Immunoaging at Early Ages Could Drive a Higher Comorbidity Burden in People with HIV on Antiretroviral Therapy Compared with the Uninfected Population
Abstract
:1. Introduction
2. Results
2.1. CD4 and CD8 T-Cell Distribution
2.2. Senescence, Activation, and Exhaustion of T Cells
2.3. Proinflammatory Status
2.4. Contribution of HIV Infection and Age in Immunoaging
3. Discussion
4. Materials and Methods
4.1. Study Design and Study Participants
4.2. Study Variables
4.3. Sample Processing
4.4. CD4 and CD8 T Cell Immunophenotyping
4.5. Quantification of Soluble Markers
4.6. Statistical Analysis:
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging Europe PMC Funders Group. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Haq, K.; Mcelhaney, J.E. Immunosenescence: Influenza vaccination and the elderly. Curr. Opin. Immunol. 2014, 29, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.T.; Casciaro, M.; Gangemi, S.; Buquicchio, R. Immunosenescence in aging: Between immune cells depletion and cytokines up-regulation. Clin. Mol. Allergy 2017, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Dock, J.N.; Effros, R.B. Role of CD8 T cell replicative senescence in human aging and in HIV-mediated immunosenescence. Aging Dis. 2011, 2, 382–397. [Google Scholar]
- Deeks, S.G. HIV infection, inflammation, immunosenescence, and aging. Annu. Rev. Med. 2011, 62, 141–155. [Google Scholar] [CrossRef]
- Deeks, S.G.; Tracy, R.D.D. Systemic Effects of Inflammation on Health during Chronic HIV Infection. Immunity 2013, 39, 633–645. [Google Scholar] [CrossRef]
- Hasse, B.; Ledergerber, B.; Furrer, H.; Battegay, M.; Hirschel, B.; Cavassini, M.; Bertisch, B.; Bernasconi, E.; Weber, R. Swiss HIV Cohort Study Morbidity and aging in HIV-infected persons: The swiss HIV cohort study. Clin. Infect. Dis. 2011, 53, 1130–1139. [Google Scholar] [CrossRef]
- Guaraldi, G.; Orlando, G.; Zona, S.; Menozzi, M.; Carli, F.; Garlassi, E.; Berti, A.; Rossi, E.; Roverato, A.; Palella, F. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin. Infect. Dis. 2011, 53, 1120–1126. [Google Scholar] [CrossRef]
- Blanco, J.R.; Jarrín, I.; Vallejo, M.; Berenguer, J.; Solera, C.; Rubio, R.; Pulido, F.; Asensi, V.; del Amo, J.; Moreno, S.; et al. Definition of advanced age in HIV infection: Looking for an age cut-off. AIDS Res. Hum. Retroviruses 2012, 28, 800–806. [Google Scholar] [CrossRef]
- Desai, S. Early immune senesence in HIV Disease. Curr. HIV/AIDS Rep. 2010, 7, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Smit, M.; Brinkman, K.; Geerlings, S.; Smit, C.; Thyagarajan, K.; van Sighem, A.; de Wolf, F.; Hallett, T.B. Future challenges for clinical care of an ageing population infected with HIV: A modelling study. Lancet Infect. Dis. 2015, 15, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Pathai, S.; Bajillan, H.; Landay, A.L.; High, K.P. Is HIV a model of accelerated or accentuated aging? J. Gerontol. Ser. A 2014, 69, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Bailin, S.S.; Kundu, S.; Wellons, M.; Freiberg, M.S.; Doyle, M.F.; Tracy, R.P.; Justice, A.C.; Wanjalla, C.N.; Landay, A.L.; So-Armah, K.; et al. Circulating CD4+ TEMRA and CD4+ CD28- T cells and incident diabetes among persons with and without HIV. Aids 2022, 36, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.S.; Park, H.J.; Salahuddin, S.; Montgomery, R.R.; Emu, B.; Shaw, A.C.; Kang, I. Alterations in high-dimensional T-cell profile and gene signature of immune aging in HIV-infected older adults without viremia. Aging Cell 2022, 21, e13702. [Google Scholar] [CrossRef] [PubMed]
- Desquilbet, L.; Jacobson, L.P.; Fried, L.P.; Phair, J.P.; Jamieson, B.D.; Holloway, M.; Margolick, J.B. HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J. Gerontol. Ser. A 2007, 62, 1279–1286. [Google Scholar] [CrossRef]
- Horvath, S.; Levine, A.J. HIV-1 infection accelerates age according to the epigenetic clock. J. Infect. Dis. 2015, 212, 1563–1573. [Google Scholar] [CrossRef]
- Farhadian, S.; Jalbert, E.; Deng, Y.; Goetz, M.B.; Park, L.S.; Justice, A.C.; Dubrow, R.; Emu, B. HIV and Age Do Not Synergistically Affect Age-Related T-Cell Markers. J. Acquir. Immune Defic. Syndr. 2018, 77, 337–344. [Google Scholar] [CrossRef]
- De Armas, L.R.; Pallikkuth, S.; George, V.; Rinaldi, S.; Pahwa, R.; Arheart, K.L.; Pahwa, S. Reevaluation of immune activation in the era of cART and an aging HIV-infected population. JCI Insight 2017, 2, e95726. [Google Scholar] [CrossRef]
- Duprez, D.A.; Neuhaus, J.; Kuller, L.H.; Tracy, R.; Belloso, W.; De Wit, S.; Drummond, F.; Lane, H.C.; Ledergerber, B.; Lundgren, J.; et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS ONE 2012, 7, e44454. [Google Scholar] [CrossRef]
- Funderburg, N.T. Markers of coagulation and inflammation often remain elevated in ART-treated HIV-infected patients. Curr. Opin. HIV AIDS 2014, 9, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Armah, K.A.; McGinnis, K.; Baker, J.; Gibert, C.; Butt, A.A.; Bryant, K.J.; Goetz, M.; Tracy, R.; Oursler, K.K.; Rimland, D.; et al. HIV status, burden of comorbid disease, and biomarkers of inflammation, altered coagulation, and monocyte activation. Clin. Infect. Dis. 2012, 55, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Lagares, G.; Romero-Sánchez, M.C.; Ruiz-Mateos, E.; Genebat, M.; Ferrando-Martínez, S.; Muñoz-Fernández, M.Á.; Pacheco, Y.M.; Leal, M. Long-term suppressive combined antiretroviral treatment does not normalize the serum level of soluble CD14. J. Infect. Dis. 2013, 207, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Sandler, N.G.; Wand, H.; Roque, A.; Law, M.; Nason, M.C.; Nixon, D.E.; Pedersen, C.; Ruxrungtham, K.; Lewin, S.R.; Emery, S.; et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J. Infect. Dis. 2011, 203, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Jergovic, M.; Davidson, L.; LaFleur, B.J.; Castaneda, Y.; Martinez, C.; Smithey, M.J.; Stowe, R.P.; Haddad, E.K.; Nikolich-Žugich, J. Inflammatory and immune markers in HIV-infected older adults on long-term antiretroviral therapy: Persistent elevation of sCD14 and of proinflammatory effector memory T cells. Aging Cell 2022, 21, e13681. [Google Scholar] [CrossRef]
- Negredo, E.; Loste, C.; Puig, J.; Echeverría, P.; Fumaz, C.R.; Muñoz-Moreno, J.A.; Lemos, B.; Martínez, A.; Tamayo, F.; Saiz, M.; et al. Accentuated aging associated with HIV in a Mediterranean setting occurs mainly in persons aged > 70 years: A comparative cohort study (Over50 cohort). AIDS Care 2022, 34, 155–162. [Google Scholar] [CrossRef]
- Grinspoon, S.K.; Fitch, K.V.; Zanni, M.V.; Fichtenbaum, C.J.; Umbleja, T.; Aberg, J.A.; Overton, E.T.; Malvestutto, C.D.; Bloomfield, G.S.; Currier, J.S.; et al. Pitavastatin to Prevent Cardiovascular Disease in HIV Infection. N. Engl. J. Med. 2023, 389, 687–699. [Google Scholar] [CrossRef]
PWH on ART | Uninfected | |||
---|---|---|---|---|
Younger n = 20 | Older n = 20 | Younger n = 15 | Older n = 15 | |
Demographic data | ||||
Age, years, median [IQR] | 43 [42–44] | 63 [61–67] | 42 [41–44] | 63 [62–67] |
Sex, male, n (%) | 15 (75) | 18 (90) | 10 (67) | 14 (93) |
Race, Caucasian, n (%) | 17 (85) | 19 (95) | 15 (100) | 15 (100) |
Toxic Habits | ||||
Smoker, n (%) | 8 (40) | 0 | 0 | 1 (6.7) |
Ex-smoker, n (%) | 2 (10) | 7 (35) | 2 (13.3) | 1 (6.7) |
Active use of alcohol, n (%) | 0 | 1 (5) | 0 | 0 |
Comorbidities | ||||
Number of comorbidities, median [IQR] | 0 [0,1] | 5 [2–6] | 0 [0] | 1 [0–2] |
With ≥5 comorbidities, n (%) | 0 (0) | 11 (55) | 0 (0) | 1 (7) |
HIV-related information | ||||
>8 years from diagnosis, n (%) | 20 (100) | 20 (100) | - | - |
Nadir CD4 T cell, median [IQR] | 380 [328–451] | 413 [334–476] | - | - |
Nadir CD4 T-cell count <200 cells/µL, n (%) | 0 (0) | 0 (0) | - | - |
Current CD4 T-cell count, cells/µL, median [IQR] | 842 [752–995] | 822 [685–953] | - | - |
VL undetectable (<20 copies/mL), n (%) | 20 (100) | 20 (100) | ||
Current ART treatment, n (%) | ||||
INSTI-bases | 13 (65) | 13 (65) | - | - |
PI-based | 5 (25) | 3 (15) | - | - |
Combination INSTI/NNRTI-based | 1 (5) | 2 (10) | - | - |
Combination INSTI/PI-based | 1 (5) | 2 (10) | - | - |
Linear Models | ANOVA Two-Way | ||||
---|---|---|---|---|---|
Significance by Age or Infection | Adjusted p-Values (p-Adj) | HIV Infection Term (p-Adj) | Age Term (p-Adj) | Interaction HIV and Age (p-Adj) | |
Number of comorbidities | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CD4 T cells | |||||
% CD4+ | 0.09 | 0.15 | |||
Naive (% CD4 T cells) | 0.19 | 0.25 | |||
Central memory (% CD4 T cells) | 0.06 | 0.16 | |||
TM+EM (% CD4 T cells) 1 | 0.94 | 0.94 | |||
TEMRA− -(% CD4 T cells) 1 | 0.06 | 0.16 | |||
TEMRA+ (% CD4 T cells) 1 | 0.07 | 0.16 | |||
CD57+ (% CD4 T cells) 1 | 0.06 | 0.16 | |||
HLA-DR+CD38+ (% CD4 T cells) 1 | 0.11 | 0.17 | |||
PD-1+ (% CD4 T cells) 1 | 0.30 | 0.37 | |||
CD8 T cells | |||||
% CD8+ 2 | 0.001 | 0.008 | <0.001 | 0.32 | 0.56 |
Naive (% CD8 T cells) 2 | <0.001 | <0.001 | 0.03 | <0.001 | 0.68 |
CM (% CD8 T cells) 2 | 0.49 | 0.58 | |||
TM (% CD8 T cells) 1 | 0.57 | 0.63 | |||
EM (% CD8 T cells) 2 | 0.07 | 0.16 | |||
TEMRA+ (% CD8 T cells) 2 | 0.19 | 0.26 | |||
Replicative senescence (% of CD8 T cells) 2 | 0.09 | 0.16 | |||
CD57+ (% CD8 T cells) | 0.02 | 0.09 | 0.54 | 0.008 | 0.38 |
HLA-DR+CD38+ (% CD8 T cells) 1 | <0.001 | <0.001 | <0.001 | 0.001 | 0.14 |
PD-1+ (% CD8 T cells) 1 | 0.93 | 0.94 | |||
Soluble Markers | |||||
Soluble CD14 1 | 0.04 | 0.08 | 0.01 | 0.91 | 0.08 |
IL-6 1 | 0.03 | 0.08 | 0.008 | 0.81 | 0.06 |
CRP 3 | 0.11 | 0.15 | |||
D-dimer 3 | 0.9 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loste, C.; Trigueros, M.; Muñoz-López, F.; Urrea, V.; Martínez, A.; González, S.; Puig, J.; Martín, M.; Bonjoch, A.; Echeverría, P.; et al. Immunoaging at Early Ages Could Drive a Higher Comorbidity Burden in People with HIV on Antiretroviral Therapy Compared with the Uninfected Population. Int. J. Mol. Sci. 2024, 25, 10930. https://doi.org/10.3390/ijms252010930
Loste C, Trigueros M, Muñoz-López F, Urrea V, Martínez A, González S, Puig J, Martín M, Bonjoch A, Echeverría P, et al. Immunoaging at Early Ages Could Drive a Higher Comorbidity Burden in People with HIV on Antiretroviral Therapy Compared with the Uninfected Population. International Journal of Molecular Sciences. 2024; 25(20):10930. https://doi.org/10.3390/ijms252010930
Chicago/Turabian StyleLoste, Cora, Macedonia Trigueros, Francisco Muñoz-López, Víctor Urrea, Ana Martínez, Sandra González, Jordi Puig, Marta Martín, Anna Bonjoch, Patricia Echeverría, and et al. 2024. "Immunoaging at Early Ages Could Drive a Higher Comorbidity Burden in People with HIV on Antiretroviral Therapy Compared with the Uninfected Population" International Journal of Molecular Sciences 25, no. 20: 10930. https://doi.org/10.3390/ijms252010930
APA StyleLoste, C., Trigueros, M., Muñoz-López, F., Urrea, V., Martínez, A., González, S., Puig, J., Martín, M., Bonjoch, A., Echeverría, P., Massanella, M., & Negredo, E. (2024). Immunoaging at Early Ages Could Drive a Higher Comorbidity Burden in People with HIV on Antiretroviral Therapy Compared with the Uninfected Population. International Journal of Molecular Sciences, 25(20), 10930. https://doi.org/10.3390/ijms252010930