Developmental and Molecular Effects of C-Type Natriuretic Peptide Supplementation in In Vitro Culture of Bovine Embryos
Abstract
:1. Introduction
2. Results
2.1. Immunolocalization of the CNP Receptor
2.2. Dose–Response Effect of CNP on Embryo Production
2.3. Impact of Co-Culture with CNP on Blastocyst Formation and Target Transcripts
3. Discussion
4. Material and Methods
4.1. In Vitro Production of Embryos
4.1.1. In Vitro Maturation
4.1.2. In Vitro Fertilization
4.1.3. In Vitro Culture
4.2. Experiment I—Detection and Quantification of CNP Receptor
4.3. Experiment II—Dose Response with Different CNP Concentrations and CNP Activity Moment Effects on the Embryo Production Rate
4.4. Experiment III—Blastocyst Rate and Abundance of Target Transcripts in Embryos Produced under CNP Co-Culture
4.5. Reverse Transcription and Quantitative Polymerase Chain Reaction (RT-qPCR)
4.5.1. RNA Isolation and Reverse Transcription
4.5.2. Preamplification and qPCR
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, M.; Su, Y.-Q.; Sugiura, K.; Xia, G.; Eppig, J.J. Granulosa Cell Ligand NPPC and Its Receptor NPR2 Maintain Meiotic Arrest in Mouse Oocytes. Science 2010, 330, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Hiradate, Y.; Hoshino, Y.; Tanemura, K.; Sato, E. C-Type Natriuretic Peptide Inhibits Porcine Oocyte Meiotic Resumption. Zygote 2014, 22, 372–377. [Google Scholar] [CrossRef]
- Franciosi, F.; Coticchio, G.; Lodde, V.; Tessaro, I.; Modina, S.C.; Fadini, R.; Dal Canto, M.; Renzini, M.M.; Albertini, D.F.; Luciano, A.M. Natriuretic Peptide Precursor C Delays Meiotic Resumption and Sustains Gap Junction-Mediated Communication in Bovine Cumulus-Enclosed Oocytes1. Biol. Reprod. 2014, 91, 61. [Google Scholar] [CrossRef] [PubMed]
- Dubeibe, D.F.; Caldas-Bussiere, M.C.; Maciel, V.L.; Sampaio, W.V.; Quirino, C.R.; Gonçalves, P.B.D.; De Cesaro, M.P.; Faes, M.R.; Paes de Carvalho, C.S. L-Arginine Affects the IVM of Cattle Cumulus-Oocyte Complexes. Theriogenology 2017, 88, 134–144. [Google Scholar] [CrossRef]
- Botigelli, R.C.; Razza, E.M.; Pioltine, E.M.; Fontes, P.K.; Schwarz, K.R.L.; Leal, C.L.V.; Nogueira, M.F.G. Supplementing in Vitro Embryo Production Media by NPPC and Sildenafil Affect the Cytoplasmic Lipid Content and Gene Expression of Bovine Cumulus-Oocyte Complexes and Embryos. Reprod. Biol. 2018, 18, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Lei, L.; Fu, W.; Li, L.; Cao, X.; Yang, L. Expression and Localization of Npr2 in Mouse Oocytes and Pre-Implantation Embryos. Biotech. Histochem. 2019, 94, 320–324. [Google Scholar] [CrossRef]
- Costa, C.B.; Lunardelli, P.A.; Fontes, P.K.; Sudano, M.J.; Gouveia Nogueira, M.F.; Alfieri, A.A.; Ferreira, C.R.; de Lima, C.B.; Marinho, L.S.R.; Seneda, M.M. Influence of CAMP Modulator Supplementation of in Vitro Culture Medium on Bos Taurus Indicus Embryos. Theriogenology 2020, 141, 134–141. [Google Scholar] [CrossRef]
- Xi, G.; An, L.; Jia, Z.; Tan, K.; Zhang, J.; Wang, Z.; Zhang, C.; Miao, K.; Wu, Z.; Tian, J. Natriuretic Peptide Receptor 2 (NPR2) Localized in Bovine Oocyte Underlies a Unique Mechanism for C-Type Natriuretic Peptide (CNP)-Induced Meiotic Arrest. Theriogenology 2018, 106, 198–209. [Google Scholar] [CrossRef]
- Pioltine, E.M.; Machado, M.F.; da Silveira, J.C.; Fontes, P.K.; Botigelli, R.C.; Quaglio, A.E.V.; Costa, C.B.; Nogueira, M.F.G. Can Extracellular Vesicles from Bovine Ovarian Follicular Fluid Modulate the In-Vitro Oocyte Meiosis Progression Similarly to the CNP-NPR2 System? Theriogenology 2020, 157, 210–217. [Google Scholar] [CrossRef]
- Schwarz, K.R.L.; de Castro, F.C.; Schefer, L.; Botigelli, R.C.; Paschoal, D.M.; Fernandes, H.; Leal, C.L.V. The Role of CGMP as a Mediator of Lipolysis in Bovine Oocytes and Its Effects on Embryo Development and Cryopreservation. PLoS ONE 2018, 13, e0191023. [Google Scholar] [CrossRef]
- Soares, A.C.S.; Lodde, V.; Barros, R.G.; Price, C.A.; Luciano, A.M.; Buratini, J. Steroid Hormones Interact with Natriuretic Peptide C to Delay Nuclear Maturation, to Maintain Oocyte–Cumulus Communication and to Improve the Quality of in Vitro-Produced Embryos in Cattle. Reprod. Fertil. Dev. 2017, 29, 2217. [Google Scholar] [CrossRef] [PubMed]
- Ang, L.; Haixia, C.; Hongxia, L.; Ruijiao, L.; Xingping, G.; Huaixiu, W. Supplementation of C-Type Natriuretic Peptide during in Vitro Growth Period Benefits the Development of Murine Preantral Follicles. Zygote 2021, 29, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Lin, J.; Liu, X.; Hou, J.; Zhang, Y.; Zhao, X. C-Type Natriuretic Peptide Maintains Domestic Cat Oocytes in Meiotic Arrest. Reprod. Fertil. Dev. 2016, 28, 1553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, Q.; Cai, J.; Zhao, X.; Ma, B. Effect of C-Type Natriuretic Peptide on Maturation and Developmental Competence of Goat Oocytes Matured In Vitro. PLoS ONE 2015, 10, e0132318. [Google Scholar] [CrossRef]
- Halls, M.L.; Cooper, D.M.F. Adenylyl Cyclase Signalling Complexes—Pharmacological Challenges and Opportunities. Pharmacol. Ther. 2017, 172, 171–180. [Google Scholar] [CrossRef]
- Grealy, M.; Sreenan, J.M. Effect of Adenylyl Cyclase Activation on Intracellular and Extracellular CAMP and CGMP in Preimplantation Cattle Blastocysts. Reproduction 1999, 116, 355–361. [Google Scholar] [CrossRef]
- Caixeta, E.S.; Sutton-McDowall, M.L.; Gilchrist, R.B.; Thompson, J.G.; Price, C.A.; Machado, M.F.; Lima, P.F.; Buratini, J. Bone Morphogenetic Protein 15 and Fibroblast Growth Factor 10 Enhance Cumulus Expansion, Glucose Uptake, and Expression of Genes in the Ovulatory Cascade during in Vitro Maturation of Bovine Cumulus–Oocyte Complexes. Reproduction 2013, 146, 27–35. [Google Scholar] [CrossRef]
- Cajas, Y.N.; Cañón-Beltrán, K.; Ladrón de Guevara, M.; Millán de la Blanca, M.G.; Ramos-Ibeas, P.; Gutiérrez-Adán, A.; Rizos, D.; González, E.M. Antioxidant Nobiletin Enhances Oocyte Maturation and Subsequent Embryo Development and Quality. Int. J. Mol. Sci. 2020, 21, 5340. [Google Scholar] [CrossRef]
- Kathirvel, M.; Soundian, E.; Kumanan, V. Differential Expression Dynamics of Growth Differentiation Factor9 (GDF9) and Bone Morphogenetic Factor15 (BMP15) MRNA Transcripts during in Vitro Maturation of Buffalo (Bubalus Bubalis) Cumulus–Oocyte Complexes. Springerplus 2013, 2, 206. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, H.J.; Kim, M.J.; Kim, G.A.; Choi, Y.B.; Jo, Y.K.; Setyawan, E.M.N.; Lee, B.C. Oocyte Maturation-Related Gene Expression in the Canine Oviduct, Cumulus Cells, and Oocytes and Effect of Co-Culture with Oviduct Cells on in Vitro Maturation of Oocytes. J. Assist. Reprod. Genet. 2017, 34, 929–938. [Google Scholar] [CrossRef]
- Su, Y.-Q.; Sugiura, K.; Wigglesworth, K.; O’Brien, M.J.; Affourtit, J.P.; Pangas, S.A.; Matzuk, M.M.; Eppig, J.J. Oocyte Regulation of Metabolic Cooperativity between Mouse Cumulus Cells and Oocytes: BMP15 and GDF9 Control Cholesterol Biosynthesis in Cumulus Cells. Development 2008, 135, 111–121. [Google Scholar] [CrossRef]
- Tian, G.-P.; Chen, W.-J.; He, P.-P.; Tang, S.-L.; Zhao, G.-J.; Lv, Y.-C.; Ouyang, X.-P.; Yin, K.; Wang, P.-P.; Cheng, H.; et al. MicroRNA-467b Targets LPL Gene in RAW 264.7 Macrophages and Attenuates Lipid Accumulation and Proinflammatory Cytokine Secretion. Biochimie 2012, 94, 2749–2755. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q. Effect of Tauroursodeoxycholic Acid on Endoplasmic Reticulum Stress–Induced Caspase-12 Activation. Hepatology 2002, 36, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Pioltine, E.M.; Costa, C.B.; Barbosa Latorraca, L.; Franchi, F.F.; dos Santos, P.H.; Mingoti, G.Z.; de Paula-Lopes, F.F.; Nogueira, M.F.G. Treatment of in Vitro-Matured Bovine Oocytes with Tauroursodeoxycholic Acid Modulates the Oxidative Stress Signaling Pathway. Front. Cell Dev. Biol. 2021, 9, 623852. [Google Scholar] [CrossRef]
- Pang, Y.; Zhao, S.; Sun, Y.; Jiang, X.; Hao, H.; Du, W.; Zhu, H. Protective Effects of Melatonin on the in Vitro Developmental Competence of Bovine Oocytes. Anim. Sci. J. 2018, 89, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Kaihola, H.; Yaldir, F.G.; Bohlin, T.; Samir, R.; Hreinsson, J.; Åkerud, H. Levels of Caspase-3 and Histidine-Rich Glycoprotein in the Embryo Secretome as Biomarkers of Good-Quality Day-2 Embryos and High-Quality Blastocysts. PLoS ONE 2019, 14, e0226419. [Google Scholar] [CrossRef]
- Lu, J.; Guo, M.; Wang, X.; Wang, R.; Xi, G.; An, L.; Tian, J.; Chu, M. A Redesigned Method for CNP-Synchronized In Vitro Maturation Inhibits Oxidative Stress and Apoptosis in Cumulus-Oocyte Complexes and Improves the Developmental Potential of Porcine Oocytes. Genes 2023, 14, 1885. [Google Scholar] [CrossRef]
- Sánchez, F.; Lolicato, F.; Romero, S.; De Vos, M.; Van Ranst, H.; Verheyen, G.; Anckaert, E.; Smitz, J.E.J. An Improved IVM Method for Cumulus-Oocyte Complexes from Small Follicles in Polycystic Ovary Syndrome Patients Enhances Oocyte Competence and Embryo Yield. Hum. Reprod. 2017, 32, 2056–2068. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, X.; Li, R.; Zhang, C.; Zhang, J. Effects of Pre-Incubation with C-Type Natriuretic Peptide on Nuclear Maturation, Mitochondrial Behavior, and Developmental Competence of Sheep Oocytes. Biochem. Biophys. Res. Commun. 2018, 497, 200–206. [Google Scholar] [CrossRef]
- Berridge, M.J. The Endoplasmic Reticulum: A Multifunctional Signaling Organelle. Cell Calcium 2002, 32, 235–249. [Google Scholar] [CrossRef]
- Hosoi, T.; Yokoyama, S.; Matsuo, S.; Akira, S.; Ozawa, K. Myeloid Differentiation Factor 88 (MyD88)-Deficiency Increases Risk of Diabetes in Mice. PLoS ONE 2010, 5, e12537. [Google Scholar] [CrossRef]
- Monroig, Ó.; Rotllant, J.; Cerdá-Reverter, J.M.; Dick, J.R.; Figueras, A.; Tocher, D.R. Expression and Role of Elovl4 Elongases in Biosynthesis of Very Long-Chain Fatty Acids during Zebrafish Danio Rerio Early Embryonic Development. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids 2010, 1801, 1145–1154. [Google Scholar] [CrossRef]
- Hopiavuori, B.R.; Anderson, R.E.; Agbaga, M.-P. ELOVL4: Very Long-Chain Fatty Acids Serve an Eclectic Role in Mammalian Health and Function. Prog. Retin. Eye Res. 2019, 69, 137–158. [Google Scholar] [CrossRef]
- Sudano, M.J.; Rascado, T.D.S.; Tata, A.; Belaz, K.R.A.; Santos, V.G.; Valente, R.S.; Mesquita, F.S.; Ferreira, C.R.; Araújo, J.P.; Eberlin, M.N.; et al. Lipidome Signatures in Early Bovine Embryo Development. Theriogenology 2016, 86, 472–484.e1. [Google Scholar] [CrossRef]
- Pioltine, E.M.; Costa, C.B.; Franchi, F.F.; dos Santos, P.H.; Nogueira, M.F.G. Tauroursodeoxycholic Acid Supplementation in In Vitro Culture of Indicine Bovine Embryos: Molecular and Cellular Effects on the In Vitro Cryotolerance. Int. J. Mol. Sci. 2023, 24, 14060. [Google Scholar] [CrossRef]
- Razza, E.M.; Satrapa, R.A.; Silva, C.F.; Nabhan, T.; Simões, R.A.L.; Emanuelli, I.P.; Mazucheli, J.; Barros, C.M.; Nogueira, M.F.G. Lethal Effect of High Concentrations of Parecoxib and Flunixin Meglumine on the in Vitro Culture of Bovine Embryos. Anim. Reprod. 2012, 9, 80–85. [Google Scholar] [CrossRef]
- De Rossi, H.; Bortoliero Costa, C.; Rodrigues-Rossi, L.T.; Barros Nunes, G.; Spinosa Chéles, D.; Maran Pereira, I.; Rocha, D.F.O.; Feitosa, E.; Colnaghi Simionato, A.V.; Zoccal Mingoti, G.; et al. Modulating the Lipid Profile of Blastocyst Cell Membrane with DPPC Multilamellar Vesicles. Artif. Cells Nanomed. Biotechnol. 2022, 50, 158–167. [Google Scholar] [CrossRef]
- Fontes, P.K.; Castilho, A.C.S.; Razza, E.M.; Nogueira, M.F.G. Bona Fide Gene Expression Analysis of Samples from the Bovine Reproductive System by Microfluidic Platform. Anal. Biochem. 2020, 596, 113641. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Group | Cumulus–Oocyte Complexes | PZs | Blastocyst |
---|---|---|---|
n | n | n (% Mean ± SEM) | |
Control | 91 | 90 | 29 (32.81 ± 14.24) |
C-100 | 87 | 87 | 30 (34.14 ± 5.61) |
C-200 | 94 | 93 | 33 (35.45 ± 5.06) |
C-400 | 90 | 88 | 41 (46.09 ± 7.76) |
p-value | - | - | 0.082 |
Group | Cumulus–Oocyte Complexes | PZs | Blastocyst |
---|---|---|---|
n | n | n (% Mean ± SEM) | |
Control | 182 | 180 | 60 (32.41 ± 5.45) |
C-100 | 184 | 181 | 52 (28.62 ± 12.52) |
C-200 | 186 | 183 | 48 (26.33 ± 5.64) |
C-400 | 184 | 183 | 55 (29.17 ± 8.94) |
p-value | - | - | 0.743 |
Group | PZs | Blastocyst Rate | Hatched Blastocyst D7 | Hatched Blastocyst D8 | Hatched Blastocyst D9 | Total Hatched Blastocyst |
---|---|---|---|---|---|---|
n | n (% Mean ± SEM) | n (% Median (1st, 3rd)) * | n (% Mean ± SEM) | n (% Mean ± SEM) | n (% Mean ± SEM) | |
Control | 979 | 332 (34.13 ± 2.11) | 4 [0.98 (0.00, 2.11)] | 84 (25.76 ± 4.96) | 62 (17.88 ± 2.75) | 150 (44.80 ± 5.51) |
C-400 | 1026 | 331 (32.55 ± 1.14) | 3 [0.00 (0.00, 1.06)] | 71 (20.58 ± 3.79) | 68 (20.00 ± 2.09) | 142 (41.34 ± 5.34) |
p-value | - | 0.52 | 0.57 | 0.42 | 0.55 | 0.66 |
Gene Symbol | Definition | Fold Change | |
---|---|---|---|
IMPDH1 | GTP/cGMP | 0.663 | |
CD40 | Apoptosis | 0.627 | |
Upregulated | ADCY6 | cAMP/meiotic arrest | 0.303 |
ELF5 | Cell differentiation/trophectoderm | 0.199 | |
NPR2 | cGMP/meiotic arrest | 0.190 | |
BMP15 | Oocyte maturation/follicular development | 7.008 | |
FSHR | Follicle stimulating hormone receptor/gonad development | 3.246 | |
NRP2 | Cell survival/follicular development | 1.908 | |
Downregulated | NANOG | Pluripotency (ICM/TE)/when overexpressed, promotes cells to enter the S phase and proliferation | 1.878 |
GFPT2 | Oxidative stress | 1.866 | |
CASP3 | Apoptosis | 1.835 | |
HSPA1A | Cell survival/facilitates DNA repair | 1.579 |
Gene Symbol | Definition | Fold Change | |
---|---|---|---|
HSPA5 | Folding and assembly of proteins in the endoplasmic reticulum/degradation of misfolded proteins | 0.637 | |
Upregulated | SOX2 | Pluripotency/chromatin binding/DNA methylation | 0.571 |
CASP3 | Apoptosis | 0.513 | |
BID | Apoptosis/pro-apoptotic | 0.408 | |
BDNF | Supporting meiotic progression | 1.966 | |
NLRP5 | Maternal oocyte protein/required for normal early embryogenesis | 1.868 | |
AGPAT9 | Predict embryo quality/lipid metabolism | 1.794 | |
Downregulated | IGFBP4 | Either inhibit or stimulate the growth promoting effects of the IGFs | 1.700 |
ELOVL4 | Fatty acid biosynthesis, elongation, endoplasmic reticulum | 1.725 | |
ELOVL1 | Fatty acid biosynthesis, elongation, endoplasmic reticulum | 1.670 | |
FDX1 | Synthesis steroid hormones/catalyzes cholesterol cleavage | 1.533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, C.B.; Silva, N.C.d.; Silva, A.N.; Pioltine, E.M.; Dellaqua, T.T.; Zangirolamo, A.F.; Meirelles, F.V.; Seneda, M.M.; Nogueira, M.F.G. Developmental and Molecular Effects of C-Type Natriuretic Peptide Supplementation in In Vitro Culture of Bovine Embryos. Int. J. Mol. Sci. 2024, 25, 10938. https://doi.org/10.3390/ijms252010938
Costa CB, Silva NCd, Silva AN, Pioltine EM, Dellaqua TT, Zangirolamo AF, Meirelles FV, Seneda MM, Nogueira MFG. Developmental and Molecular Effects of C-Type Natriuretic Peptide Supplementation in In Vitro Culture of Bovine Embryos. International Journal of Molecular Sciences. 2024; 25(20):10938. https://doi.org/10.3390/ijms252010938
Chicago/Turabian StyleCosta, Camila Bortoliero, Nathália Covre da Silva, Amanda Nespolo Silva, Elisa Mariano Pioltine, Thaisy Tino Dellaqua, Amanda Fonseca Zangirolamo, Flávio Vieira Meirelles, Marcelo Marcondes Seneda, and Marcelo Fábio Gouveia Nogueira. 2024. "Developmental and Molecular Effects of C-Type Natriuretic Peptide Supplementation in In Vitro Culture of Bovine Embryos" International Journal of Molecular Sciences 25, no. 20: 10938. https://doi.org/10.3390/ijms252010938
APA StyleCosta, C. B., Silva, N. C. d., Silva, A. N., Pioltine, E. M., Dellaqua, T. T., Zangirolamo, A. F., Meirelles, F. V., Seneda, M. M., & Nogueira, M. F. G. (2024). Developmental and Molecular Effects of C-Type Natriuretic Peptide Supplementation in In Vitro Culture of Bovine Embryos. International Journal of Molecular Sciences, 25(20), 10938. https://doi.org/10.3390/ijms252010938