The Pupa Stage Is the Most Sensitive to Hypoxia in Drosophila melanogaster
Abstract
:1. Introduction
2. Results
2.1. Determination of the Critical O2 Level for Hypoxia Sensitivity
2.2. Identification of the Critical Hypoxia-Sensitive Stage
2.3. Critical Time Period for Pupa Hypoxia Exposure
3. Discussion
4. Materials and Methods
4.1. Fly Rearing and Collection
4.2. Critical O2 Level Determination
4.3. Hypoxia-Sensitive Stage Screening
4.4. Pupa Timeline Screening
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, F.B.; Anderson, R.N. The Leading Causes of Death in the US for 2020. JAMA 2021, 325, 1829–1830. [Google Scholar] [CrossRef] [PubMed]
- WHO. The Top 10 Causes of Death. WHO Report. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 28 November 2023).
- Semenza, G.L.; Nejfelt, M.K.; Chi, S.M.; Antonarakis, S.E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 1991, 88, 5680–5684. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L.; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 1992, 12, 5447–5454. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Barretto, E.C.; Grewal, S.S. TORC1 modulation in adipose tissue is required for organismal adaptation to hypoxia in Drosophila. Nat. Commun. 2019, 10, 1878. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Xue, J.; Chen, J.; Morcillo, P.; Lambert, J.D.; White, K.P.; Haddad, G.G. Experimental selection for Drosophila survival in extremely low O2 environment. PLoS ONE 2007, 2, e490. [Google Scholar] [CrossRef] [PubMed]
- Ayelén Valko, A.; Perez-Pandolfo, S.; Sorianello, E.; Brech, A.; Wappner, P.; Melani, M. Adaptation to hypoxia in Drosophila melanogaster requires autophagy. Autophagy 2022, 18, 909–920. [Google Scholar] [CrossRef] [PubMed]
- DiGregorio, P.J.; Ubersax, J.A.; O’Farrell, P.H. Hypoxia and nitric oxide induce a rapid, reversible cell cycle arrest of the Drosophila syncytial divisions. J. Biol. Chem. 2001, 276, 1930–1937. [Google Scholar] [CrossRef]
- Douglas, R.M.; Xu, T.; Haddad, G.G. Cell cycle progression and cell division are sensitive to hypoxia in Drosophila melanogaster embryos. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R1555–R1563. [Google Scholar] [CrossRef]
- Fischer, M.G.; Heeger, S.; Häcker, U.; Lehner, C.F. The mitotic arrest in response to hypoxia and of polar bodies during early embryogenesis requires Drosophila Mps1. Curr. Biol. 2004, 14, 2019–2024. [Google Scholar] [CrossRef]
- Wingrove, J.A.; O’Farrell, P.H. Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 1999, 98, 105–114. [Google Scholar] [CrossRef]
- Viviane Callier, V.; Hand, S.C.; Campbell, J.B.; Biddulph, T.; Harrison, J.F. Developmental changes in hypoxic exposure and responses to anoxia in Drosophila melanogaster. J. Exp. Biol. 2015, 218, 2927–2934. [Google Scholar] [CrossRef]
- Haddad, G.G.; Wyman, R.J.; Mohsenin, A.; Sun, Y.; Krishnan, S.N. Behavioral and Electrophysiologic Responses of Drosophila melanogaster to Prolonged Periods of Anoxia. J. Insect Physiol. 1997, 43, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, E.C.; Farzin, M.; Klok, C.J.; Harrison, J.F. The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster. J. Exp. Biol. 2011, 214, 1419–1427. [Google Scholar] [CrossRef]
- Heyland, A.; Moroz, L.L. Signaling mechanisms underlying metamorphic transitions in animals. Integr. Comp. Biol. 2006, 46, 743–759. [Google Scholar] [CrossRef] [PubMed]
- Rascon, B.; Harrison, J.F. Lifespan and oxidative stress show a non-linear response to atmospheric oxygen in Drosophila. J. Exp. Biol. 2010, 213, 3441–3448. [Google Scholar] [CrossRef] [PubMed]
- Polan, D.M.; Alansari, M.; Lee, B.; Grewal, S.S. Early-life hypoxia alters adult physiology and reduces stress resistance and lifespan in Drosophila. J. Exp. Biol. 2020, 223, jeb226027. [Google Scholar] [CrossRef]
- Peck, L.S.; Maddrell, S.H. Limitation of size by hypoxia in the fruit fly Drosophila melanogaster. J. Exp. Zool. A Comp. Exp. Biol. 2005, 303, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Mutamiswa, R.; Tarusikirwa, V.L.; Nyamukondiwa, C.; Cuthbert, R.N.; Chidawanyika, F. Thermal stress exposure of pupal oriental fruit fly has strong and trait-specific consequences in adult flies. Physiol. Entomol. 2023, 48, 35–44. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, X.Q.; Hoffmann, A.; Zhang, S.; Ma, C.S. Impact of hot events at different developmental stages of a moth: The closer to adult stage, the less reproductive output. Sci. Rep. 2015, 5, 10436. [Google Scholar] [CrossRef]
- Iranmehr, A.; Stobdan, T.; Zhou, D.; Zhao, H.; Kryazhimskiy, S.; Bafna, V.; Haddad, G.G. Multiple mechanisms drive genomic adaptation to extreme O2 levels in Drosophila melanogaster. Nat. Commun. 2021, 12, 997. [Google Scholar] [CrossRef]
- Seong, K.H.; Ly, N.H.; Katou, Y.; Yokota, N.; Nakato, R.; Murakami, S.; Hirayama, A.; Fukuda, S.; Kang, S.; Soga, T.; et al. Paternal restraint stress affects offspring metabolism via ATF-2 dependent mechanisms in Drosophila melanogaster germ cells. Commun. Biol. 2020, 3, 208. [Google Scholar] [CrossRef]
- Obata, F.; Fons, C.O.; Gould, A.P. Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nat. Commun. 2018, 9, 975. [Google Scholar] [CrossRef] [PubMed]
- Aiello, G.; Sabino, C.; Pernici, D.; Audano, M.; Antonica, F.; Gianesello, M.; Ballabio, C.; Quattrone, A.; Mitro, N.; Romanel, A.; et al. Transient rapamycin treatment during developmental stage extends lifespan in Mus musculus and Drosophila melanogaster. EMBO Rep. 2022, 23, e55299. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Kim, K.; O’Brown, Z.K.; Levan, A.; Dodson, A.E.; Kennedy, S.G.; Chernoff, C.; Greer, E.L. Hypoxia induces transgenerational epigenetic inheritance of small RNAs. Cell Rep. 2022, 41, 111800. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Park, J.W. Hypoxia-driven epigenetic regulation in cancer progression: A focus on histone methylation and its modifying enzymes. Cancer Lett. 2020, 489, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sun, H.; Chen, H.; Zavadil, J.; Kluz, T.; Arita, A.; Costa, M. Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res. 2010, 70, 4214–4221. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.; Yi, S.J.; Kim, K. Gene regulation by histone-modifying enzymes under hypoxic conditions: A focus on histone methylation and acetylation. Exp. Mol. Med. 2022, 54, 878–889. [Google Scholar] [CrossRef]
- Li, T.; Mao, C.; Wang, X.; Shi, Y.; Tao, Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. J. Exp. Clin. Cancer Res. 2020, 39, 224. [Google Scholar] [CrossRef]
- Camuzi, D.; de Amorim, I.S.S.; Ribeiro Pinto, L.F.; Oliveira Trivilin, L.; Mencalha, A.L.; Soares Lima, S.C. Regulation Is in the Air: The Relationship between Hypoxia and Epigenetics in Cancer. Cells 2019, 8, 300. [Google Scholar] [CrossRef]
- Taddei, M.L.; Giannoni, E.; Comito, G.; Chiarugi, P. Microenvironment and tumor cell plasticity: An easy way out. Cancer Lett. 2013, 341, 80–96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stobdan, T.; Wen, N.J.; Lu-Bo, Y.; Zhou, D.; Haddad, G.G. The Pupa Stage Is the Most Sensitive to Hypoxia in Drosophila melanogaster. Int. J. Mol. Sci. 2024, 25, 710. https://doi.org/10.3390/ijms25020710
Stobdan T, Wen NJ, Lu-Bo Y, Zhou D, Haddad GG. The Pupa Stage Is the Most Sensitive to Hypoxia in Drosophila melanogaster. International Journal of Molecular Sciences. 2024; 25(2):710. https://doi.org/10.3390/ijms25020710
Chicago/Turabian StyleStobdan, Tsering, Nicholas J. Wen, Ying Lu-Bo, Dan Zhou, and Gabriel G. Haddad. 2024. "The Pupa Stage Is the Most Sensitive to Hypoxia in Drosophila melanogaster" International Journal of Molecular Sciences 25, no. 2: 710. https://doi.org/10.3390/ijms25020710
APA StyleStobdan, T., Wen, N. J., Lu-Bo, Y., Zhou, D., & Haddad, G. G. (2024). The Pupa Stage Is the Most Sensitive to Hypoxia in Drosophila melanogaster. International Journal of Molecular Sciences, 25(2), 710. https://doi.org/10.3390/ijms25020710