Lupus Nephritis Biomarkers: A Critical Review
Abstract
:1. Introduction
2. LN Biomarkers
2.1. Serum AutoAbs
2.2. Cytokines/Chemokines
2.2.1. Serum
2.2.2. Urine
2.3. Cell Adhesion Molecules (CAMs)
2.4. Other Protein/Lipid Molecules
2.5. Complement
2.6. MicroRNAs (miRNAs)
2.7. Genetics
2.8. Epigenetics
3. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mason, L.J.; Isenberg, D.A. Immunopathogenesis of SLE. Baillieres Clin. Rheumatol. 1998, 12, 385–403. [Google Scholar] [CrossRef]
- Hahn, B.H.; Ebling, F.; Singh, R.R.; Singh, R.P.; Karpouzas, G.; La Cava, A. Cellular and molecular mechanisms of regulation of autoantibody production in lupus. Ann. N. Y. Acad. Sci. 2005, 1051, 433–441. [Google Scholar] [CrossRef]
- Alduraibi, F.; Fatima, H.; Hamilton, J.A.; Chatham, W.W.; Hsu, H.C.; Mountz, J.D. Lupus nephritis correlates with B cell interferon-β, anti-Smith, and anti-DNA: A retrospective study. Arthritis Res. Ther. 2022, 24, 87. [Google Scholar] [CrossRef] [PubMed]
- Alduraibi, F.K.; Sullivan, K.A.; Chatham, W.W.; Hsu, H.C.; Mountz, J.D. Interrelation of T cell cytokines and autoantibodies in systemic lupus erythematosus: A cross-sectional study. Clin. Immunol. 2023, 247, 109239. [Google Scholar] [CrossRef] [PubMed]
- Stojan, G.; Petri, M. Epidemiology of systemic lupus erythematosus: An update. Curr. Opin. Rheumatol. 2018, 30, 144–150. [Google Scholar] [CrossRef]
- Chakravarty, E.F.; Bush, T.M.; Manzi, S.; Clarke, A.E.; Ward, M.M. Prevalence of adult systemic lupus erythematosus in California and Pennsylvania in 2000: Estimates obtained using hospitalization data. Arthritis Rheum. 2007, 56, 2092–2094. [Google Scholar] [CrossRef] [PubMed]
- Pons-Estel, G.J.; Alarcón, G.S.; Scofield, L.; Reinlib, L.; Cooper, G.S. Understanding the epidemiology and progression of systemic lupus erythematosus. Semin. Arthritis Rheum. 2010, 39, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhang, D.; Yao, X.; Huang, Y.; Lu, Q. Global epidemiology of systemic lupus erythematosus: A comprehensive systematic analysis and modelling study. Ann. Rheum. Dis. 2023, 82, 351–356. [Google Scholar] [CrossRef]
- Lerang, K.; Gilboe, I.M.; Steinar Thelle, D.; Gran, J.T. Mortality and years of potential life loss in systemic lupus erythematosus: A population-based cohort study. Lupus 2014, 23, 1546–1552. [Google Scholar] [CrossRef]
- Danila, M.I.; Pons-Estel, G.J.; Zhang, J.; Vila, L.M.; Reveille, J.D.; Alarcon, G.S. Renal damage is the most important predictor of mortality within the damage index: Data from LUMINA LXIV, a multiethnic US cohort. Rheumatology 2009, 48, 542–545. [Google Scholar] [CrossRef]
- Mok, C.C.; Kwok, R.C.L.; Yip, P.S.F. Effect of Renal Disease on the Standardized Mortality Ratio and Life Expectancy of Patients With Systemic Lupus Erythematosus. Arthritis Rheum. 2013, 65, 2154–2160. [Google Scholar] [CrossRef] [PubMed]
- Bajema, I.M.; Wilhelmus, S.; Alpers, C.E.; Bruijn, J.A.; Colvin, R.B.; Cook, H.T.; D’Agati, V.D.; Ferrario, F.; Haas, M.; Jennette, J.C.; et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: Clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018, 93, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Arazi, A.; Rao, D.A.; Berthier, C.C.; Davidson, A.; Liu, Y.; Hoover, P.J.; Chicoine, A.; Eisenhaure, T.M.; Jonsson, A.H.; Li, S. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 2019, 20, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Tsokos, G.C.; Boulougoura, A.; Kasinath, V.; Endo, U.; Abdi, R.; Li, H. The immunoregulatory roles of non-haematopoietic cells in the kidney. Nat. Rev. Nephrol. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Anders, H.-J.; Saxena, R.; Zhao, M.-h.; Parodis, I.; Salmon, J.E.; Mohan, C. Lupus nephritis. Nat. Rev. Dis. Primers 2020, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, G.; Lech, M.; Anders, H.-J. Toll-like receptor activation in the pathogenesis of lupus nephritis. Clin. Immunol. 2017, 185, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Kaul, A.; Gordon, C.; Crow, M.K.; Touma, Z.; Urowitz, M.B.; van Vollenhoven, R.; Ruiz-Irastorza, G.; Hughes, G. Systemic lupus erythematosus. Nat. Rev. Dis. Primers 2016, 2, 16039. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, A.; Anders, H.-J. A novel pathogenetic concept—Antiviral immunity in lupus nephritis. Nat. Rev. Nephrol. 2012, 8, 183–189. [Google Scholar] [CrossRef]
- Devarapu, S.; Lorenz, G.; Kulkarni, O.; Anders, H.-J.; Mulay, S. Cellular and molecular mechanisms of autoimmunity and lupus nephritis. Int. Rev. Cell Mol. Biol. 2017, 332, 43–154. [Google Scholar]
- Hiepe, F.; Dörner, T.; Hauser, A.E.; Hoyer, B.F.; Mei, H.; Radbruch, A. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat. Rev. Rheumatol. 2011, 7, 170–178. [Google Scholar] [CrossRef]
- Hiepe, F.; Radbruch, A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat. Rev. Nephrol. 2016, 12, 232–240. [Google Scholar] [CrossRef]
- Huang, X.; Chen, W.; Ren, G.; Zhao, L.; Guo, J.; Gong, D.; Zeng, C.; Hu, W.; Liu, Z. Autologous hematopoietic stem cell transplantation for refractory lupus nephritis. Clin. J. Am. Soc. Nephrol. CJASN 2019, 14, 719. [Google Scholar] [CrossRef]
- Alexander, T.; Sarfert, R.; Klotsche, J.; Kühl, A.A.; Rubbert-Roth, A.; Lorenz, H.-M.; Rech, J.; Hoyer, B.F.; Cheng, Q.; Waka, A. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis. 2015, 74, 1474–1478. [Google Scholar] [CrossRef]
- Der, E.; Suryawanshi, H.; Morozov, P.; Kustagi, M.; Goilav, B.; Ranabothu, S.; Izmirly, P.; Clancy, R.; Belmont, H.M.; Koenigsberg, M. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 2019, 20, 915–927. [Google Scholar] [CrossRef]
- Bethunaickan, R.; Berthier, C.C.; Zhang, W.; Eksi, R.; Li, H.D.; Guan, Y.; Kretzler, M.; Davidson, A. Identification of stage-specific genes associated with lupus nephritis and response to remission induction in (NZB× NZW) F1 and NZM2410 mice. Arthritis Rheumatol. 2014, 66, 2246–2258. [Google Scholar] [CrossRef]
- Anders, H.-J. Nephropathic autoantigens in the spectrum of lupus nephritis. Nat. Rev. Nephrol. 2019, 15, 595–596. [Google Scholar] [CrossRef]
- Doria, A.; Gatto, M. Nephritogenic-antinephritogenic antibody network in lupus glomerulonephritis. Lupus 2012, 21, 1492–1496. [Google Scholar] [CrossRef]
- Stojan, G.; Petri, M. Anti-C1q in systemic lupus erythematosus. Lupus 2016, 25, 873–877. [Google Scholar] [CrossRef]
- Kotzen, E.S.; Roy, S.; Jain, K. Antiphospholipid syndrome nephropathy and other thrombotic microangiopathies among patients with systemic lupus erythematosus. Adv. Chronic Kidney Dis. 2019, 26, 376–386. [Google Scholar] [CrossRef]
- Sciascia, S.; Cuadrado, M.J.; Khamashta, M.; Roccatello, D. Renal involvement in antiphospholipid syndrome. Nat. Rev. Nephrol. 2014, 10, 279–289. [Google Scholar] [CrossRef]
- Ryu, M.; Migliorini, A.; Miosge, N.; Gross, O.; Shankland, S.; Brinkkoetter, P.T.; Hagmann, H.; Romagnani, P.; Liapis, H.; Anders, H.J. Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in non-inflammatory glomerular injury. J. Pathol. 2012, 228, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Turner-Stokes, T.; Wilson, H.R.; Morreale, M.; Nunes, A.; Cairns, T.; Cook, H.T.; Pusey, C.D.; Tarzi, R.M.; Lightstone, L. Positive antineutrophil cytoplasmic antibody serology in patients with lupus nephritis is associated with distinct histopathologic features on renal biopsy. Kidney Int. 2017, 92, 1223–1231. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Cheema, K.; Anders, H.-J.; Aringer, M.; Bajema, I.; Boletis, J.; Frangou, E.; Houssiau, F.A.; Hollis, J.; et al. 2019 Update of the Joint European League Against Rheumatism and European Renal Association–European Dialysis and Transplant Association (EULAR/ERA–EDTA) recommendations for the management of lupus nephritis. Ann. Rheum. Dis. 2020, 79, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Trendelenburg, M.; Lopez-Trascasa, M.; Potlukova, E.; Moll, S.; Regenass, S.; Fremeaux-Bacchi, V.; Martinez-Ara, J.; Jancova, E.; Picazo, M.L.; Honsova, E. High prevalence of anti-C1q antibodies in biopsy-proven active lupus nephritis. Nephrol. Dial. Transplant. 2006, 21, 3115–3121. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, M.D.L.Á.; Khoury, M.; Gómez, G.; Grimaudo, S.; Suárez, L.; Collado, M.V.; Sarano, J. Cut-off values of immunological tests to identify patients at high risk of severe lupus nephritis. Medicina 2018, 78, 329–335. [Google Scholar]
- Pesickova, S.S.; Rysava, R.; Lenicek, M.; Vitek, L.; Potlukova, E.; Hruskova, Z.; Jancova, E.; Honsova, E.; Zavada, J.; Trendelenburg, M.; et al. Prognostic value of anti-CRP antibodies in lupus nephritis in long-term follow-up. Arthritis Res. Ther. 2015, 17, 371. [Google Scholar] [CrossRef]
- Bonanni, A.; Vaglio, A.; Bruschi, M.; Sinico, R.A.; Cavagna, L.; Moroni, G.; Franceschini, F.; Allegri, L.; Pratesi, F.; Migliorini, P.; et al. Multi-antibody composition in lupus nephritis: Isotype and antigen specificity make the difference. Autoimmun. Rev. 2015, 14, 692–702. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, L.; Chen, K.; Huang, F.; Feng, Y.; Xu, Z.; Wang, W. Anti–α-enolase antibody combined with β2 microglobulin evaluated the incidence of nephritis in systemic lupus erythematosus patients. Lupus 2019, 28, 365–370. [Google Scholar] [CrossRef]
- Bruschi, M.; Sinico, R.A.; Moroni, G.; Pratesi, F.; Migliorini, P.; Galetti, M.; Murtas, C.; Tincani, A.; Madaio, M.; Radice, A.; et al. Glomerular Autoimmune Multicomponents of Human Lupus Nephritis In Vivo: α: -Enolase and Annexin AI. J. Am. Soc. Nephrol. 2014, 25, 2483. [Google Scholar] [CrossRef]
- Bruschi, M.; Moroni, G.; Sinico, R.A.; Franceschini, F.; Fredi, M.; Vaglio, A.; Cavagna, L.; Petretto, A.; Pratesi, F.; Migliorini, P.; et al. Serum IgG2 antibody multicomposition in systemic lupus erythematosus and lupus nephritis (Part 1): Cross-sectional analysis. Rheumatology 2021, 60, 3176–3188. [Google Scholar] [CrossRef]
- Babaei, M.; Rezaieyazdi, Z.; Saadati, N.; Saghafi, M.; Sahebari, M.; Naghibzadeh, B.; Esmaily, H. Serum alpha–actinin antibody status in systemic lupus erythematosus and its potential in the diagnosis of lupus nephritis. Casp. J. Intern. Med. 2016, 7, 272. [Google Scholar]
- Cortés-Hernández, J.; Ordi-Ros, J.; Labrador, M.; Buján, S.; Balada, E.; Segarra, A.; Vilardell-Tarrés, M. Antihistone and anti–double-stranded deoxyribonucleic acid antibodies are associated with renal disease in systemic lupus erythematosus. Am. J. Med. 2004, 116, 165–173. [Google Scholar] [CrossRef]
- Sun, X.Y.; Shi, J.; Han, L.; Su, Y.; Li, Z.G. Anti-histones antibodies in systemic lupus erythematosus: Prevalence and frequency in neuropsychiatric lupus. J. Clin. Lab. Anal. 2008, 22, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Ehrenstein, M.R.; Katz, D.R.; Griffiths, M.H.; Papadaki, L.; Winkler, T.H.; Kalden, J.R.; Isenberg, D.A. Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int. 1995, 48, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Hakkim, A.; Fürnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef]
- Kalaaji, M.; Fenton, K.A.; Mortensen, E.S.; Olsen, R.; Sturfelt, G.; Alm, P.; Rekvig, O.P. Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int. 2007, 71, 664–672. [Google Scholar] [CrossRef]
- Hedberg, A.; Fismen, S.; Fenton, K.A.; Mortensen, E.S.; Rekvig, O.P. Deposition of chromatin-IgG complexes in skin of nephritic MRL-lpr/lpr mice is associated with increased local matrix metalloprotease activities. Exp. Dermatol. 2010, 19, e265–e274. [Google Scholar] [CrossRef]
- Grootscholten, C.; Dieker, J.W.; McGrath, F.D.; Roos, A.; Derksen, R.H.; van der Vlag, J.; Daha, M.R.; Berden, J.H. A prospective study of anti-chromatin and anti-C1q autoantibodies in patients with proliferative lupus nephritis treated with cyclophosphamide pulses or azathioprine/methylprednisolone. Ann. Rheum. Dis. 2007, 66, 693–696. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Cai, J.; Xie, L.; Wang, W.; Tang, S.; Yin, S.; Gao, X.; Zhang, J.; Zhao, J.; et al. Clinicopathologic Characteristics and Outcomes of Lupus Nephritis With Antineutrophil Cytoplasmic Antibody: A Retrospective Study. Medicine 2016, 95, e2580. [Google Scholar] [CrossRef]
- Wang, S.; Shang, J.; Xiao, J.; Zhao, Z. Clinicopathologic characteristics and outcomes of lupus nephritis with positive antineutrophil cytoplasmic antibody. Ren. Fail. 2020, 42, 244–254. [Google Scholar] [CrossRef]
- Zhang, T.; Duran, V.; Vanarsa, K.; Mohan, C. Targeted urine proteomics in lupus nephritis–a meta-analysis. Expert Rev. Proteom. 2020, 17, 767–776. [Google Scholar] [CrossRef]
- Rovin, B.H. The chemokine network in systemic lupus erythematous nephritis. FBL 2008, 13, 904–922. [Google Scholar] [CrossRef]
- Phatak, S.; Chaurasia, S.; Mishra, S.; Gupta, R.; Agrawal, V.; Aggarwal, A.; Misra, R. Urinary B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL): Potential biomarkers of active lupus nephritis. Clin. Exp. Immunol. 2017, 187, 376–382. [Google Scholar] [CrossRef]
- Guimarães, J.d.A.R.; Furtado, S.d.C.a.o.; Lucas, A.C.d.S.; Mori, B.; Barcellos, J.F.M. Diagnostic test accuracy of novel biomarkers for lupus nephritis—An overview of systematic reviews. PLoS ONE 2022, 17, e0275016. [Google Scholar] [CrossRef]
- Rahmé, Z.; Franco, C.; Cruciani, C.; Pettorossi, F.; Zaramella, A.; Realdon, S.; Iaccarino, L.; Frontini, G.; Moroni, G.; Doria, A.; et al. Characterization of Serum Cytokine Profiles of Patients with Active Lupus Nephritis. Int. J. Mol. Sci. 2023, 24, 14883. [Google Scholar] [CrossRef]
- Wu, H.; Zeng, J.; Yin, J.; Peng, Q.; Zhao, M.; Lu, Q. Organ-specific biomarkers in lupus. Autoimmun. Rev. 2017, 16, 391–397. [Google Scholar] [CrossRef]
- Petri, M.; Stohl, W.; Chatham, W.; McCune, W.J.; Chevrier, M.; Ryel, J.; Recta, V.; Zhong, J.; Freimuth, W. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2008, 58, 2453–2459. [Google Scholar] [CrossRef]
- Hegazy, M.; Darwish, H.; Darweesh, H.; El-Shehaby, A.; Emad, Y. Raised serum level of APRIL in patients with systemic lupus erythematosus: Correlations with disease activity indices. Clin. Immunol. 2010, 135, 118–124. [Google Scholar] [CrossRef]
- Parodis, I.; Zickert, A.; Sundelin, B.; Axelsson, M.; Gerhardsson, J.; Svenungsson, E.; Malmström, V.; Gunnarsson, I. Evaluation of B lymphocyte stimulator and a proliferation inducing ligand as candidate biomarkers in lupus nephritis based on clinical and histopathological outcome following induction therapy. Lupus Sci. Med. 2015, 2, e000061. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.A.; Gonzalez-Rivera, T.; Khamashta, M.; Fox, N.L.; Jones-Leone, A.; Rubin, B.; Burriss, S.W.; Gairy, K.; Maurik, A.v.; Roth, D.A. 10 Years of belimumab experience: What have we learnt? Lupus 2021, 30, 1705–1721. [Google Scholar] [CrossRef] [PubMed]
- Treamtrakanpon, W.; Tantivitayakul, P.; Benjachat, T.; Somparn, P.; Kittikowit, W.; Eiam-ong, S.; Leelahavanichkul, A.; Hirankarn, N.; Avihingsanon, Y. APRIL, a proliferation-inducing ligand, as a potential marker of lupus nephritis. Arthritis Res. Ther. 2012, 14, R252. [Google Scholar] [CrossRef]
- Antonelli, A.; Ferrari, S.M.; Giuggioli, D.; Ferrannini, E.; Ferri, C.; Fallahi, P. Chemokine (C–X–C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun. Rev. 2014, 13, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Puapatanakul, P.; Chansritrakul, S.; Susantitaphong, P.; Ueaphongsukkit, T.; Eiam-Ong, S.; Praditpornsilpa, K.; Kittanamongkolchai, W.; Avihingsanon, Y. Interferon-inducible protein 10 and disease activity in systemic lupus erythematosus and lupus nephritis: A systematic review and meta-analysis. Int. J. Mol. Sci. 2019, 20, 4954. [Google Scholar] [CrossRef] [PubMed]
- Biesen, R.; Demir, C.; Barkhudarova, F.; Grün, J.R.; Steinbrich-Zöllner, M.; Backhaus, M.; Häupl, T.; Rudwaleit, M.; Riemekasten, G.; Radbruch, A. Sialic acid–binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008, 58, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.-Y.; Chung, J.-W.; Kim, H.-A.; Yun, J.-M.; Jeon, J.-Y.; Ye, Y.-M.; Kim, S.-H.; Park, H.-S.; Suh, C.-H. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J. Clin. Immunol. 2007, 27, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020, 16, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Jakiela, B.; Kosałka, J.; Plutecka, H.; Węgrzyn, A.S.; Bazan-Socha, S.; Sanak, M.; Musiał, J. Urinary cytokines and mRNA expression as biomarkers of disease activity in lupus nephritis. Lupus 2018, 27, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Glass, W.G.; Sarisky, R.T.; Vecchio, A.M.D. Not-so-sweet sixteen: The role of IL-16 in infectious and immune-mediated inflammatory diseases. J. Interferon Cytokine Res. 2006, 26, 511–520. [Google Scholar] [CrossRef]
- Roth, S.; Agthe, M.; Eickhoff, S.; Möller, S.; Karsten, C.; Borregaard, N.; Solbach, W.; Laskay, T. Secondary necrotic neutrophils release interleukin-16C and macrophage migration inhibitory factor from stores in the cytosol. Cell Death Discov. 2015, 1, 15056. [Google Scholar] [CrossRef]
- Fava, A.; Rao, D.A.; Mohan, C.; Zhang, T.; Rosenberg, A.; Fenaroli, P.; Belmont, H.M.; Izmirly, P.; Clancy, R.; Trujillo, J.M. Urine proteomics and renal single-cell transcriptomics implicate interleukin-16 in lupus nephritis. Arthritis Rheumatol. 2022, 74, 829–839. [Google Scholar] [CrossRef]
- El-Banawy, H.S.; Gaber, E.W.; Maharem, D.A.; Matrawy, K.A. Angiopoietin-2, endothelial dysfunction and renal involvement in patients with systemic lupus erythematosus. J. Nephrol. 2012, 25, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.; Vanarsa, K.; Soliman, S.; Habazi, D.; Pedroza, C.; Gidley, G.; Zhang, T.; Mohan, S.; Der, E.; Suryawanshi, H. Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities. Nat. Commun. 2020, 11, 2197. [Google Scholar] [CrossRef] [PubMed]
- Vanarsa, K.; Soomro, S.; Zhang, T.; Strachan, B.; Pedroza, C.; Nidhi, M.; Cicalese, P.; Gidley, C.; Dasari, S.; Mohan, S.; et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann. Rheum. Dis. 2020, 79, 1349–1361. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Du, Y.; Han, J.; Singh, S.; Xie, C.; Guo, Y.; Zhou, X.J.; Ahn, C.; Saxena, R.; Mohan, C. Urinary Angiostatin—A Novel Putative Marker of Renal Pathology Chronicity in Lupus Nephritis. Mol. Cell. Proteom. 2013, 12, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.; Mohamed, F.A.; Ismail, F.M.; Stanley, S.; Saxena, R.; Mohan, C. Urine angiostatin and VCAM-1 surpass conventional metrics in predicting elevated renal pathology activity indices in lupus nephritis. Int. J. Rheum. Dis. 2017, 20, 1714–1727. [Google Scholar] [CrossRef]
- Raslan, H.Z.; Sibaii, H.; El-Zayat, S.R.; Hassan, H.; El-Kassaby, M. Increased level of B cell differentiation factor in systemic lupus erythematosus patients. J. Genet. Eng. Biotechnol. 2018, 16, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xue, Z.; Di, L. Regulation of MiR-146a and TRAF6 in the diagnose of lupus nephritis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017, 23, 2550. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, Z.; Qin, B.; Wu, P.; Zhong, R.; Zhou, L.; Liang, Y. Human epididymis protein 4: A novel biomarker for lupus nephritis and chronic kidney disease in systemic lupus erythematosus. J. Clin. Lab. Anal. 2016, 30, 897–904. [Google Scholar] [CrossRef]
- Xia, Y.-R.; Li, Q.-R.; Wang, J.-P.; Guo, H.-S.; Bao, Y.-Q.; Mao, Y.-M.; Wu, J.; Pan, H.-F.; Ye, D.-Q. Diagnostic value of urinary monocyte chemoattractant protein-1 in evaluating the activity of lupus nephritis: A meta-analysis. Lupus 2020, 29, 599–606. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Ding, H.; Tian, L.; Gao, T.; Bao, C. The utility of urinary biomarker panel in predicting renal pathology and treatment response in Chinese lupus nephritis patients. PLoS ONE 2020, 15, e0240942. [Google Scholar] [CrossRef]
- Singh, R.; Usha; Rathore, S.S.; Behura, S.K.; Singh, N.K. Urinary MCP-1 as diagnostic and prognostic marker in patients with lupus nephritis flare. Lupus 2012, 21, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Song, H.; Birmingham, D.J.; Hebert, L.A.; Yu, C.Y.; Nagaraja, H.N. Urine chemokines as biomarkers of human systemic lupus erythematosus activity. J. Am. Soc. Nephrol. JASN 2004, 16, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Urrego-Callejas, T.; Álvarez, S.S.; Arias, L.F.; Reyes, B.O.; Vanegas-García, A.L.; González, L.A.; Muñoz-Vahos, C.H.; Vásquez, G.; Quintana, L.F.; Gómez-Puerta, J.A. Urinary levels of ceruloplasmin and monocyte chemoattractant protein-1 correlate with extra-capillary proliferation and chronic damage in patients with lupus nephritis. Clin. Rheumatol. 2021, 40, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Susianti, H.; Iriane, V.M.; Dharmanata, S.; Handono, K.; Widijanti, A.; Gunawan, A.; Kalim, H. Analysis of urinary TGF-β1, MCP-1, NGAL, and IL-17 as biomarkers for lupus nephritis. Pathophysiology 2015, 22, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Dedong, H.; Feiyan, Z.; Jie, S.; Xiaowei, L.; Shaoyang, W. Analysis of interleukin-17 and interleukin-23 for estimating disease activity and predicting the response to treatment in active lupus nephritis patients. Immunol. Lett. 2019, 210, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Mohan, C.; Zhang, T.; Putterman, C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat. Rev. Nephrol. 2023, 19, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.N.; Taha, H.A.; Abd El-Fattah El-Feqi, M.; Eesa, N.N.; Mohamed, R.A. Urinary TNF-like weak inducer of apoptosis (TWEAK) as a biomarker of lupus nephritis. Z. Für Rheumatol. 2018, 77, 71–77. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Dai, Z.-W.; Dong, Y.-Y.; Wang, H.; Yuan, F.-F.; Wang, B.; Ye, D.-Q. Urinary Tumor Necrosis Factor–Like Weak Inducer of Apoptosis as a Biomarker for Diagnosis and Evaluating Activity in Lupus Nephritis: A Meta-analysis. JCR J. Clin. Rheumatol. 2021, 27, 272–277. [Google Scholar] [CrossRef]
- Stanley, S.; Mok, C.C.; Vanarsa, K.; Habazi, D.; Li, J.; Pedroza, C.; Saxena, R.; Mohan, C. Identification of Low-Abundance Urinary Biomarkers in Lupus Nephritis Using Electrochemiluminescence Immunoassays. Arthritis Rheumatol. 2019, 71, 744–755. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Yang, H.-Y.; Chien, H.-P.; Tseng, M.-H.; Huang, J.-L. Urinary clusterin—A novel urinary biomarker associated with pediatric lupus renal histopathologic features and renal survival. Pediatr. Nephrol. 2018, 33, 1189–1198. [Google Scholar] [CrossRef]
- Gupta, R.; Aggarwal, A.; Sinha, S.; Rajasekhar, L.; Yadav, A.; Gaur, P.; Misra, R.; Negi, V. Urinary osteoprotegerin: A potential biomarker of lupus nephritis disease activity. Lupus 2016, 25, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Urrego, T.; Ortiz-Reyes, B.; Vanegas-García, A.L.; Muñoz, C.H.; González, L.A.; Vásquez, G.; Gómez-Puerta, J.A. Utility of urinary transferrin and ceruloplasmin in patients with systemic lupus erythematosus for differentiating patients with lupus nephritis. Reumatol. Clínica (Engl. Ed.) 2020, 16, 17–23. [Google Scholar] [CrossRef]
- Springer, T.A. Adhesion receptors of the immune system. Nature 1990, 346, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Parodis, I.; Gokaraju, S.; Zickert, A.; Vanarsa, K.; Zhang, T.; Habazi, D.; Botto, J.; Serdoura Alves, C.; Giannopoulos, P.; Larsson, A.; et al. ALCAM and VCAM-1 as urine biomarkers of activity and long-term renal outcome in systemic lupus erythematosus. Rheumatology 2020, 59, 2237–2249. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Lin, C.; Cai, J.; Guo, Q.; Dai, M.; Mohan, C.; Shen, N. Urinary activated leukocyte cell adhesion molecule as a novel biomarker of lupus nephritis histology. Arthritis Res. Ther. 2020, 22, 1–9. [Google Scholar] [CrossRef]
- Howe, H.S.; Kong, K.O.; Thong, B.Y.; Law, W.G.; Chia, F.L.; Lian, T.Y.; Lau, T.C.; Chng, H.H.; Leung, B.P. Urine s VCAM-1 and s ICAM-1 levels are elevated in lupus nephritis. Int. J. Rheum. Dis. 2012, 15, 13–16. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Y.; Liu, Y.; Zhao, Y.; Song, C.; Zhou, B.; Wang, T.; Gao, L.; Zhang, L.; Hu, H. Rapid detection of urinary soluble intercellular adhesion molecule-1 for determination of lupus nephritis activity. Medicine 2018, 97, e11287. [Google Scholar] [CrossRef]
- Mok, C.C.; Soliman, S.; Ho, L.Y.; Mohamed, F.A.; Mohamed, F.I.; Mohan, C. Urinary angiostatin, CXCL4 and VCAM-1 as biomarkers of lupus nephritis. Arthritis Res. Ther. 2018, 20, 1–10. [Google Scholar] [CrossRef]
- Singh, S.; Wu, T.; Xie, C.; Vanarsa, K.; Han, J.; Mahajan, T.; Oei, H.B.; Ahn, C.; Zhou, X.J.; Putterman, C.; et al. Urine VCAM-1 as a marker of renal pathology activity index in lupus nephritis. Arthritis Res. Ther. 2012, 14, R164. [Google Scholar] [CrossRef]
- Gupta, R.; Yadav, A.; Aggarwal, A. Urinary soluble CD163 is a good biomarker for renal disease activity in lupus nephritis. Clin. Rheumatol. 2021, 40, 941–948. [Google Scholar] [CrossRef]
- Lei, R.; Vu, B.; Kourentzi, K.; Soomro, S.; Danthanarayana, A.N.; Brgoch, J.; Nadimpalli, S.; Petri, M.; Mohan, C.; Willson, R.C. A novel technology for home monitoring of lupus nephritis that tracks the pathogenic urine biomarker ALCAM. Front. Immunol. 2022, 13, 1044743. [Google Scholar] [CrossRef] [PubMed]
- Gasparin, A.A.; de Andrade, N.P.B.; Hax, V.; Palominos, P.E.; Siebert, M.; Marx, R.; Schaefer, P.G.; Veronese, F.V.; Monticielo, O.A. Urinary soluble VCAM-1 is a useful biomarker of disease activity and treatment response in lupus nephritis. BMC Rheumatol. 2020, 4, 67. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.Y.C.; Yung, S.; Chau, M.K.M.; Tang, C.S.O.; Yap, D.Y.H.; Tang, A.H.N.; Ying, S.K.Y.; Lee, C.K.; Chan, T.M. Clinico-pathological associations of serum VCAM-1 and ICAM-1 levels in patients with lupus nephritis. Lupus 2021, 30, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Satirapoj, B.; Kitiyakara, C.; Leelahavanichkul, A.; Avihingsanon, Y.; Supasyndh, O. Urine neutrophil gelatinase-associated lipocalin to predict renal response after induction therapy in active lupus nephritis. BMC Nephrol. 2017, 18, 263. [Google Scholar] [CrossRef] [PubMed]
- Mirioglu, S.; Cinar, S.; Yazici, H.; Ozluk, Y.; Kilicaslan, I.; Gul, A.; Ocal, L.; Inanc, M.; Artim-Esen, B. Serum and urine TNF-like weak inducer of apoptosis, monocyte chemoattractant protein-1 and neutrophil gelatinase-associated lipocalin as biomarkers of disease activity in patients with systemic lupus erythematosus. Lupus 2020, 29, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C.; Ding, H.H.; Kharboutli, M.; Mohan, C. Axl, Ferritin, Insulin-Like Growth Factor Binding Protein 2, and Tumor Necrosis Factor Receptor Type II as Biomarkers in Systemic Lupus Erythematosus. Arthritis Care Res. 2016, 68, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Parodis, I.; Ding, H.; Zickert, A.; Cosson, G.; Fathima, M.; Grönwall, C.; Mohan, C.; Gunnarsson, I. Serum Axl predicts histology-based response to induction therapy and long-term renal outcome in lupus nephritis. PLoS ONE 2019, 14, e0212068. [Google Scholar] [CrossRef]
- Wu, T.; Ding, H.; Han, J.; Arriens, C.; Wei, C.; Han, W.; Pedroza, C.; Jiang, S.; Anolik, J.; Petri, M.; et al. Antibody-Array-Based Proteomic Screening of Serum Markers in Systemic Lupus Erythematosus: A Discovery Study. J. Proteome Res. 2016, 15, 2102–2114. [Google Scholar] [CrossRef]
- Mejia-Vilet, J.M.; Zhang, X.L.; Cruz, C.; Cano-Verduzco, M.L.; Shapiro, J.P.; Nagaraja, H.N.; Morales-Buenrostro, L.E.; Rovin, B.H. Urinary Soluble CD163: A Novel Noninvasive Biomarker of Activity for Lupus Nephritis. J. Am. Soc. Nephrol. 2020, 31, 1335–1347. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Vanarsa, K.; Gidley, G.; Mok, C.C.; Petri, M.; Saxena, R.; Mohan, C. Association of urine sCD163 with proliferative lupus nephritis, fibrinoid necrosis, cellular crescents and intrarenal M2 macrophages. Front. Immunol. 2020, 11, 671. [Google Scholar] [CrossRef]
- Inthavong, H.; Vanarsa, K.; Castillo, J.; Hicks, M.J.; Mohan, C.; Wenderfer, S.E. Urinary CD163 is a marker of active kidney disease in childhood-onset lupus nephritis. Rheumatology 2023, 62, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Vilet, J.M.; Shapiro, J.P.; Zhang, X.L.; Cruz, C.; Zimmerman, G.; Méndez-Pérez, R.A.; Cano-Verduzco, M.L.; Parikh, S.V.; Nagaraja, H.N.; Morales-Buenrostro, L.E.; et al. Association Between Urinary Epidermal Growth Factor and Renal Prognosis in Lupus Nephritis. Arthritis Rheumatol. 2021, 73, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Patyna, S.; Buettner, S.; Eckes, T.; Obermueller, N.; Bartel, C.; Braner, A.; Trautmann, S.; Thomas, D.; Geiger, H.; Pfeilschifter, J. Blood ceramides as novel markers for renal impairment in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat. 2019, 144, 106348. [Google Scholar] [CrossRef] [PubMed]
- Checa, A.; Idborg, H.; Zandian, A.; Sar, D.G.; Surowiec, I.; Trygg, J.; Svenungsson, E.; Jakobsson, P.; Nilsson, P.; Gunnarsson, I. Dysregulations in circulating sphingolipids associate with disease activity indices in female patients with systemic lupus erythematosus: A cross-sectional study. Lupus 2017, 26, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Leffler, J.; Bengtsson, A.A.; Blom, A.M. The complement system in systemic lupus erythematosus: An update. Ann. Rheum. Dis. 2014, 73, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, A.; Alexander, R.V.; Zack, D.J. A review of complement activation in SLE. Curr. Rheumatol. Rep. 2021, 23, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Troldborg, A.; Jensen, L.; Deleuran, B.; Stengaard-Pedersen, K.; Thiel, S.; Jensenius, J.C. The C3dg fragment of complement is superior to conventional C3 as a diagnostic biomarker in systemic lupus erythematosus. Front. Immunol. 2018, 9, 581. [Google Scholar] [CrossRef]
- Pillemer, S.; Austi, H., 3rd; Tsokos, G.; Balow, J. Lupus nephritis: Association between serology and renal biopsy measures. J. Rheumatol. 1988, 15, 284–288. [Google Scholar]
- Martin, M.; Smoląg, K.I.; Björk, A.; Gullstrand, B.; Okrój, M.; Leffler, J.; Jönsen, A.; Bengtsson, A.A.; Blom, A.M. Plasma C4d as marker for lupus nephritis in systemic lupus erythematosus. Arthritis Res. Ther. 2017, 19, 1–9. [Google Scholar] [CrossRef]
- Martin, M.; Trattner, R.; Nilsson, S.C.; Björk, A.; Zickert, A.; Blom, A.M.; Gunnarsson, I. Plasma C4d correlates with C4d deposition in kidneys and with treatment response in lupus nephritis patients. Front. Immunol. 2020, 11, 582737. [Google Scholar] [CrossRef]
- Hu, X.; Liu, H.; Du, J.; Chen, Y.; Yang, M.; Xie, Y.; Chen, J.; Yan, S.; Ouyang, S.; Gong, Z. The clinical significance of plasma CFHR 1–5 in lupus nephropathy. Immunobiology 2019, 224, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Te, J.L.; Dozmorov, I.M.; Guthridge, J.M.; Nguyen, K.L.; Cavett, J.W.; Kelly, J.A.; Bruner, G.R.; Harley, J.B.; Ojwang, J.O. Identification of unique microRNA signature associated with lupus nephritis. PLoS ONE 2010, 5, e10344. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Sui, W.; Lan, H.; Yan, Q.; Huang, H.; Huang, Y. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol. Int. 2009, 29, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Mi, Q.S.; Dong, Z. The regulation and function of microRNAs in kidney diseases. IUBMB Life 2013, 65, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Roointan, A.; Gholaminejad, A.; Shojaie, B.; Hudkins, K.L.; Gheisari, Y. Candidate MicroRNA Biomarkers in Lupus Nephritis: A Meta-analysis of Profiling Studies in Kidney, Blood and Urine Samples. Mol. Diagn. Ther. 2023, 27, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Perez-Hernandez, J.; Martinez-Arroyo, O.; Ortega, A.; Galera, M.; Solis-Salguero, M.A.; Chaves, F.J.; Redon, J.; Forner, M.J.; Cortes, R. Urinary exosomal miR-146a as a marker of albuminuria, activity changes and disease flares in lupus nephritis. J. Nephrol. 2021, 34, 1157–1167. [Google Scholar] [CrossRef]
- Garcia-Vives, E.; Solé, C.; Moliné, T.; Vidal, M.; Agraz, I.; Ordi-Ros, J.; Cortés-Hernández, J. The urinary exosomal miRNA expression profile is predictive of clinical response in lupus nephritis. Int. J. Mol. Sci. 2020, 21, 1372. [Google Scholar] [CrossRef]
- Nakhjavani, M.; Etemadi, J.; Pourlak, T.; Mirhosaini, Z.; Vahed, S.Z.; Abediazar, S. Plasma levels of miR-21, miR-150, miR-423 in patients with lupus nephritis. Iran. J. Kidney Dis. 2019, 13, 198. [Google Scholar]
- Vahed, S.Z.; Nakhjavani, M.; Etemadi, J.; Jamshidi, H.; Jadidian, N.; Pourlak, T.; Abediazar, S. Altered levels of immune-regulatory microRNAs in plasma samples of patients with lupus nephritis. BioImpacts BI 2018, 8, 177. [Google Scholar]
- Solé, C.; Cortés-Hernández, J.; Felip, M.L.; Vidal, M.; Ordi-Ros, J. miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol. Dial. Transplant. 2015, 30, 1488–1496. [Google Scholar] [CrossRef]
- Wu, G.-C.; Li, J.; Leng, R.-X.; Li, X.-P.; Li, X.-M.; Wang, D.-G.; Pan, H.-F.; Ye, D.-Q. Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus. Oncotarget 2017, 8, 23650. [Google Scholar] [CrossRef] [PubMed]
- Charras, A.; Haldenby, S.; Smith, E.M.D.; Egbivwie, N.; Olohan, L.; Kenny, J.G.; Schwarz, K.; Roberts, C.; Al-Abadi, E.; Armon, K.; et al. Panel sequencing links rare, likely damaging gene variants with distinct clinical phenotypes and outcomes in juvenile-onset SLE. Rheumatology 2022, 62, SI210–SI225. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.J.; Cañete, P.F.; Wang, H.; Medhavy, A.; Bones, J.; Roco, J.A.; He, Y.; Qin, Y.; Cappello, J.; Ellyard, J.I.; et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 2022, 605, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, C.G.; Shen, N.; Ware, T. Genetics of SLE: Mechanistic insights from monogenic disease and disease-associated variants. Nat. Rev. Nephrol. 2023, 19, 558–572. [Google Scholar] [CrossRef]
- Barturen, G.; Babaei, S.; Català-Moll, F.; Martínez-Bueno, M.; Makowska, Z.; Martorell-Marugán, J.; Carmona-Sáez, P.; Toro-Domínguez, D.; Carnero-Montoro, E.; Teruel, M.; et al. Integrative Analysis Reveals a Molecular Stratification of Systemic Autoimmune Diseases. Arthritis Rheumatol. 2021, 73, 1073–1085. [Google Scholar] [CrossRef]
- Zhang, C.; Han, X.; Sun, L.; Yang, S.; Peng, J.; Chen, Y.; Jin, Y.; Xu, F.; Liu, Z.; Zhou, Q. Novel loss-of-function mutations in TNFAIP3 gene in patients with lupus nephritis. Clin. Kidney J. 2022, 15, 2027–2038. [Google Scholar] [CrossRef]
- Aeschlimann, F.A.; Batu, E.D.; Canna, S.W.; Go, E.; Gül, A.; Hoffmann, P.; Leavis, H.L.; Ozen, S.; Schwartz, D.M.; Stone, D.L.; et al. A20 haploinsufficiency (HA20): Clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann. Rheum. Dis. 2018, 77, 728–735. [Google Scholar] [CrossRef]
- Li, G.M.; Liu, H.M.; Guan, W.Z.; Xu, H.; Wu, B.B.; Sun, L. Expanding the spectrum of A20 haploinsufficiency in two Chinese families: Cases report. BMC Med. Genet. 2019, 20, 124. [Google Scholar] [CrossRef]
- Mohan, C.; Putterman, C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat. Rev. Nephrol. 2015, 11, 329–341. [Google Scholar] [CrossRef]
- Lanata, C.M.; Nititham, J.; Taylor, K.E.; Chung, S.A.; Torgerson, D.G.; Seldin, M.F.; Pons-Estel, B.A.; Tusié-Luna, T.; Tsao, B.P.; Morand, E.F.; et al. Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients. PLoS ONE 2018, 13, e0199003. [Google Scholar] [CrossRef]
- Bolin, K.; Sandling, J.K.; Zickert, A.; Jönsen, A.; Sjöwall, C.; Svenungsson, E.; Bengtsson, A.A.; Eloranta, M.L.; Rönnblom, L.; Syvänen, A.C.; et al. Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS ONE 2013, 8, e84450. [Google Scholar] [CrossRef] [PubMed]
- Bolin, K.; Imgenberg-Kreuz, J.; Leonard, D.; Sandling, J.K.; Alexsson, A.; Pucholt, P.; Haarhaus, M.L.; Almlöf, J.C.; Nititham, J.; Jönsen, A.; et al. Variants in BANK1 are associated with lupus nephritis of European ancestry. Genes Immun. 2021, 22, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.A.; Brown, E.E.; Williams, A.H.; Ramos, P.S.; Berthier, C.C.; Bhangale, T.; Alarcon-Riquelme, M.E.; Behrens, T.W.; Criswell, L.A.; Graham, D.C.; et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J. Am. Soc. Nephrol. 2014, 25, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, D.; Pei, G.; Zeng, R.; Yao, Y. Identification of driver genes in lupus nephritis based on comprehensive bioinformatics and machine learning. Front. Immunol. 2023, 14, 1288699. [Google Scholar] [CrossRef]
- Yavuz, S.; Pucholt, P.; Sandling, J.K.; Bianchi, M.; Leonard, D.; Bolin, K.; Imgenberg-Kreuz, J.; Eloranta, M.L.; Kozyrev, S.V.; Lanata, C.M.; et al. Mer-tyrosine kinase: A novel susceptibility gene for SLE related end-stage renal disease. Lupus Sci. Med. 2022, 9, e000752. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.M.; Camenisch, T.D.; Lemke, G.; Earp, H.S.; Matsushima, G.K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 2007, 178, 5635–5642. [Google Scholar] [CrossRef] [PubMed]
- Sather, S.; Kenyon, K.D.; Lefkowitz, J.B.; Liang, X.; Varnum, B.C.; Henson, P.M.; Graham, D.K. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 2007, 109, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Rothlin, C.V.; Ghosh, S.; Zuniga, E.I.; Oldstone, M.B.; Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 2007, 131, 1124–1136. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Han, J.-Y.; Byun, J.; Park, H.-J.; Park, E.-M.; Chong, Y.H.; Cho, M.-S.; Kang, J.L. Inhibiting Mer receptor tyrosine kinase suppresses STAT1, SOCS1/3, and NF-κB activation and enhances inflammatory responses in lipopolysaccharide-induced acute lung injury. J. Leukoc. Biol. 2012, 91, 921–932. [Google Scholar] [CrossRef]
- Adomati, T.; Cham, L.B.; Hamdan, T.A.; Bhat, H.; Duhan, V.; Li, F.; Ali, M.; Lang, E.; Huang, A.; Naser, E. Dead cells induce innate anergy via mertk after acute viral infection. Cell Rep. 2020, 30, 3671–3681.e5. [Google Scholar] [CrossRef]
- Keller, A.D.; Maniatis, T. Identification and characterization of a novel repressor of beta-interferon gene expression. Genes Dev. 1991, 5, 868–879. [Google Scholar] [CrossRef]
- Freedman, B.I.; Langefeld, C.D.; Andringa, K.K.; Croker, J.A.; Williams, A.H.; Garner, N.E.; Birmingham, D.J.; Hebert, L.A.; Hicks, P.J.; Segal, M.S. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol. 2014, 66, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Kopp, J.B.; Langefeld, C.D.; Genovese, G.; Friedman, D.J.; Nelson, G.W.; Winkler, C.A.; Bowden, D.W.; Pollak, M.R. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J. Am. Soc. Nephrol. JASN 2010, 21, 1422. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.P.; Adrianto, I.; Lessard, C.J.; Kelly, J.A.; Kaufman, K.M.; Guthridge, J.M.; Freedman, B.I.; Anaya, J.-M.; Alarcón-Riquelme, M.E.; Pons-Estel, B.A. Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes Immun. 2012, 13, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Zhang, P.; Tong, Y. Value of HLA-DR genotype in systemic lupus erythematosus and lupus nephritis: A meta-analysis. Int. J. Rheum. Dis. 2015, 18, 17–28. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.F.; Liu, L.; Bielowka, A.; Ahmed, R.; Zhang, H.; Tombleson, P.; Roberts, A.L.; Odhams, C.A.; Cunninghame Graham, D.S.; et al. Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum. Mol. Genet. 2020, 29, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.C.; Ha, E.; Kwon, H.H.; Park, D.J.; Shin, J.M.; Joo, Y.B.; Chung, W.T.; Yoo, D.H.; Lee, H.S.; Kim, K.; et al. Higher Genetic Risk Loads Confer More Diverse Manifestations and Higher Risk of Lupus Nephritis in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2023, 75, 1566–1572. [Google Scholar] [CrossRef]
- Webber, D.; Cao, J.; Dominguez, D.; Gladman, D.D.; Levy, D.M.; Ng, L.; Paterson, A.D.; Touma, Z.; Urowitz, M.B.; Wither, J.E.; et al. Association of systemic lupus erythematosus (SLE) genetic susceptibility loci with lupus nephritis in childhood-onset and adult-onset SLE. Rheumatology 2020, 59, 90–98. [Google Scholar] [CrossRef]
- Hedrich, C.M.; Tsokos, G.C. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends Mol. Med. 2011, 17, 714–724. [Google Scholar] [CrossRef]
- Crispín, J.C.; Hedrich, C.M.; Tsokos, G.C. Gene-function studies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 2013, 9, 476–484. [Google Scholar] [CrossRef]
- Ding, H.; Shen, Y.; Hong, S.M.; Xiang, C.; Shen, N. Biomarkers for systemic lupus erythematosus—A focus on organ Damage. Expert Rev. Clin. Immunol. 2023, 20, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Puerta, J.A.; Ortiz-Reyes, B.; Urrego, T.; Vanegas-García, A.L.; Muñoz, C.H.; González, L.A.; Cervera, R.; Vásquez, G. Urinary neutrophil gelatinase-associated lipocalin and monocyte chemoattractant protein 1 as biomarkers for lupus nephritis in Colombian SLE patients. Lupus 2017, 27, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, D.J.; Bitter, J.E.; Ndukwe, E.G.; Dials, S.; Gullo, T.R.; Conroy, S.; Nagaraja, H.N.; Rovin, B.H.; Hebert, L.A. Relationship of Circulating Anti-C3b and Anti-C1q IgG to Lupus Nephritis and Its Flare. Clin. J. Am. Soc. Nephrol. 2016, 11, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, A.; Samadi, G.; Sayedbonakdar, Z.; Smiley, A. Anti-C1q antibody in patients with lupus nephritic flare: 18-month follow-up and a nested case-control study. Mod. Rheumatol. 2016, 26, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Song, D.; Wu, L.-h.; Yu, F.; Zhao, M.-h. Serum levels and renal deposition of C1q complement component and its antibodies reflect disease activity of lupus nephritis. BMC Nephrol. 2013, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Tan, Y.; Li, Y.; Zhang, J.; Guo, Y.; Guo, Z.; Zhang, C.; Yu, F.; Zhao, M.-h. Serum A08 C1q antibodies are associated with disease activity and prognosis in Chinese patients with lupus nephritis. Kidney Int. 2016, 90, 1357–1367. [Google Scholar] [CrossRef]
- Yap, D.Y.H.; Yung, S.; Zhang, Q.; Tang, C.; Chan, T.M. Serum level of proximal renal tubular epithelial cell-binding immunoglobulin G in patients with lupus nephritis. Lupus 2015, 25, 46–53. [Google Scholar] [CrossRef]
- Tang, C.; Fang, M.; Tan, G.; Zhang, S.; Yang, B.; Li, Y.; Zhang, T.; Saxena, R.; Mohan, C.; Wu, T. Discovery of novel circulating immune complexes in lupus nephritis using immunoproteomics. Front. Immunol. 2022, 13, 850015. [Google Scholar] [CrossRef]
- Ichinose, K.; Kitamura, M.; Sato, S.; Fujikawa, K.; Horai, Y.; Matsuoka, N.; Tsuboi, M.; Nonaka, F.; Shimizu, T.; Fukui, S.; et al. Podocyte foot process width is a prediction marker for complete renal response at 6 and 12 months after induction therapy in lupus nephritis. Clin. Immunol. 2018, 197, 161–168. [Google Scholar] [CrossRef]
- Calich, A.L.; Borba, E.F.; Ugolini-Lopes, M.R.; da Rocha, L.F.; Bonfá, E.; Fuller, R. Serum uric acid levels are associated with lupus nephritis in patients with normal renal function. Clin. Rheumatol. 2018, 37, 1223–1228. [Google Scholar] [CrossRef]
- Hafez, E.A.; Hassan, S.A.E.-m.; Teama, M.A.M.; Badr, F.M. Serum uric acid as a predictor for nephritis in Egyptian patients with systemic lupus erythematosus. Lupus 2020, 30, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Hung, W.T.; Liao, Y.W.; Hsu, C.Y.; Hsieh, T.Y.; Chen, H.H.; Hsieh, C.W.; Lin, C.T.; Lai, K.L.; Tang, K.T.; et al. Combination immunosuppressant therapy and lupus nephritis outcome: A hospital-based study. Lupus 2019, 28, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-R.; Qi, Y.-Y.; Zhao, Y.-F.; Cui, Y.; Wang, X.-Y.; Zhao, Z.-Z. Albumin-to-globulin ratio (AGR) as a potential marker of predicting lupus nephritis in Chinese patients with systemic lupus erythematosus. Lupus 2021, 30, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Barr, E.; Magder, L.S. Risk of renal failure within 10 or 20 years of systemic lupus erythematosus diagnosis. J. Rheumatol. 2021, 48, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Selvaraja, M.; Abdullah, M.; Arip, M.; Chin, V.K.; Shah, A.; Amin Nordin, S. Elevated interleukin-25 and its association to Th2 cytokines in systemic lupus erythematosus with lupus nephritis. PLoS ONE 2019, 14, e0224707. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Martínez, F.; Pérez-Navarro, M.; Rodríguez-Matías, A.; Soto-Abraham, V.; Gutierrez-Reyes, G.; Medina-Avila, Z.; Valdez-Ortiz, R. Assessment of urinary TWEAK levels in Mexican patients with untreated lupus nephritis: An exploratory study. Nefrología 2018, 38, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, D.S.; Abdel Noor, R.A.; Shalaby, K.A.; Haroun, R.A.-H. Urinary Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (uTWEAK) and Urinary Monocyte Chemo-attractant Protein-1 (uMCP-1): Promising Biomarkers of Lupus Nephritis Activity? Saudi J. Kidney Dis. Transplant. 2021, 32, 19–29. [Google Scholar] [CrossRef]
- Choe, J.-Y.; Kim, S.-K. Serum TWEAK as a biomarker for disease activity of systemic lupus erythematosus. Inflamm. Res. 2016, 65, 479–488. [Google Scholar] [CrossRef]
- Wolf, B.J.; Spainhour, J.C.; Arthur, J.M.; Janech, M.G.; Petri, M.; Oates, J.C. Development of biomarker models to predict outcomes in lupus nephritis. Arthritis Rheumatol. 2016, 68, 1955–1963. [Google Scholar] [CrossRef]
- Nordin, F.; Shaharir, S.S.; Abdul Wahab, A.; Mustafar, R.; Abdul Gafor, A.H.; Mohamed Said, M.S.; Rajalingham, S.; Shah, S.A. Serum and urine interleukin-17A levels as biomarkers of disease activity in systemic lupus erythematosus. Int. J. Rheum. Dis. 2019, 22, 1419–1426. [Google Scholar] [CrossRef]
- Vincent, F.B.; Kandane-Rathnayake, R.; Hoi, A.Y.; Slavin, L.; Godsell, J.D.; Kitching, A.R.; Harris, J.; Nelson, C.L.; Jenkins, A.J.; Chrysostomou, A.; et al. Urinary B-cell-activating factor of the tumour necrosis factor family (BAFF) in systemic lupus erythematosus. Lupus 2018, 27, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Endo, N.; Tsuboi, N.; Furuhashi, K.; Shi, Y.; Du, Q.; Abe, T.; Hori, M.; Imaizumi, T.; Kim, H.; Katsuno, T.; et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol. Dial. Transplant. 2016, 31, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.C.; Carlsson, E.; Midgley, A.; Smith, E.M.D.; Bruce, I.N.; Beresford, M.W.; Hedrich, C.M.; BILAG-BR and MRC MASTERPLANS Consortia. A panel of urinary proteins predicts active lupus nephritis and response to rituximab treatment. Rheumatology 2021, 60, 3747–3759. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, S.A.; Ayilam Ramachandran, R.; Garcia, S.J.; Der, E.; Herlitz, L.; Ampudia, J.; Chu, D.; Jordan, N.; Zhang, T.; Parodis, I.; et al. The CD6/ALCAM pathway promotes lupus nephritis via T cell–mediated responses. J. Clin. Investig. 2022, 132. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Xie, J.; Lin, F.; Luo, W.; Zhang, Z.; Mao, P.; Zhong, R.; Liang, Y.; Yang, Z. Serum human epididymis protein 4 is a predictor for developing nephritis in patients with systemic lupus erythematosus: A prospective cohort study. Int. Immunopharmacol. 2018, 60, 189–193. [Google Scholar] [CrossRef]
- Ding, H.; Kharboutli, M.; Saxena, R.; Wu, T. Insulin-like growth factor binding protein-2 as a novel biomarker for disease activity and renal pathology changes in lupus nephritis. Clin. Exp. Immunol. 2016, 184, 11–18. [Google Scholar] [CrossRef]
- Wu, T.; Xie, C.; Han, J.; Ye, Y.; Singh, S.; Zhou, J.; Li, Y.; Ding, H.; Li, Q.-z.; Zhou, X. Insulin-like growth factor binding protein-4 as a marker of chronic lupus nephritis. PLoS ONE 2016, 11, e0151491. [Google Scholar] [CrossRef]
- Smith, M.A.; Henault, J.; Karnell, J.L.; Parker, M.L.; Riggs, J.M.; Sinibaldi, D.; Taylor, D.K.; Ettinger, R.; Grant, E.P.; Sanjuan, M.A.; et al. SLE Plasma Profiling Identifies Unique Signatures of Lupus Nephritis and Discoid Lupus. Sci. Rep. 2019, 9, 14433. [Google Scholar] [CrossRef]
- Parodis, I.; Ding, H.; Zickert, A.; Arnaud, L.; Larsson, A.; Svenungsson, E.; Mohan, C.; Gunnarsson, I. Serum soluble tumour necrosis factor receptor-2 (sTNFR2) as a biomarker of kidney tissue damage and long-term renal outcome in lupus nephritis. Scand. J. Rheumatol. 2017, 46, 263–272. [Google Scholar] [CrossRef]
- Hutcheson, J.; Ye, Y.; Han, J.; Arriens, C.; Saxena, R.; Li, Q.-Z.; Mohan, C.; Wu, T. Resistin as a potential marker of renal disease in lupus nephritis. Clin. Exp. Immunol. 2015, 179, 435–443. [Google Scholar] [CrossRef]
- Menke, J.; Amann, K.; Cavagna, L.; Blettner, M.; Weinmann, A.; Schwarting, A.; Kelley, V.R. Colony-Stimulating Factor-1: A Potential Biomarker for Lupus Nephritis. J. Am. Soc. Nephrol. 2015, 26, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.J.; Zhou, X.J.; Zhao, Y.F.; Zhao, M.H.; Zhang, H. Human neutrophil peptide 1–3, a component of the neutrophil extracellular trap, as a potential biomarker of lupus nephritis. Int. J. Rheum. Dis. 2015, 18, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.C.; Midgley, A.; Carlsson, E.; Donohue, S.; Bruce, I.N.; Beresford, M.W.; Hedrich, C.M. Urine and serum S100A8/A9 and S100A12 associate with active lupus nephritis and may predict response to rituximab treatment. RMD Open 2020, 6, e001257. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.G.; Chen, N.N.; Cheng, Y.B.; Sun, S.J.; Li, H.X.; Sun, F.; Xiang, Y. Urinary neutrophil gelatinase-associated lipocalin for diagnosis and estimating activity in lupus nephritis: A meta-analysis. Lupus 2015, 24, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Brunner, H.I.; Bennett, M.R.; Mina, R.; Suzuki, M.; Petri, M.; Kiani, A.N.; Pendl, J.; Witte, D.; Ying, J.; Rovin, B.H.; et al. Association of noninvasively measured renal protein biomarkers with histologic features of lupus nephritis. Arthritis Rheum. 2012, 64, 2687–2697. [Google Scholar] [CrossRef] [PubMed]
- Torres-Salido, M.T.; Cortés-Hernández, J.; Vidal, X.; Pedrosa, A.; Vilardell-Tarrés, M.; Ordi-Ros, J. Neutrophil gelatinase-associated lipocalin as a biomarker for lupus nephritis. Nephrol. Dial. Transplant. 2014, 29, 1740–1749. [Google Scholar] [CrossRef] [PubMed]
- El Shahawy, M.S.; Hemida, M.H.; Abdel-Hafez, H.A.; El-Baz, T.Z.; Lotfy, A.-W.M.; Emran, T.M. Urinary neutrophil gelatinase-associated lipocalin as a marker for disease activity in lupus nephritis. Scand. J. Clin. Lab. Investig. 2018, 78, 264–268. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, B.; Cao, J.; Feng, S.; Liu, B. Elevated Urinary Neutrophil Gelatinase-Associated Lipocalin Is a Biomarker for Lupus Nephritis: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2020, 2020, 2768326. [Google Scholar] [CrossRef]
- Li, Y.-J.; Wu, H.-H.; Liu, S.-H.; Tu, K.-H.; Lee, C.-C.; Hsu, H.-H.; Chang, M.-Y.; Yu, K.-H.; Chen, W.; Tian, Y.-C. Polyomavirus BK, BKV microRNA, and urinary neutrophil gelatinase-associated lipocalin can be used as potential biomarkers of lupus nephritis. PLoS ONE 2019, 14, e0210633. [Google Scholar] [CrossRef]
- Qin, L.; Stanley, S.; Ding, H.; Zhang, T.; Truong, V.T.T.; Celhar, T.; Fairhurst, A.-M.; Pedroza, C.; Petri, M.; Saxena, R.; et al. Urinary pro-thrombotic, anti-thrombotic, and fibrinolytic molecules as biomarkers of lupus nephritis. Arthritis Res. Ther. 2019, 21, 176. [Google Scholar] [CrossRef]
- Choe, J.Y.; Park, S.H.; Kim, S.K. Urine β2-microglobulin is associated with clinical disease activity and renal involvement in female patients with systemic lupus erythematosus. Lupus 2014, 23, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Go, D.J.; Lee, J.Y.; Kang, M.J.; Lee, E.Y.; Lee, E.B.; Yi, E.C.; Song, Y.W. Urinary vitamin D-binding protein, a novel biomarker for lupus nephritis, predicts the development of proteinuric flare. Lupus 2018, 27, 1600–1615. [Google Scholar] [CrossRef] [PubMed]
- Torres-Salido, M.T.; Sanchis, M.; Solé, C.; Moliné, T.; Vidal, M.; Vidal, X.; Solà, A.; Hotter, G.; Ordi-Ros, J.; Cortés-Hernández, J. Urinary neuropilin-1: A predictive biomarker for renal outcome in lupus nephritis. Int. J. Mol. Sci. 2019, 20, 4601. [Google Scholar] [CrossRef] [PubMed]
- Khoshmirsafa, M.; Kianmehr, N.; Falak, R.; Mowla, S.J.; Seif, F.; Mirzaei, B.; Valizadeh, M.; Shekarabi, M. Elevated expression of miR-21 and miR-155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis. Int. J. Rheum. Dis. 2019, 22, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Alves, I.; Santos-Pereira, B.; Dalebout, H.; Santos, S.; Vicente, M.M.; Campar, A.; Thepaut, M.; Fieschi, F.; Strahl, S.; Boyaval, F.; et al. Protein Mannosylation as a Diagnostic and Prognostic Biomarker of Lupus Nephritis: An Unusual Glycan Neoepitope in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2021, 73, 2069–2077. [Google Scholar] [CrossRef] [PubMed]
- Wantanasiri, P.; Satirapoj, B.; Charoenpitakchai, M.; Aramwit, P. Periostin: A novel tissue biomarker correlates with chronicity index and renal function in lupus nephritis patients. Lupus 2015, 24, 835–845. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Chiriboga, L.; Zeck, B.; Belmont, H.M. Membrane attack complex (mac) deposition in lupus nephritis is associated with hypertension and poor clinical response to treatment. Semin. Arthritis Rheum. 2018, 48, 256–262. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, X.; Wu, L.; Tan, Y.; Qu, Z.; Yu, F. The spectrum of C4d deposition in renal biopsies of lupus nephritis patients. Front. Immunol. 2021, 12, 654652. [Google Scholar] [CrossRef]
- Arbuckle, M.R.; McClain, M.T.; Rubertone, M.V.; Scofield, R.H.; Dennis, G.J.; James, J.A.; Harley, J.B. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 2003, 349, 1526–1533. [Google Scholar] [CrossRef]
- Munroe, M.E.; Lu, R.; Zhao, Y.D.; Fife, D.A.; Robertson, J.M.; Guthridge, J.M.; Niewold, T.B.; Tsokos, G.C.; Keith, M.P.; Harley, J.B.; et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 2016, 75, 2014–2021. [Google Scholar] [CrossRef]
- Bhargava, R.; Lehoux, S.; Maeda, K.; Tsokos, M.G.; Krishfield, S.; Ellezian, L.; Pollak, M.; Stillman, I.E.; Cummings, R.D.; Tsokos, G.C. Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight 2021, 6, e147789. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, T.; Kim, M.; Lee, H.Y.; Kim, Y.; Kang, M.S.; Kim, J. Activation of the alternative complement pathway predicts renal outcome in patients with lupus nephritis. Lupus 2020, 29, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Leatherwood, C.; Speyer, C.B.; Feldman, C.H.; D’Silva, K.; Gómez-Puerta, J.A.; Hoover, P.J.; Waikar, S.S.; McMahon, G.M.; Rennke, H.G.; Costenbader, K.H. Clinical characteristics and renal prognosis associated with interstitial fibrosis and tubular atrophy (IFTA) and vascular injury in lupus nephritis biopsies. Semin. Arthritis Rheum. 2019, 49, 396–404. [Google Scholar] [CrossRef] [PubMed]
1. Antibodies/immunoglobulins | |||
Sample | Biomarker | Association | Reference |
Serum/plasma | Anti-dsDNA | Diagnosis, clinical disease activity, damage, and responses to therapy in LN | [40,106,109] |
Anti-C1q | Diagnosis, clinical disease activity, histological disease activity, and prognosis | [36,162,163,164,165,166] | |
Anti-CRP | Clinical disease activity and responses to therapy in LN | [34,35] | |
Anti-ENO-1 (+) | Diagnosis and prediction of LN | [37,38,40] | |
AaA (Low) | Diagnosis | [41] | |
Anti-chromatin | Diagnostic/predictive capacity in LN | [48] | |
PTEC-binding IgG (+) | Clinical disease activity | [167] | |
PHACTR4 icx (+) | Diagnosis | [168] | |
P3H1 icx (+) | Diagnosis | [168] | |
RGS12 icx (+) | Diagnosis | [168] | |
PTEC-binding IgG (+) | Clinical disease activity | [167] | |
IgM (↑) | Responses to therapy in LN | [169] | |
ANCAs (+) | Prognosis | [32,49,50] | |
2. Kidney disease-related | |||
Serum | Hyperuricemia | Diagnosis | [78,170,171] |
Creatinine (↑) | Diagnosis and prognostic biomarkers | [78,166,172] | |
Urea (↑) | Diagnosis and damage (>10.25 mmol/L) | [78] | |
Urine | Albumin to globulin ratio (low) | Diagnosis | [173] |
Proteinuria (↑) (>500 mg/24 h) | Diagnosis, clinical disease activity, histological disease activity, and prognosis | [67,95,109,174] | |
Proteinuria (↓) | Responses to therapy in LN | [169] | |
uPCR (↓) (<1.5 g/g at month 6) | Responses to therapy in LN | [109] | |
WBC (↑) | Clinical disease activity | [67] | |
RBC (↑) | Clinical disease activity | [67] | |
Granular casts (+) | Clinical disease activity | [67] | |
3. Complement/Lymphocytes | |||
Serum | C3 (low) | Diagnosis, clinical disease activity, histological disease activity, responses to therapy in LN, and prognosis | [67,95,109,174] |
C4 (low) | Diagnosis and clinical disease activity | [175] | |
C1q (low) | Histological disease activity | [165] | |
Lymphocyte count (↑) | Responses to therapy in LN | [169] | |
4. Cytokines | |||
Serum | TWEAK | Diagnosis | [87,105,176,177,178] |
IL-2R (↓) | Responses to therapy in LN | [179] | |
IL-8 (↓) | Responses to therapy in LN | [179] | |
IL-10 (↑) | Clinical disease activity | [67,175] | |
IL-17 | Clinical disease activity and histological disease activity | [85,180] | |
IL-23 (↓) | Responses to therapy in LN | [85] | |
Urine | TWEAK | Diagnosis and clinical disease activity | [87,176,177] |
TGF-β1 (↑) | Clinical disease activity and histological disease activity | [70,73] | |
IL-17 (↑) | Diagnostic potential and clinical disease activity | [89] | |
IL-12p40 (↑) | Diagnostic potential and clinical disease activity | [89] | |
IL-15 | Diagnostic potential and clinical disease activity | [89] | |
IL-16 (↑) | Histological disease activity | [70] | |
TARC (↑) | Diagnostic potential and clinical disease activity | [89] | |
PF-4 (↑) | Clinical disease activity | [72] | |
5. Chemokines/Cell adhesion molecules | |||
Serum | APRIL (↑) | Predictive of treatment failure at 6 months | [61] |
BAFF (↓) | Predictive of clinical and histological responses to therapy in LN | [59] | |
VCAM-1 (↑) | Clinical disease activity | [103] | |
OPG (↓) | Responses to therapy in LN | [179] | |
Urine | APRIL (↑) | Diagnosis | [53,181] |
BAFF (↑) | Diagnosis | [53,181] | |
CXCL4 (↑) | Diagnosis | [98] | |
MCP-1 (↑) | Diagnosis, clinical disease activity, histological disease activity (proliferative vs. membranous), and responses to therapy in LN | [79,80,83,99,177,182,183] | |
ALCAM (↑) | Diagnosis, clinical disease activity, histological disease activity, and prognosis | [94,95,184] | |
VCAM-1 (↑) | Diagnosis, clinical disease activity, histological disease activity (proliferative vs. membranous), damage, and prognostic biomarkers | [72,75,94,98,99] | |
ICAM-1 (↑) | Clinical disease activity | [97] | |
NCAM-1 (↑) | Clinical disease activity | [97] | |
IP-10/CXCL10 (↑) | Diagnostic potential and clinical disease activity (renal) | [67,89] | |
6. Other proteins | |||
Serum | Axl (↑) | Diagnosis, clinical disease activity, responses to therapy in LN, and prognostic biomarkers | [106,107,108] |
HE4 (↑) | Diagnosis | [78,185] | |
IGFBP-2 (↑) | Diagnosis, clinical disease activity, and damage | [186] | |
IGFBP-4 | Damage | [187] | |
sTNFRII (↑) | Diagnosis, clinical disease activity, histological disease activity, damage, responses to therapy in LN, and prognosis | [106,188,189] | |
Angiostatin (↑) | Clinical disease activity | [108] | |
Ferritin (↑) | Clinical disease activity | [108] | |
Progranulin (↑) | Clinical disease activity | [108] | |
SDC-1 (↑) | Clinical disease activity and histological disease activity | [103] | |
Resistin (↑) | Damage | [190] | |
CSF-1 (↓) | Responses to therapy in LN | [191] | |
HNP1-3 (↓) | Responses to therapy in LN | [192] | |
S100A8/A9 (↑) | Responses to therapy in LN | [193] | |
S100A12 (↑) | Responses to therapy in LN | [193] | |
Urine | Angiostatin | Diagnosis, clinical disease activity, histological disease activity, and damage | [51,74,75,98] |
NGAL (↑) | Diagnosis, clinical disease activity, and (↓) responses to therapy in LN | [80,104,162,194,195,196,197,198,199] | |
TF (↑) | Diagnosis, clinical disease activity and responses to therapy in LN | [92,183,200] | |
β2-MG (↑) | Diagnosis | [22,201] | |
Angptl4 (↑) | Clinical disease activity | [51,73] | |
Calpastatin (↑) | Clinical disease activity | [72] | |
CD163 (↑) | Clinical disease activity, histological disease activity (predictor, proliferative vs. non-proliferative), (↓) responses to therapy in LN and prognosis | [70,109,110,182] | |
FOLR2 (↑) | Clinical disease activity | [73] | |
Hemopexin (↑) | Clinical disease activity | [72] | |
L-selectin (↑) | Clinical disease activity | [73] | |
PDGFRβ (↑) | Clinical disease activity | [73] | |
Peroxiredoxin 6 (↑) | Clinical disease activity | [72] | |
Progranulin (↑) | Clinical disease activity | [108] | |
Properdin (↑) | Clinical disease activity | [72] | |
RBP4 (↑) | Clinical disease activity and (↓) responses to therapy in LN | [202] | |
TSP1 (↑) | Clinical disease activity | [73] | |
TTP1 (↑) | Clinical disease activity | [73] | |
NRP-1 (↑) | Responses to therapy in LN | [203] | |
Plasmin (↑) | Clinical disease activity | [200] | |
TFPI (↑) | Clinical disease activity | [200] | |
EGF (↓) | Prognosis | [112] | |
7. MicroRNAs (miRNAs) | |||
Serum/plasma | miRNA-21 | Diagnosis | [128,204] |
Urine | miRNA-31-5p (↑) | Responses to therapy in LN | [127] |
miRNA-107 (↑) | Responses to therapy in LN | [127] | |
miRNA-135b-5p (↑) | Responses to therapy in LN | [127] | |
8. Microparticles (MP) | |||
Urine | MP-CX3CR1+ (↑) | Diagnosis | [172] |
MP-HLADR+ (↑) | Diagnosis | [172] | |
MP-HMGB1+ (↑) | Diagnosis and clinical disease activity (active vs. non-active) | [172] | |
9. Renal tissue | |||
Kidney biopsy | Mannose-enriched N-glycan expression | Diagnosis and prognosis | [205] |
CSF-1 (↑) | Histological disease activity | [191] | |
Periostin (↑) | Damage | [206] | |
C9 (+) | Prognosis | [207] | |
Podocyte foot process width (↓) | Prognosis | [169] | |
Arteriolar C4d deposition (+) | Prognosis | [208] | |
Cellular crescents (+) | Prognosis | [172] | |
Fibrous crescents (+) | Prognosis | [172] | |
Glomerular C3 deposition (+) | Prognosis | [212] | |
IFTA (+) (≥25% of the surface cortical area) | Prognosis | [213] | |
Vascular injury (+) (≥25% subintimal narrowing of the lumen) | Prognosis | [213] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alduraibi, F.K.; Tsokos, G.C. Lupus Nephritis Biomarkers: A Critical Review. Int. J. Mol. Sci. 2024, 25, 805. https://doi.org/10.3390/ijms25020805
Alduraibi FK, Tsokos GC. Lupus Nephritis Biomarkers: A Critical Review. International Journal of Molecular Sciences. 2024; 25(2):805. https://doi.org/10.3390/ijms25020805
Chicago/Turabian StyleAlduraibi, Fatima K., and George C. Tsokos. 2024. "Lupus Nephritis Biomarkers: A Critical Review" International Journal of Molecular Sciences 25, no. 2: 805. https://doi.org/10.3390/ijms25020805
APA StyleAlduraibi, F. K., & Tsokos, G. C. (2024). Lupus Nephritis Biomarkers: A Critical Review. International Journal of Molecular Sciences, 25(2), 805. https://doi.org/10.3390/ijms25020805