalence and phenotype of adult-onset atopic dermatitis. J. Am. Acad. Dermatol. 2019, 80, 1526–1532.e1527. [Google Scholar] [CrossRef]
- Gilaberte, Y.; Pérez-Gilaberte, J.B.; Poblador-Plou, B.; Bliek-Bueno, K.; Gimeno-Miguel, A.; Prados-Torres, A. Prevalence and Comorbidity of Atopic Dermatitis in Children: A Large-Scale Population Study Based on Real-World Data. J. Clin. Med. 2020, 9, 1632. [Google Scholar] [CrossRef]
- Langan, S.M.; Mulick, A.R.; Rutter, C.E.; Silverwood, R.J.; Asher, I.; García-Marcos, L.; Ellwood, E.; Bissell, K.; Chiang, C.Y.; Sony, A.E. Trends in eczema prevalence in children and adolescents: A Global Asthma Network Phase I Study. Clin. Exp. Allergy 2023, 53, 337–352. [Google Scholar] [CrossRef]
- Barbarot, S.; Auziere, S.; Gadkari, A.; Girolomoni, G.; Puig, L.; Simpson, E.L.; Margolis, D.J.; de Bruin-Weller, M.; Eckert, L. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy 2018, 73, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Laughter, M.; Maymone, M.B.; Mashayekhi, S.; Arents, B.W.; Karimkhani, C.; Langan, S.; Dellavalle, R.; Flohr, C. The global burden of atopic dermatitis: Lessons from the Global Burden of Disease Study 1990–2017. Br. J. Dermatol. 2021, 184, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, K.L.; Forman, J.; Beck, L.A. Novel systemic treatments in atopic dermatitis: Are there sex differences? Int. J. Women’s Dermatol. 2021, 7, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.K.; Bergström, A.; Kull, I.; Melén, E.; Jonsson, M.; Lundin, S.; Wahlgren, C.F.; Ballardini, N. Prevalence and characteristics of atopic dermatitis among young adult females and males-report from the Swedish population-based study BAMSE. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 698–704. [Google Scholar] [CrossRef]
- Mohn, C.H.; Blix, H.S.; Halvorsen, J.A.; Nafstad, P.; Valberg, M.; Lagerløv, P. Incidence Trends of Atopic Dermatitis in Infancy and Early Childhood in a Nationwide Prescription Registry Study in Norway. JAMA Netw. Open 2018, 1, e184145. [Google Scholar] [CrossRef] [PubMed]
- Nutten, S. Atopic dermatitis: Global epidemiology and risk factors. Ann. Nutr. Metab. 2015, 66, 8–16. [Google Scholar] [CrossRef]
- Chiesa Fuxench, Z.C. Atopic Dermatitis: Disease Background and Risk Factors. Adv. Exp. Med. Biol. 2017, 1027, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Torres, T.; Ferreira, E.O.; Gonçalo, M.; Mendes-Bastos, P.; Selores, M.; Filipe, P. Update on Atopic Dermatitis. Acta Med. Port. 2019, 32, 606–613. [Google Scholar] [CrossRef]
- Papapostolou, N.; Xepapadaki, P.; Gregoriou, S.; Makris, M. Atopic Dermatitis and Food Allergy: A Complex Interplay What We Know and What We Would Like to Learn. J. Clin. Med. 2022, 11, 4232. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I. Comorbidities and the impact of atopic dermatitis. Ann. Allergy Asthma Immunol. 2019, 123, 144–151. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.E.; Leung, D.Y.M. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019, 40, 84–92. [Google Scholar] [CrossRef]
- David Boothe, W.; Tarbox, J.A.; Tarbox, M.B. Atopic Dermatitis: Pathophysiology. Adv. Exp. Med. Biol. 2017, 1027, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Kuo, I.H.; Yoshida, T.; De Benedetto, A.; Beck, L.A. The cutaneous innate immune response in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2013, 131, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Boguniewicz, M.; Leung, D.Y. Atopic dermatitis: A disease of altered skin barrier and immune dysregulation. Immunol. Rev. 2011, 242, 233–246. [Google Scholar] [CrossRef] [PubMed]
- McPherson, T. Current Understanding in Pathogenesis of Atopic Dermatitis. Indian J. Dermatol. 2016, 61, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.N.; Irvine, A.D.; Terron-Kwiatkowski, A.; Zhao, Y.; Liao, H.; Lee, S.P.; Goudie, D.R.; Sandilands, A.; Campbell, L.E.; Smith, F.J. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 2006, 38, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Løset, M.; Brown, S.J.; Saunes, M.; Hveem, K. Genetics of Atopic Dermatitis: From DNA Sequence to Clinical Relevance. Dermatology 2019, 235, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Margolis, D.J.; Mitra, N.; Wubbenhorst, B.; D’Andrea, K.; Kraya, A.A.; Hoffstad, O.; Shah, S.; Nathanson, K.L. Association of Filaggrin Loss-of-Function Variants With Race in Children With Atopic Dermatitis. JAMA Dermatol. 2019, 155, 1269–1276. [Google Scholar] [CrossRef]
- Margolis, D.J.; Mitra, N.; Gochnauer, H.; Wubbenhorst, B.; D’Andrea, K.; Kraya, A.; Hoffstad, O.; Gupta, J.; Kim, B.; Yan, A. Uncommon filaggrin variants are associated with persistent atopic dermatitis in African Americans. J. Investig. Dermatol. 2018, 138, 1501–1506. [Google Scholar] [CrossRef]
- Kezic, S.; Jakasa, I. Filaggrin and skin barrier function. Ski. Barrier Funct. 2016, 49, 1–7. [Google Scholar]
- Drislane, C.; Irvine, A.D. The role of filaggrin in atopic dermatitis and allergic disease. Ann. Allergy Asthma Immunol. 2020, 124, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Rupnik, H.; Rijavec, M.; Korošec, P. Filaggrin loss-of-function mutations are not associated with atopic dermatitis that develops in late childhood or adulthood. Br. J. Dermatol. 2015, 172, 455–461. [Google Scholar] [CrossRef]
- Martin, M.J.; Estravís, M.; García-Sánchez, A.; Dávila, I.; Isidoro-García, M.; Sanz, C. Genetics and epigenetics of atopic dermatitis: An updated systematic review. Genes 2020, 11, 442. [Google Scholar] [CrossRef]
- Pothmann, A.; Illing, T.; Wiegand, C.; Hartmann, A.A.; Elsner, P. The microbiome and atopic dermatitis: A review. Am. J. Clin. Dermatol. 2019, 20, 749–761. [Google Scholar] [CrossRef]
- Belkaid, Y.; Tamoutounour, S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 2016, 16, 353–366. [Google Scholar] [CrossRef]
- Totté, J.; Van Der Feltz, W.; Hennekam, M.; van Belkum, A.; Van Zuuren, E.; Pasmans, S. Prevalence and odds of S taphylococcus aureus carriage in atopic dermatitis: A systematic review and meta-analysis. Br. J. Dermatol. 2016, 175, 687–695. [Google Scholar] [CrossRef]
- Byrd, A.L.; Deming, C.; Cassidy, S.K.B.; Harrison, O.J.; Ng, W.I.; Conlan, S.; Belkaid, Y.; Segre, J.A.; Kong, H.H. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 2017, 9, eaal4651. [Google Scholar] [CrossRef]
- Beck, L.A.; Cork, M.J.; Amagai, M.; De Benedetto, A.; Kabashima, K.; Hamilton, J.D.; Rossi, A.B. Type 2 inflammation contributes to skin barrier dysfunction in atopic dermatitis. JID Innov. 2022, 2, 100131. [Google Scholar] [CrossRef]
- Geoghegan, J.A.; Irvine, A.D.; Foster, T.J. Staphylococcus aureus and atopic dermatitis: A complex and evolving relationship. Trends Microbiol. 2018, 26, 484–497. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.E.; Ahn, K.; Leung, D.Y. Interactions between atopic dermatitis and Staphylococcus aureus infection: Clinical implications. Allergy Asthma Immunol. Res. 2019, 11, 593–603. [Google Scholar] [CrossRef]
- Orfali, R.L.; Yoshikawa, F.S.Y.; Oliveira, L.; Pereira, N.Z.; de Lima, J.F.; Ramos YÁ, L.; Duarte, A.; Sato, M.N.; Aoki, V. Staphylococcal enterotoxins modulate the effector CD4(+) T cell response by reshaping the gene expression profile in adults with atopic dermatitis. Sci. Rep. 2019, 9, 13082. [Google Scholar] [CrossRef]
- Williams, M.R.; Nakatsuji, T.; Sanford, J.A.; Vrbanac, A.F.; Gallo, R.L. Staphylococcus aureus induces increased serine protease activity in keratinocytes. J. Investig. Dermatol. 2017, 137, 377–384. [Google Scholar] [CrossRef]
- Blicharz, L.; Rudnicka, L.; Czuwara, J.; Waśkiel-Burnat, A.; Goldust, M.; Olszewska, M.; Samochocki, Z. The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis–An Update. Int. J. Mol. Sci. 2021, 22, 8403. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, S.; Klopp, N.; Rummler, L.; Wagenpfeil, S.; Novak, N.; Baurecht, H.J.; Groer, W.; Darsow, U.; Heinrich, J.; Gauger, A.; et al. Association of NOD1 polymorphisms with atopic eczema and related phenotypes. J. Allergy Clin. Immunol. 2005, 116, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Kaesler, S.; Volz, T.; Skabytska, Y.; Köberle, M.; Hein, U.; Chen, K.M.; Guenova, E.; Wölbing, F.; Röcken, M.; Biedermann, T. Toll-like receptor 2 ligands promote chronic atopic dermatitis through IL-4-mediated suppression of IL-10. J. Allergy Clin. Immunol. 2014, 134, 92–99. [Google Scholar] [CrossRef] [PubMed]
- De Benedetto, A.; Agnihothri, R.; McGirt, L.Y.; Bankova, L.G.; Beck, L.A. Atopic dermatitis: A disease caused by innate immune defects? J. Investig. Dermatol. 2009, 129, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Czarnowicki, T.; He, H.; Krueger, J.G.; Guttman-Yassky, E. Atopic dermatitis endotypes and implications for targeted therapeutics. J. Allergy Clin. Immunol. 2019, 143, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Renert-Yuval, Y.; Guttman-Yassky, E. New treatments for atopic dermatitis targeting beyond IL-4/IL-13 cytokines. Ann. Allergy Asthma Immunol. 2020, 124, 28–35. [Google Scholar] [CrossRef]
- Brunner, P.M.; Guttman-Yassky, E.; Leung, D.Y. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J. Allergy Clin. Immunol. 2017, 139, S65–S76. [Google Scholar] [CrossRef]
- Gittler, J.K.; Shemer, A.; Suárez-Fariñas, M.; Fuentes-Duculan, J.; Gulewicz, K.J.; Wang, C.Q.; Mitsui, H.; Cardinale, I.; de Guzman Strong, C.; Krueger, J.G.; et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin. Immunol. 2012, 130, 1344–1354. [Google Scholar] [CrossRef]
- Thepen, T.; Langeveld-Wildschut, E.G.; Bihari, I.C.; van Wichen, D.F.; van Reijsen, F.C.; Mudde, G.C.; Bruijnzeel-Koomen, C.A. Biphasic response against aeroallergen in atopic dermatitis showing a switch from an initial TH2 response to a TH1 response in situ: An immunocytochemical study. J. Allergy Clin. Immunol. 1996, 97, 828–837. [Google Scholar] [CrossRef]
- Bonamonte, D.; Filoni, A.; Vestita, M.; Romita, P.; Foti, C.; Angelini, G. The Role of the Environmental Risk Factors in the Pathogenesis and Clinical Outcome of Atopic Dermatitis. Biomed. Res. Int. 2019, 2019, 2450605. [Google Scholar] [CrossRef]
- Kantor, R.; Silverberg, J.I. Environmental risk factors and their role in the management of atopic dermatitis. Expert Rev. Clin. Immunol. 2017, 13, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Flohr, C.; Yeo, L. Atopic dermatitis and the hygiene hypothesis revisited. Pathog. Manag. Atopic Dermat. 2011, 41, 1–34. [Google Scholar]
- Langan, S.M.; Irvine, A.D.; Weidinger, S. Atopic dermatitis. Lancet 2020, 396, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Spergel, J.M.; Paller, A.S. Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 2003, 112, S118–S127. [Google Scholar] [CrossRef] [PubMed]
- Yew, Y.W.; Thyssen, J.P.; Silverberg, J.I. A systematic review and meta-analysis of the regional and age-related differences in atopic dermatitis clinical characteristics. J. Am. Acad. Dermatol. 2019, 80, 390–401. [Google Scholar] [CrossRef]
- Ramírez-Marín, H.A.; Silverberg, J.I. Differences between pediatric and adult atopic dermatitis. Pediatr. Dermatol. 2022, 39, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Hanifin , J.M.; Rajka, G. Diagnostic features of atopic eczema. Acta Dermatol. Venereol. 1980, 92, 44–47. [Google Scholar]
- Williams, H.; Jburney, P.; Pembroke, A.; Hay, R.; Party, A.D.D.C.W. The UK Working Party’s diagnostic criteria for atopic dermatitis. III. Independent hospital validation. Br. J. Dermatol. 1994, 131, 406–416. [Google Scholar] [CrossRef]
- Sohn, A.; Frankel, A.; Patel, R.V.; Goldenberg, G. Eczema. Mt. Sinai J. Med. 2011, 78, 730–739. [Google Scholar] [CrossRef]
- Katoh, N.; Ohya, Y.; Ikeda, M.; Ebihara, T.; Katayama, I.; Saeki, H.; Shimojo, N.; Tanaka, A.; Nakahara, T.; Nagao, M. Japanese guidelines for atopic dermatitis 2020. Allergol. Int. 2020, 69, 356–369. [Google Scholar] [CrossRef]
- Mavroudi, A.; Karagiannidou, A.; Xinias, I.; Cassimos, D.; Karantaglis, N.; Farmaki, E.; Imvrios, G.; Fotoulaki, M.; Eboriadou, M.; Tsanakas, J. Assessment of IgE-mediated food allergies in children with atopic dermatitis. Allergol. Immunopathol. 2017, 45, 77–81. [Google Scholar] [CrossRef]
- Fishbein, A.B.; Silverberg, J.I.; Wilson, E.J.; Ong, P.Y. Update on Atopic Dermatitis: Diagnosis, Severity Assessment, and Treatment Selection. J. Allergy Clin. Immunol. Pract. 2020, 8, 91–101. [Google Scholar] [CrossRef]
- Thakur, A.; Malhotra, S.K.; Malhotra, S. Scoring atopic dermatitis and six sign atopic dermatitis: Comparison of prognostic and predictive value in atopic dermatitis. Indian J. Paediatr. Dermatol. 2013, 14, 13–18. [Google Scholar] [CrossRef]
- Honari, G. Clinical Scoring of Atopic Dermatitis. In Agache’s Measuring the Skin: Non-Invasive Investigations, Physiology, Normal Constants; Humbert, P., Fanian, F., Maibach, H.I., Agache, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1391–1399. [Google Scholar]
- Faye, O.; Meledie N’Djong, A.; Diadie, S.; Coniquet, S.; Niamba, P.; Atadokpede, F.; Yao Yoboue, P.; Thierno Dieng, M.; Zkik, A.; Castagne, C. Validation of the Patient-Oriented SCOR ing for Atopic Dermatitis tool for black skin. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, J.M.; Baghoomian, W.; Grinich, E.; Leshem, Y.A.; Jacobson, M.; Simpson, E.L. The Eczema Area and Severity Index—A Practical Guide. Dermatitis 2022, 33, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Charman, C.; Williams, H. Outcome Measures of Disease Severity in Atopic Eczema. Arch. Dermatol. 2000, 136, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Bumbacea, R.S.; Boustani, R.; Panaitescu, C.; Haidar, L.; Buzan, M.R.; Bumbacea, D.; Laculiceanu, A.; Cojanu, C.; Spanu, D.; Agache, I. Mechanisms of allergen immunotherapy supporting its disease-modifying effect. Immunotherapy 2022, 14, 627–638. [Google Scholar] [CrossRef]
- Lam, H.Y.; Tergaonkar, V.; Ahn, K.S. Mechanisms of allergen-specific immunotherapy for allergic rhinitis and food allergies. Biosci. Rep. 2020, 40, BSR20200256. [Google Scholar] [CrossRef]
- Majewska, A.; Dembele, K.; Dziendzikowska, K.; Prostek, A.; Gajewska, M. Cytokine and Lymphocyte Profiles in Dogs with Atopic Dermatitis after Allergen-Specific Immunotherapy. Vaccines 2022, 10, 1037. [Google Scholar] [CrossRef]
- Palomares, O.; Martín-Fontecha, M.; Lauener, R.; Traidl-Hoffmann, C.; Cavkaytar, O.; Akdis, M.; Akdis, C.A. Regulatory T cells and immune regulation of allergic diseases: Roles of IL-10 and TGF-β. Genes Immun. 2014, 15, 511–520. [Google Scholar] [CrossRef]
- Lee, J.; Park, C.O.; Lee, K.H. Specific immunotherapy in atopic dermatitis. Allergy Asthma Immunol. Res. 2015, 7, 221–229. [Google Scholar] [CrossRef]
- Satitsuksanoa, P.; Angelina, A.; Palomares, O.; Akdis, M. Mechanisms in AIT: Insights 2021. Allergol. Select 2022, 6, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Zeng, X.; Su, Q.; Shi, X.; Xian, M.; Qin, R.; Li, J. Allergen Immunotherapy-Induced Immunoglobulin G4 Reduces Basophil Activation in House Dust Mite-Allergic Asthma Patients. Front. Cell Dev. Biol. 2020, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.R.; Shamji, M.H. Allergen immunotherapy: Past, present and future. Nat. Rev. Immunol. 2023, 23, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Moote, W.; Kim, H.; Ellis, A.K. Allergen-specific immunotherapy. Allergy Asthma Clin. Immunol. 2018, 14, 53. [Google Scholar] [CrossRef]
- Nony, E.; Martelet, A.; Jain, K.; Moingeon, P. Allergen extracts for immunotherapy: To mix or not to mix? Expert Rev. Clin. Pharmacol. 2016, 9, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Vrtala, S. Allergens from house dust and storage mites. Allergo J. Int. 2022, 31, 267–271. [Google Scholar] [CrossRef]
- Pessina, B.; Giovannini, M.; Mori, F.; Di Cara, G.; Novembre, E.; Chan, S.; Flohr, C.; du Toit, G. Is there room for allergen immunotherapy for the treatment of atopic dermatitis in the precision medicine era? Front. Pediatr. 2022, 10, 1050560. [Google Scholar] [CrossRef]
- Compalati, E.; Rogkakou, A.; Passalacqua, G.; Canonica, G.W. Evidences of efficacy of allergen immunotherapy in atopic dermatitis: An updated review. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 427–433. [Google Scholar] [CrossRef]
- Nakagome, K.; Fujio, K.; Nagata, M. Potential Effects of AIT on Nonspecific Allergic Immune Responses or Symptoms. J. Clin. Med. 2023, 12, 3776. [Google Scholar] [CrossRef]
- Tam, H.; Calderon, M.A.; Manikam, L.; Nankervis, H.; García Núñez, I.; Williams, H.C.; Durham, S.; Boyle, R.J. Specific allergen immunotherapy for the treatment of atopic eczema. Cochrane Database Syst. Rev. 2016, 2, Cd008774. [Google Scholar] [CrossRef]
- Leroy, B.; Lachapelle, J.M.; Jacquemin, M.G.; Saint-Remy, J.M. Immunotherapy of atopic dermatitis by injections of antigen-antibody complexes. Dermatology 1993, 186, 276–277. [Google Scholar] [CrossRef]
- Galli, E.; Chini, L.; Nardi, S.; Benincori, N.; Panei, P.; Fraioli, G.; Moschese, V.; Rossi, P. Use of a specific oral hyposensitization therapy to Dermatophagoides pteronyssinus in children with atopic dermatitis. Allergol. Immunopathol. 1994, 22, 18–22. [Google Scholar]
- Borg, M.; Løkke, A.; Hilberg, O. Compliance in subcutaneous and sublingual allergen immunotherapy: A nationwide study. Respir. Med. 2020, 170, 106039. [Google Scholar] [CrossRef]
- Nelson, H. SCIT: Standard Schedules, Administration Techniques, Adverse Reactions, and Monitoring; Uptodate: Waltham, MA, USA, 2021. [Google Scholar]
- Lawrence, M.G.; Steinke, J.W.; Borish, L. Basic science for the clinician: Mechanisms of sublingual and subcutaneous immunotherapy. Ann. Allergy Asthma Immunol. 2016, 117, 138–142. [Google Scholar] [CrossRef]
- Rank, M.A.; Li, J.T. Allergen immunotherapy. In Proceedings of the Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1119–1123. [Google Scholar]
- Penagos, M.; Eifan, A.O.; Durham, S.R.; Scadding, G.W. Duration of allergen immunotherapy for long-term efficacy in allergic rhinoconjunctivitis. Curr. Treat. Options Allergy 2018, 5, 275–290. [Google Scholar] [CrossRef]
- Zhao, D.; Lai, X.; Tian, M.; Jiang, Y.; Zheng, Y.; Gjesing, B.; Zhong, N.; Spangfort, M.D. The Functional IgE-Blocking Factor Induced by Allergen-Specific Immunotherapy Correlates with IgG4 Antibodies and a Decrease of Symptoms in House Dust Mite-Allergic Children. Int. Arch. Allergy Immunol. 2016, 169, 113–120. [Google Scholar] [CrossRef]
- Xu, L.Z.; Yang, L.T.; Qiu, S.Q.; Yang, G.; Luo, X.Q.; Miao, B.P.; Geng, X.R.; Liu, Z.Q.; Liu, J.; Wen, Z.; et al. Combination of specific allergen and probiotics induces specific regulatory B cells and enhances specific immunotherapy effect on allergic rhinitis. Oncotarget 2016, 7, 54360–54369. [Google Scholar] [CrossRef]
- Luo, X.; Hong, H.; Tang, J.; Wu, X.; Lin, Z.; Ma, R.; Fan, Y.; Xu, G.; Liu, D.; Li, H. Increased Expression of miR-146a in Children With Allergic Rhinitis After Allergen-Specific Immunotherapy. Allergy Asthma Immunol. Res. 2016, 8, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenberge, P.; Bachert, C.; Passalacqua, G.; Bousquet, J.; Canonica, G.; Durham, S.; Fokkens, W.; Howarth, P.; Lund, V.; Malling, H.J. Consensus statement* on the treatment of allergic rhinitis. Allergy 2000, 55, 116–134. [Google Scholar] [CrossRef] [PubMed]
- Marogna, M.; Spadolini, I.; Massolo, A.; Canonica, G.W.; Passalacqua, G. Long-lasting effects of sublingual immunotherapy according to its duration: A 15-year prospective study. J. Allergy Clin. Immunol. 2010, 126, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.H. An update on allergen immunotherapy. Clin. Med. 2016, 16, 584–587. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.; Nelson, H.; Lockey, R.; Calabria, C.; Chacko, T.; Finegold, I.; Nelson, M.; Weber, R.; Bernstein, D.I.; Blessing-Moore, J. Allergen immunotherapy: A practice parameter third update. J. Allergy Clin. Immunol. 2011, 127, S1–S55. [Google Scholar] [CrossRef]
- Bae, J.M.; Choi, Y.Y.; Park, C.O.; Chung, K.Y.; Lee, K.H. Efficacy of allergen-specific immunotherapy for atopic dermatitis: A systematic review and meta-analysis of randomized controlled trials. J. Allergy Clin. Immunol. 2013, 132, 110–117. [Google Scholar] [CrossRef] [PubMed]
- James, C.; Bernstein, D.I. Allergen immunotherapy: An updated review of safety. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Escobar, L.G.; Mora-Ochoa, H.; Vargas Villanueva, A.; Spineli, L.; Sanclemente, G.; Couban, R.; García, E.; Chapman, E.; Yepes-Nuñez, J.J. Effectiveness and adverse events of topical and allergen immunotherapy for atopic dermatitis: A systematic review and network meta-analysis protocol. Syst. Rev. 2020, 9, 222. [Google Scholar] [CrossRef]
- Petalas, K.; Durham, S.R. Allergen immunotherapy for allergic rhinitis. Rhinology 2013, 51, 99–110. [Google Scholar] [CrossRef]
- Nakagome, K.; Nagata, M. Allergen Immunotherapy in Asthma. Pathogens 2021, 10, 1406. [Google Scholar] [CrossRef]
- Calderon, M.A.; Penagos, M.; Sheikh, A.; Canonica, G.W.; Durham, S.R. Sublingual immunotherapy for allergic conjunctivitis: Cochrane systematic review and meta-analysis. Clin. Exp. Allergy 2011, 41, 1263–1272. [Google Scholar] [CrossRef]
- Pavón-Romero, G.F.; Parra-Vargas, M.I.; Ramírez-Jiménez, F.; Melgoza-Ruiz, E.; Serrano-Pérez, N.H.; Teran, L.M. Allergen immunotherapy: Current and future trends. Cells 2022, 11, 212. [Google Scholar] [CrossRef]
- Sturm, G.J.; Varga, E.M.; Roberts, G.; Mosbech, H.; Bilò, M.B.; Akdis, C.A.; Antolín-Amérigo, D.; Cichocka-Jarosz, E.; Gawlik, R.; Jakob, T.; et al. EAACI guidelines on allergen immunotherapy: Hymenoptera venom allergy. Allergy 2018, 73, 744–764. [Google Scholar] [CrossRef]
- Mueller, R.S. A systematic review of allergen immunotherapy, a successful therapy for canine atopic dermatitis and feline atopic skin syndrome. J. Am. Vet. Med. Assoc. 2023, 261, S30–S35. [Google Scholar] [CrossRef]
- Cox, L. Allergen immunotherapy: Immunomodulatory treatment for allergic diseases. Expert Rev. Clin. Immunol. 2006, 2, 533–546. [Google Scholar] [CrossRef]
- Wollenberg, A.; Kinberger, M.; Arents, B.; Aszodi, N.; Avila Valle, G.; Barbarot, S.; Bieber, T.; Brough, H.; Calzavara Pinton, P.; Christen-Zäch, S. European guideline (EuroGuiDerm) on atopic eczema–part II: Non-systemic treatments and treatment recommendations for special AE patient populations. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1904–1926. [Google Scholar] [CrossRef]
- Saeki, H.; Ohya, Y.; Furuta, J.; Arakawa, H.; Ichiyama, S.; Katsunuma, T.; Katoh, N.; Tanaka, A.; Tsunemi, Y.; Nakahara, T. Executive summary: Japanese guidelines for atopic dermatitis (ADGL) 2021. Allergol. Int. 2022, 71, 448–458. [Google Scholar] [CrossRef]
- Eichenfield, L.F.; Tom, W.L.; Berger, T.G.; Krol, A.; Paller, A.S.; Schwarzenberger, K.; Bergman, J.N.; Chamlin, S.L.; Cohen, D.E.; Cooper, K.D. Guidelines of care for the management of atopic dermatitis: Section 2. Management and treatment of atopic dermatitis with topical therapies. J. Am. Acad. Dermatol. 2014, 71, 116–132. [Google Scholar] [CrossRef]
- Wollenberg, A.; Kinberger, M.; Arents, B.; Aszodi, N.; Avila Valle, G.; Barbarot, S.; Bieber, T.; Brough, H.; Calzavara Pinton, P.; Christen-Zäch, S. European guideline (EuroGuiDerm) on atopic eczema: Part I–systemic therapy. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1409–1431. [Google Scholar] [CrossRef]
- Sidbury, R.; Davis, D.M.; Cohen, D.E.; Cordoro, K.M.; Berger, T.G.; Bergman, J.N.; Chamlin, S.L.; Cooper, K.D.; Feldman, S.R.; Hanifin, J.M. Guidelines of care for the management of atopic dermatitis: Section 3. Management and treatment with phototherapy and systemic agents. J. Am. Acad. Dermatol. 2014, 71, 327–349. [Google Scholar] [CrossRef]
- Klisic, A.; Bakic, M.; Karanikolic, V. Comparative Analysis of Redox Homeostasis Biomarkers in Patients with Psoriasis and Atopic Dermatitis. Antioxidants 2023, 12, 1875. [Google Scholar] [CrossRef]
- Yu, N.; Luo, H.; Liang, D.; Lu, N. Sublingual immunotherapy in mite-sensitized patients with atopic dermatitis: A randomized controlled study. Adv. Dermatol. Allergol. Postępy Dermatol. Alergol. 2021, 38, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, E.; Yoon, J.; Jung, S.; Song, K.B.; Choi, E.J.; Kim, J.H.; Yu, J. Sublingual immunotherapy may be effective in reducing house dust mite allergies in children with atopic dermatitis. Acta Paediatr. 2022, 111, 2142–2148. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, J.; Xu, J.; Yang, Q.; Gu, C.; Ni, C.; Li, L.; Lu, X.; Yao, Z.; Tao, J. Sublingual immunotherapy of atopic dermatitis in mite-sensitized patients: A multi-centre, randomized, double-blind, placebo-controlled study. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3540–3547. [Google Scholar] [CrossRef] [PubMed]
- Hajdu, K.; Kapitány, A.; Dajnoki, Z.; Soltész, L.; Baráth, S.; Hendrik, Z.; Veres, I.; Szegedi, A.; Gáspár, K. Improvement of clinical and immunological parameters after allergen-specific immunotherapy in atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1357–1361. [Google Scholar] [CrossRef]
- Huang, C.; Tang, J. Sublingual immunotherapy with Dermatophagoides farinae drops for pediatric atopic dermatitis. Int. J. Dermatol. 2022, 61, 246–251. [Google Scholar] [CrossRef]
- Langer, S.S.; Cardili, R.N.; Melo, J.M.L.; Ferriani, M.P.L.; Moreno, A.S.; Dias, M.M.; Bueno-Filho, R.; Pocente, R.H.C.; Roxo-Junior, P.; Silva, J. Efficacy of house dust mite sublingual immunotherapy in patients with atopic dermatitis: A randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. Pract. 2022, 10, 539–549.e537. [Google Scholar] [CrossRef]
- Nahm, D.-H.; Kim, M.-E.; Kwon, B.; Cho, S.-M.; Ahn, A. Clinical efficacy of subcutaneous allergen immunotherapy in patients with atopic dermatitis. Yonsei Med. J. 2016, 57, 1420–1426. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, S.; Song, Z. Analysis of the long-term efficacy and safety of subcutaneous immunotherapy for atopic dermatitis. In Proceedings of the Allergy and Asthma Proceedings; OceanSide Publications: East Providence, RI, USA, 2021; p. e47. [Google Scholar]
- Qin, Y.E.; Mao, J.R.; Sang, Y.c.; Li, W.X. Clinical efficacy and compliance of sublingual immunotherapy with D ermatophagoides farinae drops in patients with atopic dermatitis. Int. J. Dermatol. 2014, 53, 650–655. [Google Scholar] [CrossRef]
- Bogacz-Piaseczyńska, A.; Bożek, A. The Effectiveness of Allergen Immunotherapy in Adult Patients with Atopic Dermatitis Allergic to House Dust Mites. Medicina 2022, 59, 15. [Google Scholar] [CrossRef]
- De Bruin-Weller, M.; Gadkari, A.; Auziere, S.; Simpson, E.L.; Puig, L.; Barbarot, S.; Girolomoni, G.; Papp, K.; Pink, A.E.; Saba, G.; et al. The patient-reported disease burden in adults with atopic dermatitis: A cross-sectional study in Europe and Canada. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1026–1036. [Google Scholar] [CrossRef]
- Nikolov, G.; Todordova, Y.; Emilova, R.; Hristova, D.; Nikolova, M.; Petrunov, B. Allergen-specific IgE and IgG4 as biomarkers for immunologic changes during subcutaneous allergen immunotherapy. Antibodies 2021, 10, 49. [Google Scholar] [CrossRef]
- Cafone, J.; Ruffner, M.A.; Spergel, J.M. The role of eosinophils in immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 329. [Google Scholar] [CrossRef]
- Ferrucci, S.; Angileri, L.; Tavecchio, S.; Fumagalli, S.; Iurlo, A.; Cattaneo, D.; Marzano, A.V.; Maronese, C.A. Elevation of peripheral blood eosinophils during dupilumab treatment for atopic dermatitis is associated with baseline comorbidities and development of facial redness dermatitis and ocular surface disease. J. Dermatol. Treat. 2022, 33, 2587–2592. [Google Scholar] [CrossRef]
- Kouser, L.; Kappen, J.; Walton, R.P.; Shamji, M.H. Update on Biomarkers to Monitor Clinical Efficacy Response During and Post Treatment in Allergen Immunotherapy. Curr. Treat. Options Allergy 2017, 4, 43–53. [Google Scholar] [CrossRef]
- Sahiner, U.M.; Giovannini, M.; Escribese, M.M.; Paoletti, G.; Heffler, E.; Alvaro Lozano, M.; Barber, D.; Canonica, G.W.; Pfaar, O. Mechanisms of Allergen Immunotherapy and Potential Biomarkers for Clinical Evaluation. J. Pers. Med. 2023, 13, 845. [Google Scholar] [CrossRef]
Major Criteria (3 or More Required) | Minor Criteria (3 or More Required) |
---|---|
|
|
Organ System | Manifestations of AD |
---|---|
Mild | Only mild eruptions are observed irrespective of the area. |
Moderate | Eruptions with severe inflammations are observed on less than 10% of the body surface area |
Severe | Eruptions with severe inflammation are observed on 10% to <30% of the body surface area. |
Most severe | Eruptions with severe inflammation are observed on 30% of the body surface area. |
Study (Years) | Study Design | Number of Patients | Age (Years) (Mean ± SD) | % Men | Time of Evaluation | Course | Severity (Based on SCORAD Score) | Route of AIT | Allergen | Effectiveness of AIT | Change in Rescue Medication Scores | Change in VAS | Change in Biomarkers | Study Summary | Country | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Yu (2021) [114] | Randomized controlled trial | 77 (SLIT: 39; control: 38) | 26.5 ± 4.5 | 45 | 0, 6, 12, 24 months | 2 years | Mild to moderate | SLIT | HDM (Der f) | Compare to baseline: ↓SCORAD at month 12, 24 | Compare to control: ↓at Month 12 to 24 | Compare to baseline and control: ↓at Month 12 to 24 | Compare to control: No significant change in IgE | Significantly improved the clinical symptoms and reduced drug use in mild–moderate AD | China |
2 | Kim (2022) [115] | Open-label, controlled, randomized trial, no placebo | 60 (SLIT: 30; control: 30) | 8.8 ± 2.7 | 51.7 | 3, 6, 9, 12 months | 1 year | Mild to severe | SLIT | HDM (Der f, Der p) | Compare to baseline: ↓SCORAD at Month 3, 6, 9, 12 | Compare to baseline: ↓at Month 3, 6, 9, 12 | X | Compare to baseline and control: ↑IgG4 at month 12 Compare to control: No significant changes in IgE at month 12 | Improved AD severity | Republic of Korea |
3 | Liu (2019) [116] | Clinical phase II, multi-center, randomized, double-blind, and placebo-controlled trial | 236 (high dose: 60; moderate dose: 55; low dose: 54; control: 57) | 31.5 ± 10.8 | 48.2 | 0, 4, 10, 16, 24, 36 weeks | 36 weeks | Mild to moderate | SLIT | HDM(Der f) | Compare to control: ↓SCORAD in week 16 and 36 (in medium- and high-dose allergen) | Low steroid use in high SLIT group | X | X | Improved AD severity and reduced drug use | China |
4 | Hajdu (2020) [117] | Randomized controlled trial | 14 (SLIT: 8; control: 6) | 19.0 ± 8.3 | 50.0 | 0, 6 months | 6 months | Mild to moderate | SLIT | HDM (Staloral) (Der p) | Compare to control: ↓SCORAD at month 6 | X | X | X | Improved the clinical symptoms and permeability barrier functions | Hungary |
5 | Huang (2022) [118] | Randomized controlled trial | 440 (SLIT: 309; control: 131) | 7.3 ± 2.6 | 61.6 | 0, 6, 12, 24, 36 months | 36 months | Not mentioned | SLIT | HDM (Der p) | Compare to baseline: ↓SCORAD in year 1 Compare to control:↓SCORAD in year 1, 2, 3 | X | X | X | Improved AD severity in children | China |
6 | Langer (2022) [119] | Randomized, double-blind, placebo-controlled trial | 66 (SLIT: 31; control: 35) | 19.6 ± 14.3 | 28.8 | 0, 3, 6, 9, 12, 15, 18 months | 18 months | Mild to severe | SLIT | HDM (Der p) | Compare to control: ↓SCORAD at months 18 | X | X | X | Improved AD severity | Brazil |
7 | Nahm (2016) [120] | Observational cohort study | 251 (mild: 34; moderate: 123; severe: 94) | 19.9 ± 10.1 | 59.0 | 0, 12 | 12 months | Mild to severe | SCIT | HDM (Der f, Der p) | Compare to baseline: ↓SCORAD at month 12 (mild to moderate and severe group) Compare to control: ↓SCORAD at month 12 (severe group compared to mild to moderate group) | X | X | Compare to baseline: ↓ IgE and peripheral blood total eosinophil counts at month 12 | Republic of Korea | |
8 | Zhou (2021) [121] | Retrospective analysis | 378 (SCIT: 164; control: 214) | 15.5 | 52.6 | 0, 6, 12, 24, 36 months | 36 months | Mild to severe | SCIT | HDM (Der f, Der p) | Compare to baseline: ↓SCORAD at month 6, 12, 24, 36 Compare to control: ↓SCORAD at month 36 | X | Compare to baseline: ↓in year 0.5, 1, 2, 3 Compare to control: ↓in year 3 | Compare to baseline: ↓ eosinophil counts in year 3 (SCIT group and CR group), no significant changes in IgE in year 3 (SCIT group, CR group, and non-CR group) | Significantly reduced the severity and pruritus of moderate to severe AD | China |
9 | Qin (2014) [122] | Randomized controlled trial | 107 (SLIT: 58; control: 49) | 27.3 ± 8.2 | 58.9 | 0, 1, 6, 12 months | 12 months | Not mentioned | SLIT | HDM (Der f) | Compare to control: ↑total efficacy rate (77.78% > 53.85%) | Compare to control: ↓at month, 6, 12 | Compare to control: ↓at month 12 | Compare to control: ↓ IgE and↑IgG4 at month 12 | Improved AD severity and reduced drug use | China |
10 | Bogacz-Piaseczyńska (2022) [123] | Randomised, placebo-controlled, double-blind trial | 37 (SCIT: 21; control: 16) | 19.2 | 51.4 | 0, 12 months | 12 months | Moderate to severe (EASI) | SCIT | HDM (Der f, Der p) | Compare to baseline: ↓EASI at month 12 | Compare to baseline: ↓at month 12 | X | Compare to control: ↑IgG4 at month 6, 12 | Improved AD severity | Poland |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, B.-C.; Wu, K.-H.; Chen, C.-Y.; Lin, W.-Y.; Chang, Y.-J.; Lin, M.-J.; Wu, H.-P. Advancements in Allergen Immunotherapy for the Treatment of Atopic Dermatitis. Int. J. Mol. Sci. 2024, 25, 1316. https://doi.org/10.3390/ijms25021316
Guo B-C, Wu K-H, Chen C-Y, Lin W-Y, Chang Y-J, Lin M-J, Wu H-P. Advancements in Allergen Immunotherapy for the Treatment of Atopic Dermatitis. International Journal of Molecular Sciences. 2024; 25(2):1316. https://doi.org/10.3390/ijms25021316
Chicago/Turabian StyleGuo, Bei-Cyuan, Kang-Hsi Wu, Chun-Yu Chen, Wen-Ya Lin, Yu-Jun Chang, Mao-Jen Lin, and Han-Ping Wu. 2024. "Advancements in Allergen Immunotherapy for the Treatment of Atopic Dermatitis" International Journal of Molecular Sciences 25, no. 2: 1316. https://doi.org/10.3390/ijms25021316
APA StyleGuo, B. -C., Wu, K. -H., Chen, C. -Y., Lin, W. -Y., Chang, Y. -J., Lin, M. -J., & Wu, H. -P. (2024). Advancements in Allergen Immunotherapy for the Treatment of Atopic Dermatitis. International Journal of Molecular Sciences, 25(2), 1316. https://doi.org/10.3390/ijms25021316