Nanopore-Based Sequencing of the Full-Length Transcriptome of Male and Female Cleavage-Stage Embryos of the Chinese Mitten Crab (Eriocheir sinensis)
Abstract
:1. Introduction
2. Results
2.1. ONT Sequences and Completeness During the Cleavage Stage of E. sinensis
2.2. Principal Component Analysis and AS Analysis in Transcriptomes
2.3. Top 150 High Expression Genes in Male and Female Embryos
2.4. Differentially Expressed RPGs Between Male and Female of Cleavage-Stage Embryos
2.5. Analysis of Ribosomal Genes in E. sinensis
2.6. TF Regulation on RPGs
3. Discussion
4. Materials and Methods
4.1. Animal and Sample Collection
4.2. DNA/RNA Coextraction from Cleavage Stage of Embryos
4.3. Sex Identification of Embryo and Larvae (Zoea III)
4.4. ONT Long Read Processing
4.5. Structure Analysis and Gene Functional Annotation
4.6. Quantitative Genes and DEGs Analysis
4.7. Correlation Analysis of Seven RPGs at Cleavage Stage and Expression in Early Developmental Stages
4.8. Validation of DEGs by Quantitative Real-Time PCR
4.9. Alternative Splicing and Transcription Factors Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panara, V.; Budd, G.E.; Janssen, R. Phylogenetic Analysis and Embryonic Expression of Panarthropod Dmrt Genes. Front. Zool. 2019, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.-P.; Hu, X.-F.; Pan, L.-X.; Gong, Z.-X.; Qin, K.-X.; Li, Z.; Wang, Z.-L. Transcriptome Changes of Apis mellifera Female Embryos with Fem Gene Knockout by CRISPR/Cas9. Int. J. Biol. Macromol. 2023, 229, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Morrow, J.L.; Riegler, M.; Gilchrist, A.S.; Shearman, D.C.; Frommer, M. Comprehensive Transcriptome Analysis of Early Male and Female Bactrocera Jarvisi Embryos. BMC Genet. 2014, 15, S7. [Google Scholar] [CrossRef]
- Kato, Y.; Nitta, J.H.; Perez, C.A.G.; Adhitama, N.; Religia, P.; Toyoda, A.; Iwasaki, W.; Watanabe, H. Identification of Gene Isoforms and Their Switching Events between Male and Female Embryos of the Parthenogenetic Crustacean Daphnia magna. Sci. Rep. 2024, 14, 9407. [Google Scholar] [CrossRef]
- Yaguchi, S.; Morino, Y.; Sasakura, Y. Development of Marine Invertebrates. In Japanese Marine Life: A Practical Training Guide in Marine Biology; Inaba, K., Hall-Spencer, J.M., Eds.; Springer: Singapore, 2020; pp. 109–124. ISBN 9789811513268. [Google Scholar]
- Carrillo-Baltodano, A.M.; Seudre, O.; Guynes, K.; Martín-Durán, J.M. Early Embryogenesis and Organogenesis in the Annelid Owenia Fusiformis. EvoDevo 2021, 12, 5. [Google Scholar] [CrossRef]
- Kobiita, A.; Silva, P.N.; Schmid, M.W.; Stoffel, M. FoxM1 Coordinates Cell Division, Protein Synthesis, and Mitochondrial Activity in a Subset of β Cells during Acute Metabolic Stress. Cell Rep. 2023, 42, 112986. [Google Scholar] [CrossRef]
- Blank, H.M.; Alonso, A.; Fabritius, A.S.; Valk, E.; Loog, M.; Winey, M.; Polymenis, M. Translational Control of MPS1 Links Protein Synthesis with the Initiation of Cell Division and Spindle Pole Body Duplication in Saccharomyces cerevisiae. Genetics 2024, 227, iyae069. [Google Scholar] [CrossRef]
- Byrne, M.E. A Role for the Ribosome in Development. Trends Plant Sci. 2009, 14, 512–519. [Google Scholar] [CrossRef]
- Oon, S.H.; Hong, A.; Yang, X.; Chia, W. Alternative Splicing in a Novel Tyrosine Phosphatase Gene (DPTP4E) of Drosophila melanogaster Generates Two Large Receptor-like Proteins Which Differ in Their Carboxyl Termini. J. Biol. Chem. 1993, 268, 23964–23971. [Google Scholar] [CrossRef]
- Muha, V.; Zagyva, I.; Venkei, Z.; Szabad, J.; Vértessy, B.G. Nuclear Localization Signal-Dependent and -Independent Movements of Drosophila melanogaster dUTPase Isoforms during Nuclear Cleavage. Biochem. Biophys. Res. Commun. 2009, 381, 271–275. [Google Scholar] [CrossRef]
- Riera-Ruiz, C.; Moriyama, H. Enzyme Kinetics of Deoxyuridine Triphosphatase from Western Corn Rootworm. BMC Res. Notes 2023, 16, 336. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Mayén, M.; Román-Contreras, R. Sexual Maturity, Fecundity, and Embryo Loss in the Pontoniine Shrimp Cuapetes americanus (Kingsley, 1878) (Decapoda: Palaemonidae) in Bahía de La Ascensión, Quintana Roo, Mexico. J. Crustac. Biol. 2014, 34, 342–348. [Google Scholar] [CrossRef]
- Xu, L.-K.; Ma, K.-Y.; Zhang, F.-Y.; Wang, W.; Ma, L.-B.; Jin, Z.-W.; Zhao, M.; Chen, W.; Fu, Y.; Ma, C.-Y.; et al. Observations on the Embryonic Development of the Mud Crab, Scylla paramamosain. Front. Mar. Sci. 2023, 10, 1296509. [Google Scholar] [CrossRef]
- Zhang, W.; Lv, J.; Lan, W.; Gao, B.; Liu, P. Discovery of Sex-Determining Genes in Portunus trituberculatus: A Comparison of Male and Female Transcriptomes During Early Developmental Stages. Front. Mar. Sci. 2022, 8, 811052. [Google Scholar] [CrossRef]
- Lin, J.; Shi, X.; Fang, S.; Zhang, Y.; You, C.; Ma, H.; Lin, F. Comparative Transcriptome Analysis Combining SMRT and NGS Sequencing Provides Novel Insights into Sex Differentiation and Development in Mud Crab (Scylla paramamosain). Aquaculture 2019, 513, 734447. [Google Scholar] [CrossRef]
- Liu, Y.; Hui, M.; Cui, Z.; Luo, D.; Song, C.; Li, Y.; Liu, L. Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis. PLoS ONE 2015, 10, e0133068. [Google Scholar] [CrossRef]
- Fang, F.; Yuan, Y.; Jin, M.; Shi, B.; Zhu, T.; Luo, J.; Lu, J.; Wang, X.; Jiao, L.; Zhou, Q. Hepatopancreas Transcriptome Analysis Reveals the Molecular Responses to Different Dietary N-3 PUFA Lipid Sources in the Swimming Crab Portunus trituberculatus. Aquaculture 2021, 543, 737016. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Li, S.; Zhang, X.; Xiang, J.; Li, F. Sex-Specific Transcriptome Sequencing of Zoea I Larvae and Identification of Sex-Linked Genes Using Bulked Segregant Analysis in Pacific White Shrimp Litopenaeus vannamei. Mar. Biotechnol. 2020, 22, 423–432. [Google Scholar] [CrossRef]
- Marasco, L.E.; Kornblihtt, A.R. The Physiology of Alternative Splicing. Nat. Rev. Mol. Cell Biol. 2023, 24, 242–254. [Google Scholar] [CrossRef]
- Wright, C.J.; Smith, C.W.J.; Jiggins, C.D. Alternative Splicing as a Source of Phenotypic Diversity. Nat. Rev. Genet. 2022, 23, 697–710. [Google Scholar] [CrossRef]
- Tong, C.; Zhang, K.; Rong, Z.; Mo, W.; Peng, Y.; Zheng, S.; Feng, Q.-L.; Deng, H. Alternative Splicing of POUM2 Regulates Embryonic Cuticular Formation and Tanning in Bombyx mori. Insect Sci. 2023, 30, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Chen, Y.; Zhang, Z.-H.; Qiu, G.-F. A New Alternative Splice Variant of Ecdysteroid Receptor (EcR) Transcript Differentially Expressed during Embryogenesis in the Oriental River Prawn Macrobrachium nipponense. Aquac. Res. 2022, 53, 6020–6028. [Google Scholar] [CrossRef]
- Gillette, C.M.; Tennessen, J.M.; Reis, T. Balancing Energy Expenditure and Storage with Growth and Biosynthesis during Drosophila Development. Dev. Biol. 2021, 475, 234–244. [Google Scholar] [CrossRef]
- García-Guerrero, M.; Racotta, I.S.; Villarreal, H. Variation in Lipid, Protein, and Carbohydrate Content During the Embryonic Development of the Crayfish Cherax quadricarinatus (Decapoda: Parastacidae). J. Crustac. Biol. 2003, 23, 1–6. [Google Scholar] [CrossRef]
- Huang, X.; Tan, R.; Geng, Z.; Zhang, T.; Feng, G.; Yang, G.; Zhao, F.; Zhuang, P. Effects of Antarctic Krill Meal in Diet on Reproductive Performance and Embryo Quality of Eriocheir sinensis. Aquac. Nutr. 2024, 2024, 9936529. [Google Scholar] [CrossRef]
- Guo, H.; Hua, H.; Wang, J.; Qiang, W.; Xiang, X.; Liu, W.; Jiang, G. The Role of Cholesterol during the Ovarian Maturation and Lipid Metabolism of Female Chinese Mitten Crab (Eriocheir sinensis). Aquac. Nutr. 2024, 2024, 9933600. [Google Scholar] [CrossRef]
- Lautier, J.; Lagarrigue, J.-G. Lipid Metabolism of the Crab Pachygrapsus marmoratus during Vitellogenesis. Biochem. Syst. Ecol. 1988, 16, 203–212. [Google Scholar] [CrossRef]
- Luo, D.; Liu, Y.; Hui, M.; Song, C.; Liu, H.; Cui, Z. Molecular characterization and expression profiles of four transformer-2 isoforms in the Chinese mitten crab Eriocheir sinensis. Chin. J. Oceanol. Limnol. 2017, 35, 782–791. [Google Scholar] [CrossRef]
- Rodríguez-Montes, L.; Ovchinnikova, S.; Yuan, X.; Studer, T.; Sarropoulos, I.; Anders, S.; Kaessmann, H.; Cardoso-Moreira, M. Sex-Biased Gene Expression across Mammalian Organ Development and Evolution. Science 2023, 382, eadf1046. [Google Scholar] [CrossRef]
- Han, W.; Liu, L.; Wang, J.; Wei, H.; Li, Y.; Zhang, L.; Guo, Z.; Li, Y.; Liu, T.; Zeng, Q.; et al. Ancient Homomorphy of Molluscan Sex Chromosomes Sustained by Reversible Sex-Biased Genes and Sex Determiner Translocation. Nat. Ecol. Evol. 2022, 6, 1891–1906. [Google Scholar] [CrossRef]
- Hahn, M.W.; Lanzaro, G.C. Female-Biased Gene Expression in the Malaria Mosquito Anopheles gambiae. Curr. Biol. 2005, 15, R192–R193. [Google Scholar] [CrossRef] [PubMed]
- Marinotti, O.; Calvo, E.; Nguyen, Q.K.; Dissanayake, S.; Ribeiro, J.M.C.; James, A.A. Genome-Wide Analysis of Gene Expression in Adult Anopheles gambiae. Insect Mol. Biol. 2006, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Eads, B.D.; Colbourne, J.K.; Bohuski, E.; Andrews, J. Profiling Sex-Biased Gene Expression during Parthenogenetic Reproduction in Daphnia pulex. BMC Genom. 2007, 8, 464. [Google Scholar] [CrossRef] [PubMed]
- Bennett-Keki, S.; Fowler, E.K.; Folkes, L.; Moxon, S.; Chapman, T. Sex-Biased Gene Expression in Nutrient-Sensing Pathways. Proc. R. Soc. B 2023, 290, 20222086. [Google Scholar] [CrossRef] [PubMed]
- Grath, S.; Parsch, J. Sex-Biased Gene Expression. Annu. Rev. Genet. 2016, 50, 29–44. [Google Scholar] [CrossRef]
- Dyomin, A.; Galkina, S.; Ilina, A.; Gaginskaya, E. Single Copies of the 5S rRNA Inserted into 45S rDNA Intergenic Spacers in the Genomes of Nototheniidae (Perciformes, Actinopterygii). Int. J. Mol. Sci. 2023, 24, 7376. [Google Scholar] [CrossRef]
- Sonakowska-Czajka, L.; Śróbka, J.; Ostróżka, A.; Rost-Roszkowska, M. Postembryonic Development and Differentiation of the Midgut in the Freshwater Shrimp Neocaridina davidi (Crustacea, Malacostraca, Decapoda) Larvae. J. Morphol. 2021, 282, 48–65. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Zhang, S.; Li, H.; Zhang, R.; Li, X.; Zhang, M.; Wang, L.; Yu, M.; Qiao, Z.; et al. cDNA Characterization of the Ribosomal Protein L10a Gene and Its Functional Analysis in Ovarian Development of Macrobrachium nipponense. Aquac. Rep. 2024, 34, 101899. [Google Scholar] [CrossRef]
- Jiang, H.; Li, X.; Li, Y.; Liu, X.; Zhang, S.; Li, H.; Zhang, M.; Wang, L.; Yu, M.; Qiao, Z. Molecular and Functional Characterization of Ribosome Protein S24 in Ovarian Development of Macrobrachium nipponense. Int. J. Biol. Macromol. 2024, 254, 127934. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, X.; Li, Y.; Zhang, R.; Liu, H.; Ma, X.; Wu, L.; Qiao, Z.; Li, X. Identification of Ribosomal Protein L24 (RPL24) from the Oriental River Prawn, Macrobrachium nipponense, and Its Roles in Ovarian Development. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022, 266, 111154. [Google Scholar] [CrossRef]
- Janssen, R.; Budd, G.E. Expression of the Zinc Finger Transcription Factor Sp6–9 in the Velvet Worm Euperipatoides Kanangrensis Suggests a Conserved Role in Appendage Development in Panarthropoda. Dev. Genes Evol. 2020, 230, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Janssen, R.; Schomburg, C.; Prpic, N.-M.; Budd, G.E. A Comprehensive Study of Arthropod and Onychophoran Fox Gene Expression Patterns. PLoS ONE 2022, 17, e0270790. [Google Scholar] [CrossRef] [PubMed]
- Schomburg, C.; Janssen, R.; Prpic, N.-M. Phylogenetic Analysis of Forkhead Transcription Factors in the Panarthropoda. Dev. Genes Evol. 2022, 232, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, J.; Yu, H.; Dong, B. Genome-Wide Identification, Comparison, and Expression Analysis of Transcription Factors in Ascidian Styela clava. Int. J. Mol. Sci. 2021, 22, 4317. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, R.; Wang, Q.; Yue, Y.; Gao, Q.; Wang, C.; Zheng, H.; Peng, S. Transcriptomic Analysis of Large Yellow Croaker (Larimichthys crocea) during Early Development under Hypoxia and Acidification Stress. Vet. Sci. 2022, 9, 632. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, Z.; Feng, T.; Bao, C.; Xu, Y. Transcriptome Analysis Elucidates Key Changes of Pleon in the Process of Carcinization. J. Oceanol. Limnol. 2021, 39, 1471–1484. [Google Scholar] [CrossRef]
- Hombría, J.C.-G.; García-Ferrés, M.; Sánchez-Higueras, C. Anterior Hox Genes and the Process of Cephalization. Front. Cell Dev. Biol. 2021, 9, 718175. [Google Scholar] [CrossRef]
- Turetzek, N.; Pechmann, M.; Janssen, R.; Prpic, N.-M. Hox Genes in Spiders: Their Significance for Development and Evolution. Semin. Cell Dev. Biol. 2024, 152–153, 24–34. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, X.; Xia, L.; Chen, Z.; Zhou, K.; Yan, J.; Li, P. The Identification, Adaptive Evolutionary Analyses and mRNA Expression Levels of Homeobox (Hox) Genes in the Chinese Mitten Crab Eriocheir sinensis. BMC Genom. 2023, 24, 436. [Google Scholar] [CrossRef]
- Serano, J.M.; Martin, A.; Liubicich, D.M.; Jarvis, E.; Bruce, H.S.; La, K.; Browne, W.E.; Grimwood, J.; Patel, N.H. Comprehensive Analysis of Hox Gene Expression in the Amphipod Crustacean Parhyale hawaiensis. Dev. Biol. 2016, 409, 297–309. [Google Scholar] [CrossRef]
- Jaramillo, M.L.; Ammar, D.; Quispe, R.L.; Bonatto Paese, C.L.; Gruendling, A.P.; Müller, Y.M.; Nazari, E.M. Identification of Hox Genes and Their Expression Profiles during Embryonic Development of the Emerging Model Organism, Macrobrachium olfersii. J. Exp. Zool. B Mol. Dev. Evol. 2022, 338, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, H.; Zheng, Q.; Hu, J.; Wu, W. Research Progress on the Regulation of Autophagy and Apoptosis in Insects by Sterol Hormone 20-Hydroxyecdysone. Insects 2023, 14, 871. [Google Scholar] [CrossRef] [PubMed]
- Montú, M.; Anger, K.; de Bakker, C. Larval Development of the Chinese Mitten crab Eriocheir sinensis H. Milne-Edwards (Decapoda: Grapsidae) Reared in the Laboratory. Helgol. Meeresunters. 1996, 50, 223–252. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, Y.; Yuan, J.; Zhang, X.; Ventura, T.; Ma, K.Y.; Sun, S.; Song, C.; Zhan, D.; Yang, Y.; et al. The Chinese Mitten Crab Genome Provides Insights into Adaptive Plasticity and Developmental Regulation. Nat. Commun. 2021, 12, 2395. [Google Scholar] [CrossRef]
- Cui, Z.; Yang, Y.; Tian, F.; Zhang, P.; Rui, H.; Wen, T. A Sex-Identification Specific DNA Sequence and a Sex-Identification Method for Eriocheir sinensis. China Patent Application 202210077326.9, 2022. Available online: https://trea.com/information/sex-identification-specific-dna-sequence-and-sex-identification-method-of-chines/patentapplication/1f33eaa7-9758-470c-b21e-de3962bddfe6 (accessed on 8 November 2024).
- Liyanage, K.; Samarakoon, H.; Parameswaran, S.; Gamaarachchi, H. Efficient End-to-End Long-Read Sequence Mapping Using Minimap2-Fpga Integrated with Hardware Accelerated Chaining. Sci. Rep. 2023, 13, 20174. [Google Scholar] [CrossRef]
- Shumate, A.; Wong, B.; Pertea, G.; Pertea, M. Improved Transcriptome Assembly Using a Hybrid of Long and Short Reads with StringTie. PLoS Comput. Biol. 2022, 18, e1009730. [Google Scholar] [CrossRef]
- Pertea, G.; Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Res 2020, 9, 304. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y. KEGG Mapper for Inferring Cellular Functions from Protein Sequences. Protein Sci. 2020, 29, 28–35. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Farrell, C.M.; Feldgarden, M.; Fine, A.M.; Funk, K.; et al. Database Resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Res. 2022, 51, D29–D38. [Google Scholar] [CrossRef]
- Consortium, G.; Blake, J.; Dolan, M.; Drabkin, H.; Hill, D. The Gene Ontology Resource: Enriching a GOld Mine. Nucleic Acids Res. 2021, 49, 325. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Wolf, Y.I.; Makarova, K.S.; Vera Alvarez, R.; Landsman, D.; Koonin, E.V. COG Database Update: Focus on Microbial Diversity, Model Organisms, and Widespread Pathogens. Nucleic Acids Res. 2020, 49, D274–D281. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Krylov, D.M.; Makarova, K.S.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; Rao, B.S.; et al. A Comprehensive Evolutionary Classification of Proteins Encoded in Complete Eukaryotic Genomes. Genome Biol. 2004, 5, R7. [Google Scholar] [CrossRef]
- Soudy, M.; Anwar, A.M.; Ahmed, E.A.; Osama, A.; Ezzeldin, S.; Mahgoub, S.; Magdeldin, S. UniprotR: Retrieving and Visualizing Protein Sequence and Functional Information from Universal Protein Resource (UniProt Knowledgebase). J. Proteom. 2020, 213, 103613. [Google Scholar] [CrossRef]
- Zhao, S.; Ye, Z.; Stanton, R. Misuse of RPKM or TPM Normalization When Comparing across Samples and Sequencing Protocols. RNA 2020, 26, 903–909. [Google Scholar] [CrossRef]
- Gabriel, M.; Fey, V.; Heinosalo, T.; Adhikari, P.; Rytkönen, K.; Komulainen, T.; Huhtinen, K.; Laajala, T.D.; Siitari, H.; Virkki, A.; et al. A Relational Database to Identify Differentially Expressed Genes in the Endometrium and Endometriosis Lesions. Sci. Data 2020, 7, 284. [Google Scholar] [CrossRef]
- Muller, I.B.; Meijers, S.; Kampstra, P.; van Dijk, S.; van Elswijk, M.; Lin, M.; Wojtuszkiewicz, A.M.; Jansen, G.; de Jonge, R.; Cloos, J. Computational Comparison of Common Event-Based Differential Splicing Tools: Practical Considerations for Laboratory Researchers. BMC Bioinform. 2021, 22, 347. [Google Scholar] [CrossRef]
- Wang, S.; Yan, N.; Yang, Y.; Sun, L.; Huang, Y.; Zhang, J.; Xu, G. Screening of Drug Targets for Tuberculosis on the Basis of Transcription Factor Regulatory Network and mRNA Sequencing Technology. Front. Mol. Biosci. 2024, 11, 1410445. [Google Scholar] [CrossRef]
Gene | Number of AS Events | Transcripts |
---|---|---|
Ribosomal protein S26e (RPS26e) | 5 (including two A3 events, two A5 events and one RI event) | S-transcript1 (p = 0.669) |
S-transcript2 (p = 0.028) | ||
Ribosomal protein L26e (RPL26e) | 2 (including one A5 event and one RI event) | L-transcript1 (Almost no expression in males and females) |
L-transcript2 (p = 0.610) | ||
L-transcript3 (p = 0.026) |
Gene | Primer Sequence (5′-3′) | Experiments |
---|---|---|
RPL10e-F | CCTAAGAGTCGGTTCTGCCG | qRT-PCR |
RPL10e-R | CCTCACCTTGTTGGCACAGA | qRT-PCR |
RPS13e-F | CATGGTGAAGGGCCAGGATT | qRT-PCR |
RPS13e-R | CAGGGCTTTCGTAGGGGTTT | qRT-PCR |
RPL14e-F | CTGACCTGACGGAACACTGG | qRT-PCR |
RPL14e-R | TGGGGTGTTTGGGCATTGAT | qRT-PCR |
RP L23Ae-F | GCTAGGAAGGCGTGATTGGT | qRT-PCR |
RP L23Ae-R | CAAGTTTGTCGTTGTGCCGT | qRT-PCR |
RPL26e-F | CTTCCAAGGACGCCTCAGTT | qRT-PCR |
RPL26e-R | CCTTTCTTCCTCTGCGGGTT | qRT-PCR |
RPL27e-F | ACCTTCGCAATTCTTCCCGT | qRT-PCR |
RPL27e-R | AGCGTAGTGGTTTGGTGGTT | qRT-PCR |
RPS26e-F | CATCACACCCGAGGACCAAA | qRT-PCR |
RPS26e-R | TTGCCTCACTCGACAAACGA | qRT-PCR |
β-actin-F | GCATCCACGAGACCACTTACA | qRT-PCR |
β-actin-R | CTCCTGCTTGCTGATCCACATC | qRT-PCR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, R.; Ni, M.; Lu, W.; Zhu, D.; Feng, T.; Yang, Y.; Cui, Z. Nanopore-Based Sequencing of the Full-Length Transcriptome of Male and Female Cleavage-Stage Embryos of the Chinese Mitten Crab (Eriocheir sinensis). Int. J. Mol. Sci. 2024, 25, 12097. https://doi.org/10.3390/ijms252212097
Han R, Ni M, Lu W, Zhu D, Feng T, Yang Y, Cui Z. Nanopore-Based Sequencing of the Full-Length Transcriptome of Male and Female Cleavage-Stage Embryos of the Chinese Mitten Crab (Eriocheir sinensis). International Journal of Molecular Sciences. 2024; 25(22):12097. https://doi.org/10.3390/ijms252212097
Chicago/Turabian StyleHan, Rui, Mengqi Ni, Wentao Lu, Dandan Zhu, Tianyi Feng, Yanan Yang, and Zhaoxia Cui. 2024. "Nanopore-Based Sequencing of the Full-Length Transcriptome of Male and Female Cleavage-Stage Embryos of the Chinese Mitten Crab (Eriocheir sinensis)" International Journal of Molecular Sciences 25, no. 22: 12097. https://doi.org/10.3390/ijms252212097
APA StyleHan, R., Ni, M., Lu, W., Zhu, D., Feng, T., Yang, Y., & Cui, Z. (2024). Nanopore-Based Sequencing of the Full-Length Transcriptome of Male and Female Cleavage-Stage Embryos of the Chinese Mitten Crab (Eriocheir sinensis). International Journal of Molecular Sciences, 25(22), 12097. https://doi.org/10.3390/ijms252212097