The Role of MicroRNA in the Pathophysiology and Diagnosis of Viral Myocarditis
Abstract
:1. Introduction
2. Non-Coding RNAs—An Overview
MicroRNA
3. MicroRNA and the Pathophysiology of Viral Myocarditis
3.1. miR-1 and miR-133
3.2. miR-21
3.3. miR-15
3.4. miR-98
3.5. miR-126
3.6. miR-155 and miR-148
3.7. miR-146
3.8. miR-203
3.9. miR-208
3.10. miR-221 and miR-222
3.11. miR-223
3.12. miR-590
3.13. miR-19
3.14. MiRNAs and VMC in Non-CVB3 Models—Parvovirus B19 Myocarditis
4. MicroRNA and the Diagnosis of Viral Myocarditis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ammirati, E.; Frigerio, M.; Adler, E.D.; Basso, C.; Birnie, D.H.; Brambatti, M.; Friedrich, M.G.; Klingel, K.; Lehtonen, J.; Moslehi, J.J.; et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ. Heart Fail. 2020, 13, e007405. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Moslehi, J.J. Diagnosis and Treatment of Acute Myocarditis: A Review. JAMA 2023, 329, 1098. [Google Scholar] [CrossRef] [PubMed]
- Tschöpe, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.M.; Heidecker, B.; Heymans, S.; Hübner, N.; et al. Myocarditis and Inflammatory Cardiomyopathy: Current Evidence and Future Directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef] [PubMed]
- Kociol, R.D.; Cooper, L.T.; Fang, J.C.; Moslehi, J.J.; Pang, P.S.; Sabe, M.A.; Shah, R.V.; Sims, D.B.; Thiene, G.; Vardeny, O.; et al. Recognition and Initial Management of Fulminant Myocarditis: A Scientific Statement From the American Heart Association. Circulation 2020, 141, e69–e92. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.T. Myocarditis. N. Engl. J. Med. 2009, 360, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Olejniczak, M.; Schwartz, M.; Webber, E.; Shaffer, A.; Perry, T.E. Viral Myocarditis—Incidence, Diagnosis and Management. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1591–1601. [Google Scholar] [CrossRef]
- Williams, J.L.; Jacobs, H.M.; Lee, S. Pediatric Myocarditis. Cardiol. Ther. 2023, 12, 243–260. [Google Scholar] [CrossRef]
- Panni, S.; Lovering, R.C.; Porras, P.; Orchard, S. Non-Coding RNA Regulatory Networks. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2020, 1863, 194417. [Google Scholar] [CrossRef]
- Li, Q.; Xi, J.; Li, B.; Li, N. MiR-16, as a Potential NF-κB-related miRNA, Exerts Anti-inflammatory Effects on LPS-induced Myocarditis via Mediating CD40 Expression: A Preliminary Study. J. Biochem. Mol. Tox 2020, 34, e22426. [Google Scholar] [CrossRef]
- Davidson-Moncada, J.; Papavasiliou, F.N.; Tam, W. MicroRNAs of the Immune System: Roles in Inflammation and Cancer. Ann. New York Acad. Sci. 2010, 1183, 183–194. [Google Scholar] [CrossRef]
- Contreras, J.; Rao, D.S. MicroRNAs in Inflammation and Immune Responses. Leukemia 2012, 26, 404–413. [Google Scholar] [CrossRef]
- Medzhitov, R.; Horng, T. Transcriptional Control of the Inflammatory Response. Nat. Rev. Immunol. 2009, 9, 692–703. [Google Scholar] [CrossRef]
- Nie, X.; He, M.; Wang, J.; Chen, P.; Wang, F.; Lai, J.; Li, C.; Yu, T.; Zuo, H.; Cui, G.; et al. Circulating miR-4763-3p Is a Novel Potential Biomarker Candidate for Human Adult Fulminant Myocarditis. Mol. Ther. Methods Clin. Dev. 2020, 17, 1079–1087. [Google Scholar] [CrossRef]
- Corsten, M.F.; Papageorgiou, A.; Verhesen, W.; Carai, P.; Lindow, M.; Obad, S.; Summer, G.; Coort, S.L.M.; Hazebroek, M.; Van Leeuwen, R.; et al. MicroRNA Profiling Identifies MicroRNA-155 as an Adverse Mediator of Cardiac Injury and Dysfunction During Acute Viral Myocarditis. Circ. Res. 2012, 111, 415–425. [Google Scholar] [CrossRef]
- Uchida, S.; Dimmeler, S. Long Noncoding RNAs in Cardiovascular Diseases. Circ. Res. 2015, 116, 737–750. [Google Scholar] [CrossRef]
- Klattenhoff, C.A.; Scheuermann, J.C.; Surface, L.E.; Bradley, R.K.; Fields, P.A.; Steinhauser, M.L.; Ding, H.; Butty, V.L.; Torrey, L.; Haas, S.; et al. Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment. Cell 2013, 152, 570–583. [Google Scholar] [CrossRef]
- Nie, X.; Li, H.; Wang, J.; Cai, Y.; Fan, J.; Dai, B.; Chen, C.; Wang, D.W. Expression Profiles and Potential Functions of Long Non-Coding RNAs in the Heart of Mice with Coxsackie B3 Virus-Induced Myocarditis. Front. Cell. Infect. Microbiol. 2021, 11, 704919. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, Y.; He, X.; Xia, X.; Mo, X. MicroRNA-1 Upregulation Promotes Myocardiocyte Proliferation and Suppresses Apoptosis during Heart Development. Mol. Med. Rep. 2017, 15, 2837–2842. [Google Scholar] [CrossRef]
- Zhao, Y.; Samal, E.; Srivastava, D. Serum Response Factor Regulates a Muscle-Specific microRNA That Targets Hand2 during Cardiogenesis. Nature 2005, 436, 214–220. [Google Scholar] [CrossRef]
- Belevych, A.E.; Sansom, S.E.; Terentyeva, R.; Ho, H.-T.; Nishijima, Y.; Martin, M.M.; Jindal, H.K.; Rochira, J.A.; Kunitomo, Y.; Abdellatif, M.; et al. MicroRNA-1 and -133 Increase Arrhythmogenesis in Heart Failure by Dissociating Phosphatase Activity from RyR2 Complex. PLoS ONE 2011, 6, e28324. [Google Scholar] [CrossRef]
- Zhang, R.; Niu, H.; Ban, T.; Xu, L.; Li, Y.; Wang, N.; Sun, L.; Ai, J.; Yang, B. Elevated Plasma microRNA-1 Predicts Heart Failure after Acute Myocardial Infarction. Int. J. Cardiol. 2013, 166, 259–260. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, L.; Zhang, S.; Zhang, Y.; Lei, S. MicroRNA-1 Suppresses Cardiac Hypertrophy by Targeting Nuclear Factor of Activated T Cells Cytoplasmic 3. Mol. Med. Rep. 2015, 12, 8282–8288. [Google Scholar] [CrossRef]
- Xu, H.-F.; Ding, Y.-J.; Shen, Y.-W.; Xue, A.-M.; Xu, H.-M.; Luo, C.-L.; Li, B.-X.; Liu, Y.-L.; Zhao, Z.-Q. MicroRNA- 1 Represses Cx43 Expression in Viral Myocarditis. Mol. Cell Biochem. 2012, 362, 141–148. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Xuan, L.; Liu, Y.; Shao, L.; Ge, H.; Gu, J.; Wei, C.; Zhao, M. Astragalus Root Dry Extract Restores Connexin43 Expression by Targeting miR-1 in Viral Myocarditis. Phytomedicine 2018, 46, 32–38. [Google Scholar] [CrossRef]
- Peng, D.; Lai, Y.; Luo, X.; Li, X.; Deng, C.; Guo, H.; Zhao, J.; Yang, H.; Liu, Y.; Wang, Z.; et al. Connexin 43 Participates in Atrial Electrical Remodelling through Colocalization with Calcium Channels in Atrial Myocytes. Clin. Exp. Pharmacol. Physiol. 2022, 49, 25–34. [Google Scholar] [CrossRef]
- Andelova, K.; Egan Benova, T.; Szeiffova Bacova, B.; Sykora, M.; Prado, N.J.; Diez, E.R.; Hlivak, P.; Tribulova, N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int. J. Mol. Sci. 2020, 22, 260. [Google Scholar] [CrossRef]
- Badura, K.; Buławska, D.; Dąbek, B.; Witkowska, A.; Lisińska, W.; Radzioch, E.; Skwira, S.; Młynarska, E.; Rysz, J.; Franczyk, B. Primary Electrical Heart Disease—Principles of Pathophysiology and Genetics. Int. J. Mol. Sci. 2024, 25, 1826. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Zhao, C.; Chen, C.; Kong, Q.; Cai, Z.; Li, D. MiR-1/133 Attenuates Cardiomyocyte Apoptosis and Electrical Remodeling in Mice with Viral Myocarditis. Cardiol. J. 2020, 27, 285–294. [Google Scholar] [CrossRef]
- Besler, C.; Urban, D.; Watzka, S.; Lang, D.; Rommel, K.; Kandolf, R.; Klingel, K.; Thiele, H.; Linke, A.; Schuler, G.; et al. Endomyocardial miR -133a Levels Correlate with Myocardial Inflammation, Improved Left Ventricular Function, and Clinical Outcome in Patients with Inflammatory Cardiomyopathy. Eur. J. Heart Fail. 2016, 18, 1442–1451. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Chen, C.; Li, Y.; Zhao, L.; Jing, Y.; Liu, W.; Wang, X.; Zhang, Y.; Xia, H.; et al. Attenuation of P38-Mediated miR-1/133 Expression Facilitates Myoblast Proliferation during the Early Stage of Muscle Regeneration. PLoS ONE 2012, 7, e41478. [Google Scholar] [CrossRef]
- Ferreira, L.R.P.; Frade, A.F.; Santos, R.H.B.; Teixeira, P.C.; Baron, M.A.; Navarro, I.C.; Benvenuti, L.A.; Fiorelli, A.I.; Bocchi, E.A.; Stolf, N.A.; et al. MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b Are Dysregulated in Chronic Chagas Disease Cardiomyopathy. Int. J. Cardiol. 2014, 175, 409–417. [Google Scholar] [CrossRef]
- Liu, Y.L.; Wu, W.; Xue, Y.; Gao, M.; Yan, Y.; Kong, Q.; Pang, Y.; Yang, F. MicroRNA-21 and -146b Are Involved in the Pathogenesis of Murine Viral Myocarditis by Regulating TH-17 Differentiation. Arch. Virol. 2013, 158, 1953–1963. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Xiao, L.; Shangguan, J. Progranulin Ameliorates Coxsackievirus-B3-Induced Viral Myocarditis by Downregulating Th1 and Th17 Cells. Exp. Cell Res. 2018, 367, 241–250. [Google Scholar] [CrossRef]
- Hall, J.A.; Pokrovskii, M.; Kroehling, L.; Kim, B.-R.; Kim, S.Y.; Wu, L.; Lee, J.-Y.; Littman, D.R. Transcription Factor RORα Enforces Stability of the Th17 Cell Effector Program by Binding to a Rorc Cis-Regulatory Element. Immunity 2022, 55, 2027–2043.e9. [Google Scholar] [CrossRef]
- He, J.; Yue, Y.; Dong, C.; Xiong, S. MiR-21 Confers Resistance against CVB3-Induced Myocarditis by Inhibiting PDCD4-Mediated Apoptosis. Clin. Investig. Med. 2013, 36, 103. [Google Scholar] [CrossRef]
- Lasrado, N.; Reddy, J. An Overview of the Immune Mechanisms of Viral Myocarditis. Rev. Med. Virol. 2020, 30, 1–14. [Google Scholar] [CrossRef]
- Xu, H.-F.; Ding, Y.-J.; Zhang, Z.-X.; Wang, Z.-F.; Luo, C.-L.; Li, B.-X.; Shen, Y.-W.; Tao, L.-Y.; Zhao, Z.-Q. MicroRNA-21 Regulation of the Progression of Viral Myocarditis to Dilated Cardiomyopathy. Mol. Med. Rep. 2014, 10, 161–168. [Google Scholar] [CrossRef]
- Obradovic, D.; Rommel, K.; Blazek, S.; Klingel, K.; Gutberlet, M.; Lücke, C.; Büttner, P.; Thiele, H.; Adams, V.; Lurz, P.; et al. The Potential Role of Plasma miR-155 and miR-206 as Circulatory Biomarkers in Inflammatory Cardiomyopathy. ESC Heart Fail. 2021, 8, 1850–1860. [Google Scholar] [CrossRef]
- He, F.; Xiao, Z.; Yao, H.; Li, S.; Feng, M.; Wang, W.; Liu, Z.; Liu, Z.; Wu, J. The Protective Role of microRNA-21 against Coxsackievirus B3 Infection through Targeting the MAP2K3/P38 MAPK Signaling Pathway. J. Transl. Med. 2019, 17, 335. [Google Scholar] [CrossRef]
- Dérijard, B.; Raingeaud, J.; Barrett, T.; Wu, I.-H.; Han, J.; Ulevitch, R.J.; Davis, R.J. Independent Human MAP-Kinase Signal Transduction Pathways Defined by MEK and MKK Isoforms. Science 1995, 267, 682–685. [Google Scholar] [CrossRef]
- He, F.; Liu, Z.; Feng, M.; Xiao, Z.; Yi, X.; Wu, J.; Liu, Z.; Wang, G.; Li, L.; Yao, H. The lncRNA MEG3/miRNA-21/P38MAPK Axis Inhibits Coxsackievirus 3 Replication in Acute Viral Myocarditis. Virus Res. 2024, 339, 199250. [Google Scholar] [CrossRef]
- Tong, R.; Jia, T.; Shi, R.; Yan, F. Inhibition of microRNA-15 Protects H9c2 Cells against CVB3-Induced Myocardial Injury by Targeting NLRX1 to Regulate the NLRP3 Inflammasome. Cell Mol. Biol. Lett. 2020, 25, 6. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Zhao, Z.; Jin, Z. Expression of miR-98 in Myocarditis and Its Influence on Transcription of the FAS/FASL Gene Pair. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Chen, X.; Dong, S.; Zhang, N.; Chen, L.; Li, M.-G.; Yang, P.-C.; Song, J. MicroRNA-98 Plays a Critical Role in Experimental Myocarditis. Int. J. Cardiol. 2017, 229, 75–81. [Google Scholar] [CrossRef]
- Huang, T.F.; Wu, X.H.; Wang, X.; Lu, I.J. Fas-FasL Expression and Myocardial Cell Apoptosis in Patients with Viral Myocarditis. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Seko, Y.; Kayagaki, N.; Seino, K.; Yagita, H.; Okumura, K.O.; Nagai, R. Role of Fas/FasL Pathway in the Activation of Infiltrating Cells in Murine Acute Myocarditis Caused by Coxsackievirus B3. J. Am. Coll. Cardiol. 2002, 39, 1399–1403. [Google Scholar] [CrossRef]
- Ye, X.; Hemida, M.G.; Qiu, Y.; Hanson, P.J.; Zhang, H.M.; Yang, D. MiR-126 Promotes Coxsackievirus Replication by Mediating Cross-Talk of ERK1/2 and Wnt/β-Catenin Signal Pathways. Cell. Mol. Life Sci. 2013, 70, 4631–4644. [Google Scholar] [CrossRef]
- Qin, B.; Yang, H.; Xiao, B. Role of microRNAs in Endothelial Inflammation and Senescence. Mol. Biol. Rep. 2012, 39, 4509–4518. [Google Scholar] [CrossRef]
- Woudstra, L.; Juffermans, L.J.M.; Van Rossum, A.C.; Niessen, H.W.M.; Krijnen, P.A.J. Infectious Myocarditis: The Role of the Cardiac Vasculature. Heart Fail. Rev. 2018, 23, 583–595. [Google Scholar] [CrossRef]
- Harris, T.A.; Yamakuchi, M.; Ferlito, M.; Mendell, J.T.; Lowenstein, C.J. MicroRNA-126 Regulates Endothelial Expression of Vascular Cell Adhesion Molecule 1. Proc. Natl. Acad. Sci. USA 2008, 105, 1516–1521. [Google Scholar] [CrossRef]
- Bao, J.-L.; Lin, L. MiR-155 and miR-148a Reduce Cardiac Injury by Inhibiting NF-κB Pathway during Acute Viral Myocarditis. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2349–2356. [Google Scholar] [PubMed]
- Zhang, Y.; Zhang, M.; Li, X.; Tang, Z.; Wang, X.; Zhong, M.; Suo, Q.; Zhang, Y.; Lv, K. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages. Sci. Rep. 2016, 6, 22613. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yuan, H.; Zhao, G. IL-37 Alleviates Coxsackievirus B3-Induced Viral Myocarditis via Inhibiting NLRP3 Inflammasome-Mediated Pyroptosis. Sci. Rep. 2022, 12, 20077. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K. Toll-like Receptors in Innate Immunity. Int. Immunol. 2004, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, R.B.; Zachary, J.F.; Dalla Rosa, L.; Ma, Y.; Weis, J.H.; O’Connell, R.M.; Weis, J.J. Antagonistic Interplay between MicroRNA-155 and IL-10 during Lyme Carditis and Arthritis. PLoS ONE 2015, 10, e0135142. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Hu, F.; Yan, X.; Wei, Y.; Ma, W.; Wang, Y.; Lu, S.; Wang, Z. Inhibition of microRNA-155 Ameliorates Experimental Autoimmune Myocarditis by Modulating Th17/Treg Immune Response. J. Mol. Med. 2016, 94, 1063–1079. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, X.; Qi, J.; Ao, Y.; Yang, C.; Li, Y. Astragalus Mongholicus (Fisch.) Bge Improves Peripheral Treg Cell Immunity Imbalance in the Children with Viral Myocarditis by Reducing the Levels of miR-146b and miR-155. Front. Pediatr. 2018, 6, 139. [Google Scholar] [CrossRef]
- Loebel, M.; Holzhauser, L.; Hartwig, J.A.; Shukla, P.C.; Savvatis, K.; Jenke, A.; Gast, M.; Escher, F.; Becker, S.C.; Bauer, S.; et al. The Forkhead Transcription Factor Foxo3 Negatively Regulates Natural Killer Cell Function and Viral Clearance in Myocarditis. Eur. Heart J. 2018, 39, 876–887. [Google Scholar] [CrossRef]
- Fei, Y.; Chaulagain, A.; Wang, T.; Chen, Y.; Liu, J.; Yi, M.; Wang, Y.; Huang, Y.; Lin, L.; Chen, S.; et al. MiR-146a down-Regulates Inflammatory Response by Targeting TLR3 and TRAF6 in Coxsackievirus B Infection. RNA 2020, 26, 91–100. [Google Scholar] [CrossRef]
- Li, L.; Zhong, M.; Zuo, Q.; Ma, W.; Jiang, Z.; Xiao, J. Effects of Nano- α -Linolenic Acid and miR-146 on Mice with Viral Myocarditis. J. Nanosci. Nanotechnol. 2021, 21, 1365–1371. [Google Scholar] [CrossRef]
- Feng, B.; Chen, S.; Gordon, A.D.; Chakrabarti, S. miR-146a Mediates Inflammatory Changes and Fibrosis in the Heart in Diabetes. J. Mol. Cell. Cardiol. 2017, 105, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wang, J.; Wang, S.; Zhang, Y.; Liu, L.; Zhao, H. Expression Levels of miR-146b and Anti-Cardiac Troponin I in Serum of Children with Viral Myocarditis and Their Clinical Significance. Iran J. Public Health 2021, 50, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, T.; Cui, H.; Zhang, Y. Analysis of the Indicating Value of Cardiac Troponin I, Tumor Necrosis Factor-α, Interleukin-18, Mir-1 and Mir-146b for Viral Myocarditis among Children. Cell. Physiol. Biochem. 2016, 40, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Hemida, M.G.; Ye, X.; Zhang, H.M.; Hanson, P.J.; Liu, Z.; McManus, B.M.; Yang, D. MicroRNA-203 Enhances Coxsackievirus B3 Replication through Targeting Zinc Finger Protein-148. Cell. Mol. Life Sci. 2013, 70, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.; Du, A.; Zhu, X.; Yu, B. miR-203 Accelerates Apoptosis and Inflammation Induced by LPS via Targeting NFIL3 in Cardiomyocytes. J. Cell. Biochem. 2019, 120, 6605–6613. [Google Scholar] [CrossRef]
- Goldberg, L.; Tirosh-Wagner, T.; Vardi, A.; Abbas, H.; Pillar, N.; Shomron, N.; Nevo-Caspi, Y.; Paret, G. Circulating MicroRNAs: A Potential Biomarker for Cardiac Damage, Inflammatory Response, and Left Ventricular Function Recovery in Pediatric Viral Myocarditis. J. Cardiovasc. Trans. Res. 2018, 11, 319–328. [Google Scholar] [CrossRef]
- Callis, T.E.; Pandya, K.; Seok, H.Y.; Tang, R.-H.; Tatsuguchi, M.; Huang, Z.-P.; Chen, J.-F.; Deng, Z.; Gunn, B.; Shumate, J.; et al. MicroRNA-208a Is a Regulator of Cardiac Hypertrophy and Conduction in Mice. J. Clin. Investig. 2009, 119, 2772–2786. [Google Scholar] [CrossRef]
- Corsten, M.F.; Dennert, R.; Jochems, S.; Kuznetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease. Circ. Cardiovasc. Genet. 2010, 3, 499–506. [Google Scholar] [CrossRef]
- Zhou, Q.; Schötterl, S.; Backes, D.; Brunner, E.; Hahn, J.K.; Ionesi, E.; Aidery, P.; Sticht, C.; Labeit, S.; Kandolf, R.; et al. Inhibition of miR-208b Improves Cardiac Function in Titin-Based Dilated Cardiomyopathy. Int. J. Cardiol. 2017, 230, 634–641. [Google Scholar] [CrossRef]
- Corsten, M.F.; Heggermont, W.; Papageorgiou, A.-P.; Deckx, S.; Tijsma, A.; Verhesen, W.; Van Leeuwen, R.; Carai, P.; Thibaut, H.-J.; Custers, K.; et al. The microRNA-221/-222 Cluster Balances the Antiviral and Inflammatory Response in Viral Myocarditis. Eur. Heart J. 2015, 36, 2909–2919. [Google Scholar] [CrossRef]
- Gou, W.; Zhang, Z.; Yang, C.; Li, Y. MiR-223/Pknox1 Axis Protects Mice from CVB3-Induced Viral Myocarditis by Modulating Macrophage Polarization. Exp. Cell Res. 2018, 366, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bai, X.; Song, Q.; Fan, F.; Hu, Z.; Cheng, G.; Zhang, Y. miR-223 Inhibits Lipid Deposition and Inflammation by Suppressing Toll-Like Receptor 4 Signaling in Macrophages. Int. J. Mol. Sci. 2015, 16, 24965–24982. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhang, S.; Zheng, C.; Li, Y.; Zhang, L.; Su, Q.; Hao, Y.; Wang, S.; Li, X. Long Non-coding RNA MEG3 Inhibits M2 Macrophage Polarization by Activating TRAF6 via microRNA-223 Down-regulation in Viral Myocarditis. J. Cell. Mol. Med. 2020, 24, 12341–12354. [Google Scholar] [CrossRef] [PubMed]
- Germano, J.F.; Sawaged, S.; Saadaeijahromi, H.; Andres, A.M.; Feuer, R.; Gottlieb, R.A.; Sin, J. Coxsackievirus B Infection Induces the Extracellular Release of miR-590-5p, a Proviral microRNA. Virology 2019, 529, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yang, G.; Liu, P.-N.; Deng, Y.-Y.; Zhao, Z.; Sun, T.; Zhuo, X.-Z.; Liu, J.-H.; Tian, Y.; Zhou, J.; et al. miR-590-3p Is a Novel MicroRNA in Myocarditis by Targeting Nuclear Factor Kappa-B in Vivo. Cardiology 2015, 132, 182–188. [Google Scholar] [CrossRef]
- Wu, Y.; Yue, Y.; Xiong, S. Cardiac miR-19a/19b Was Induced and Hijacked by CVB3 to Facilitate Virus Replication via Targeting Viral Genomic RdRp-Encoding Region. Antivir. Res. 2023, 217, 105702. [Google Scholar] [CrossRef]
- Lin, J.; Xue, A.; Li, L.; Li, B.; Li, Y.; Shen, Y.; Sun, N.; Chen, R.; Xu, H.; Zhao, Z. MicroRNA-19b Downregulates Gap Junction Protein Alpha1 and Synergizes with MicroRNA-1 in Viral Myocarditis. Int. J. Mol. Sci. 2016, 17, 741. [Google Scholar] [CrossRef]
- Jiahui, C.; Jiadai, Z.; Nan, Z.; Rui, Z.; Lipin, H.; Jian, H.; Wenzong, Z.; Riyuan, Z. miR-19b-3p/PKNOX1 Regulates Viral Myocarditis by Regulating Macrophage Polarization. Front. Genet. 2022, 13, 902453. [Google Scholar] [CrossRef]
- Kühl, U.; Lassner, D.; Pauschinger, M.; Gross, U.M.; Seeberg, B.; Noutsias, M.; Poller, W.; Schultheiss, H.-P. Prevalence of Erythrovirus Genotypes in the Myocardium of Patients with Dilated Cardiomyopathy. J. Med. Virol. 2008, 80, 1243–1251. [Google Scholar] [CrossRef]
- Porter, H. B19 Parvovirus Infection of Myocardial Cells. Lancet 1988, 331, 535–536. [Google Scholar] [CrossRef]
- Ho, H.T.; Peischard, S.; Strutz-Seebohm, N.; Seebohm, G. Virus-Host Interactions of Enteroviruses and Parvovirus B19 in Myocarditis. Cell Physiol. Biochem. 2021, 55, 679–703. [Google Scholar] [CrossRef] [PubMed]
- Kühl, U.; Rohde, M.; Lassner, D.; Gross, U.M.; Escher, F.; Schultheiss, H.-P. miRNA as Activity Markers in Parvo B19 Associated Heart Disease. Herz 2012, 37, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Pilati, M.; Rebonato, M.; Formigari, R.; Butera, G. Endomyocardial Biopsy in Pediatric Myocarditis and Dilated Cardiomyopathy: A Tool in Search for a Role. JCDD 2022, 9, 24. [Google Scholar] [CrossRef]
- Lampejo, T.; Durkin, S.M.; Bhatt, N.; Guttmann, O. Acute Myocarditis: Aetiology, Diagnosis and Management. Clinical Medicine 2021, 21, e505–e510. [Google Scholar] [CrossRef]
- Zhang, C.; Xiong, Y.; Zeng, L.; Peng, Z.; Liu, Z.; Zhan, H.; Yang, Z. The Role of Non-Coding RNAs in Viral Myocarditis. Front. Cell Infect. Microbiol. 2020, 10, 312. [Google Scholar] [CrossRef]
- Santos, J.M.O.; Peixoto Da Silva, S.; Gil Da Costa, R.M.; Medeiros, R. The Emerging Role of MicroRNAs and Other Non-Coding RNAs in Cancer Cachexia. Cancers 2020, 12, 1004. [Google Scholar] [CrossRef]
- Blanco-Domínguez, R.; Sánchez-Díaz, R.; De La Fuente, H.; Jiménez-Borreguero, L.J.; Matesanz-Marín, A.; Relaño, M.; Jiménez-Alejandre, R.; Linillos-Pradillo, B.; Tsilingiri, K.; Martín-Mariscal, M.L.; et al. A Novel Circulating Noncoding Small RNA for the Detection of Acute Myocarditis. N. Engl. J. Med. 2021, 384, 2014–2027. [Google Scholar] [CrossRef]
- Aleshcheva, G.; Baumeier, C.; Harms, D.; Bock, C.-T.; Escher, F.; Schultheiss, H. MicroRNAs as Novel Biomarkers and Potential Therapeutic Options for Inflammatory Cardiomyopathy. ESC Heart Fail. 2023, 10, 3410–3418. [Google Scholar] [CrossRef]
- Kuehl, U.; Lassner, D.; Gast, M.; Stroux, A.; Rohde, M.; Siegismund, C.; Wang, X.; Escher, F.; Gross, M.; Skurk, C.; et al. Differential Cardiac MicroRNA Expression Predicts the Clinical Course in Human Enterovirus Cardiomyopathy. Circ. Heart Fail. 2015, 8, 605–618. [Google Scholar] [CrossRef]
- Lewandowski, P.; Goławski, M.; Baron, M.; Reichman-Warmusz, E.; Wojnicz, R. A Systematic Review of miRNA and cfDNA as Potential Biomarkers for Liquid Biopsy in Myocarditis and Inflammatory Dilated Cardiomyopathy. Biomolecules 2022, 12, 1476. [Google Scholar] [CrossRef]
- Li, J.; Xie, Y.; Li, L.; Li, X.; Shen, L.; Gong, J.; Zhang, R. MicroRNA-30a Modulates Type I Interferon Responses to Facilitate Coxsackievirus B3 Replication Via Targeting Tripartite Motif Protein 25. Front. Immunol. 2021, 11, 603437. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.-L.; Li, M.-F.; Cui, F.; Feng, F.; Kong, L.; Zhang, F.-H.; Hao, H.; Yin, M.-X.; Liu, Y. Altered Exosomal miR-181d and miR-30a Related to the Pathogenesis of CVB3 Induced Myocarditis by Targeting SOCS3. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
Liu et al. [32] | He et al. [35] | |
---|---|---|
miR-21 expression | Increased | Decreased in CVB3-induced VMC mice; the lowest expression was observed in severe VMC |
Effect of miR-21 on VMC | miR-21 may aggravate VMC:
| miR-21 may have a protective role in VMC:
|
Time between infection and heart tissue collection | 17 days | 7 days |
Animal model | BALB/c (H-2d) mice, 6 weeks of age | BALB/c (H-2d) mice, 6 weeks of age |
Virus | CVB3 (Nancy strain), Hep-2 cell passage | CVB3 (Nancy strain), HeLa cell passage |
RT-PCR primer sequence (5′-3′) for miR-21 expression analysis | Sense: TGACATCGCATGGCTGTA Antisense: GATGCTGGGTAATGTTTGAATG | Sense: GCGCTAGCTTATCAGACTGA Antisense: GTGCAGGGTCCGAGGT |
miRNA Type | Utility (1–5) | Changes during Viral Infection | Paper |
---|---|---|---|
miR-Chr8:96 | very high (5) | upregulated in viral and autoimmune acute myocarditis | Blanco-Domínguez et al. [87] |
miR-155 | very high (5) | upregulated in acute VMC | Corsten et al. [14] |
upregulated in viral cardiomyopathy | Kuehl et al. [89] | ||
downregulated in non-viral inflammatory dilated cardiomyopathy compared to inflammatory dilated cardiomyopathy with viral infection | Aleshcheva et al. [88] | ||
downregulated in acute VMC | Fan et al. [92] | ||
miR-30a | high (4) | upregulated in acute VMC | Fan et al. [92] |
upregulated in response to CVB3 infection in vitro | Li et al. [91] | ||
miR-181d | low (2) | upregulated in acute VMC | Fan et al. [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młynarska, E.; Badura, K.; Kurciński, S.; Sinkowska, J.; Jakubowska, P.; Rysz, J.; Franczyk, B. The Role of MicroRNA in the Pathophysiology and Diagnosis of Viral Myocarditis. Int. J. Mol. Sci. 2024, 25, 10933. https://doi.org/10.3390/ijms252010933
Młynarska E, Badura K, Kurciński S, Sinkowska J, Jakubowska P, Rysz J, Franczyk B. The Role of MicroRNA in the Pathophysiology and Diagnosis of Viral Myocarditis. International Journal of Molecular Sciences. 2024; 25(20):10933. https://doi.org/10.3390/ijms252010933
Chicago/Turabian StyleMłynarska, Ewelina, Krzysztof Badura, Szymon Kurciński, Julia Sinkowska, Paulina Jakubowska, Jacek Rysz, and Beata Franczyk. 2024. "The Role of MicroRNA in the Pathophysiology and Diagnosis of Viral Myocarditis" International Journal of Molecular Sciences 25, no. 20: 10933. https://doi.org/10.3390/ijms252010933
APA StyleMłynarska, E., Badura, K., Kurciński, S., Sinkowska, J., Jakubowska, P., Rysz, J., & Franczyk, B. (2024). The Role of MicroRNA in the Pathophysiology and Diagnosis of Viral Myocarditis. International Journal of Molecular Sciences, 25(20), 10933. https://doi.org/10.3390/ijms252010933