Integration of mRNA and miRNA Analysis Sheds New Light on the Muscle Response to Heat Stress in Spotted Sea Bass (Lateolabrax maculatus)
Abstract
:1. Introduction
2. Results
2.1. Effects of Heat Stress on Biochemical Parameters
2.2. Overview of RNA-Seq Data
2.3. Identification of DEGs
2.4. PPI Network Construction and the Expression Profiles of Hub Genes
2.5. DAS Identification, Functional Enrichment Analysis and Validation
2.6. Identification and Characteristics of miRNAs in the Muscle
2.7. Differential Expression Analysis of miRNAs
2.8. Target Gene Prediction of DEMs and Functional Enrichment Analysis
2.9. Regulatory Network of DEMs–DEGs
2.10. Overview of the Key DEMs, DEGs and Functional Pathways
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Experimental Design and Fish Sampling
4.3. Biochemical Parameters Assays
4.4. RNA Isolation, Library Preparation and Sequencing
4.5. Identification of DEGs and PPI Network Construction
4.6. Identification of DAS Events
4.7. miRNA Identification and Differential Expression Analysis
4.8. Interaction Analysis of mRNA and miRNA
4.9. Functional Enrichment Analysis
4.10. Validation Results by qPCR and RT-PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Echauri, L.L.; Liggins, G.; Cetina-Heredia, P.; Roughan, M.; Coleman, M.A.; Jeffs, A. Future ocean temperature impacting the survival prospects of post-larval spiny lobsters. Mar. Environ. 2020, 156, 104918. [Google Scholar] [CrossRef] [PubMed]
- Gouda, H.; Agatsuma, Y. Effect of high temperature on gametogenesis of the sea urchin Strongylocentrotus intermedius in the Sea of Japan, northern Hokkaido, Japan. J. Exp. Mar. Biol. Ecol. 2020, 525, 151324. [Google Scholar] [CrossRef]
- Strøm, J.F.; Thorstad, E.B.; Rikardsen, A.H. Thermal habitat of adult Atlantic salmon Salmo salar in a warming ocean. J. Fish Biol. 2020, 96, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Bizuayehu, T.T.; Babiak, I. MicroRNA in Teleost Fish. Genome Biol. Evol. 2014, 6, 1911–1937. [Google Scholar] [CrossRef]
- Fan, X.P.; Qin, X.M.; Zhang, C.H.; Zhu, Q.F.; Chen, J.P.; Chen, P.W. Metabolic and anti-oxidative stress responses to low temperatures during the waterless preservation of the hybrid grouper (Epinephelus fuscogutatus ♀ × Epinephelus lanceolatus ♂). Aquaculture 2019, 508, 10–18. [Google Scholar] [CrossRef]
- Islam, M.J.; Kunzmann, A.; Slater, M.J. Responses of aquaculture fish to climate change-induced extreme temperatures: A review. J. World Aquac. Soc. 2022, 53, 314–366. [Google Scholar] [CrossRef]
- Yu, F.; Shen, Y.; Peng, W.; Chen, N.; Gan, Y.; Xiao, Q.; Liu, J.; Lu, Y.; Lin, W.; Han, Z.; et al. Metabolic and transcriptional responses demonstrating enhanced thermal tolerance in domesticated abalone. Sci. Total Environ. 2023, 872, 162060. [Google Scholar] [CrossRef]
- Shi, K.-P.; Dong, S.-L.; Zhou, Y.-G.; Li, Y.; Gao, Q.-F.; Sun, D.-J. RNA-seq reveals temporal differences in the transcriptome response to acute heat stress in the Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 30, 169–178. [Google Scholar] [CrossRef]
- Logan, C.A.; Somero, G.N. Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R1373–R1383. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Pan, C.; Liu, E.; Zhao, X.; Ling, Q. Alterations to transcriptomic profile, histopathology, and oxidative stress in liver of pikeperch (Sander lucioperca) under heat stress. Fish Shellfish Immunol. 2019, 95, 659–669. [Google Scholar] [CrossRef]
- Huang, D.; Ren, M.; Liang, H.; Ge, X.; Xu, H.; Wu, L. Transcriptome analysis of the effect of high-temperature on nutrient metabolism in juvenile grass carp (Ctenopharyngodon idellus). Gene 2022, 809, 146035. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, H.; Li, H.; Wang, A.; Yu, H.-y. Effect of high temperature on immune response of grass carp (Ctenopharyngodon idellus) by transcriptome analysis. Fish Shellfish Immunol. 2016, 58, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.R.D.P.d.; Herrerias, T.; Zaleski, T.; Forgati, M.; Kandalski, P.K.; Machado, C.; Silva, D.T.; Piechnik, C.A.; Moura, M.O.; Donatti, L. Heat stress in the heart and muscle of the Antarctic fishes Notothenia rossii and Notothenia coriiceps: Carbohydrate metabolism and antioxidant defence. Biochimie 2018, 146, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Baralle, F.E.; Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 2017, 18, 437–451. [Google Scholar] [CrossRef]
- Kelemen, O.; Convertini, P.; Zhang, Z.; Wen, Y.; Shen, M.; Falaleeva, M.; Stamm, S. Function of alternative splicing. Gene 2013, 514, 1–30. [Google Scholar] [CrossRef]
- Healy, T.M.; Schulte, P.M. Patterns of alternative splicing in response to cold acclimation in fish. J. Exp. Biol. 2019, 222, jeb.193516. [Google Scholar] [CrossRef]
- Xia, J.H.; Li, H.L.; Li, B.J.; Gu, X.H.; Lin, H.R. Acute hypoxia stress induced abundant differential expression genes and alternative splicing events in heart of tilapia. Gene 2018, 639, 52–61. [Google Scholar] [CrossRef]
- Tan, S.; Wang, W.; Tian, C.; Niu, D.; Zhou, T.; Jin, Y.; Yang, Y.; Gao, D.; Dunham, R.; Liu, Z. Heat stress induced alternative splicing in catfish as determined by transcriptome analysis. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 29, 166–172. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, J.; Quan, J.; Li, L.; Zhao, G.; Lu, J. Effect of selenium nanoparticles on alternative splicing in heat-stressed rainbow trout primary hepatocytes. Comp. Biochem. Physiol. Part D Genom. Proteom. 2023, 45, 101042. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Wen, H.; Qi, X.; Sun, D.; Li, X.; Li, J.; Tian, Y.; Zhang, K.; Li, Y. Integrated miRNA and mRNA analysis in gills of spotted sea bass reveals novel insights into the molecular regulatory mechanism of salinity acclimation. Aquaculture 2023, 575, 739778. [Google Scholar] [CrossRef]
- Herkenhoff, M.E.; Oliveira, A.C.; Nachtigall, P.G.; Costa, J.M.; Campos, V.F.; Hilsdorf, A.W.S.; Pinhal, D. Fishing Into the MicroRNA Transcriptome. Front. Genet. 2018, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.M.; Ho, J.C.H.; Nong, W.; Hui, J.H.L.; Lai, K.P.; Wong, C.K.C. Genome-wide analysis of MicroRNA-messenger RNA interactome in ex-vivo gill filaments, Anguilla japonica. BMC Genom. 2020, 21, 208. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Guo, J.-T.; Zhao, L.-H.; Zhao, J.-L. MiR-30c: A novel regulator of salt tolerance in tilapia. Biochem. Biophys. Res. Commun. 2012, 425, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, P.-C. MicroRNA: A small molecule with a big biological impact. Microrna 2012, 1, 1. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.-Y.; Fu, H.-C.; Huang, H.-Z. MicroRNA expression and analysis of immune-related putative target genes in ISKNV-infected spleen of mandarin fish (Siniperca chuatsi). Aquaculture 2022, 547, 737450. [Google Scholar] [CrossRef]
- Qiang, J.; Bao, W.J.; Tao, F.Y.; He, J.; Li, X.H.; Xu, P.; Sun, L.Y. The expression profiles of miRNA–mRNA of early response in genetically improved farmed tilapia (Oreochromis niloticus) liver by acute heat stress. Sci. Rep. 2017, 7, 8705. [Google Scholar] [CrossRef]
- Zhang, C.; Tong, C.; Tian, F.; Zhao, K. Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish. PLoS ONE 2017, 12, e0186433. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Ma, F.; Kang, Y.; Liu, Z.; Wang, J. Identification and characterization of microRNAs in the liver of rainbow trout in response to heat stress by high-throughput sequencing. Gene 2018, 679, 274–281. [Google Scholar] [CrossRef]
- Ma, F.; Liu, Z.; Huang, J.; Li, Y.; Kang, Y.; Liu, X.; Wang, J. High-throughput sequencing reveals microRNAs in response to heat stress in the head kidney of rainbow trout (Oncorhynchus mykiss). Funct. Integr. Genom. 2019, 19, 775–786. [Google Scholar] [CrossRef]
- Campos, C.; Sundaram, A.Y.M.; Valente, L.M.P.; Conceição, L.E.C.; Engrola, S.; Fernandes, J.M.O. Thermal plasticity of the miRNA transcriptome during Senegalese sole development. BMC Genom. 2014, 15, 525. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Quan, Z.; Wu, Y.; Hao, P.; Wang, W.; Li, Y.; Zhang, X.; Liu, P.; Gao, C.; Wang, H.; et al. Expression Regulation Mechanisms of Sea Urchin (Strongylocentrotus intermedius) Under the High Temperature: New Evidence for the miRNA-mRNA Interaction Involvement. Front. Genet. 2022, 13, 876308. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cao, J.; Mao, Y.; Su, Y.; Wang, J. Identification of microRNAs with heat stress responsive and immune properties in Marsupenaeus japonicus based on next-generation sequencing and bioinformatics analysis: Essential regulators in the heat stress-host interactions. Fish Shellfish Immunol. 2018, 81, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Tian, Y.; Mao, X.; Wen, H.; Qi, X.; Li, J.; Li, J.; Li, Y. Acute hypoxia changes the gene expression profiles and alternative splicing landscape in gills of spotted sea bass (Lateolabrax maculatus). Front. Mar. Sci. 2022, 9, 1024218. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, H.; Qi, X.; Zhang, K.; Liu, Y.; Fan, H.; Yu, P.; Tian, Y.; Li, Y. Na+-K+-ATPase and nka genes in spotted sea bass (Lateolabrax maculatus) and their involvement in salinity adaptation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 235, 69–81. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, H.; Wang, H.; Ren, Y.; Zhao, J.; Li, Y. RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus). PLoS ONE 2017, 12, e0173238. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, H.; Liu, Y.; Qi, X.; Sun, D.; Zhang, C.; Zhang, K.; Zhang, M.; Li, J.; Li, Y. Gill histological and transcriptomic analysis provides insights into the response of spotted sea bass (Lateolabrax maculatus) to alkalinity stress. Aquaculture 2023, 563, 738945. [Google Scholar] [CrossRef]
- Phillips, K. Muscles Function, Whatever the Temperature. J. Exp. Biol. 2002, 205, i1503. [Google Scholar]
- Jesus Tiago, F.; Grosso Ana, R.; Almeida-Val, V.M.F.; Coelho, M.M. Transcriptome profiling of two Iberian freshwater fish exposed to thermal stress. J. Therm. Biol. 2016, 55, 54–61. [Google Scholar] [CrossRef]
- Feidantsis, K.; Georgoulis, I.; Zachariou, A.; Campaz, B.; Christoforou, M.; Pörtner, H.O.; Michaelidis, B. Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata. J. Comp. Physiol. B 2020, 190, 403–418. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Li, Z.; Shi, H.; Kang, Y.; Wang, J.; Huang, J.; Jiang, L. Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss. Fish Physiol. Biochem. 2016, 42, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Wen, H.; Li, Y.; Li, J.; Zhao, J.; Zhang, S.; Song, M.; Wang, X. Deep Transcriptomic Analysis of Black Rockfish (Sebastes schlegelii) Provides New Insights on Responses to Acute Temperature Stress. Sci. Rep. 2018, 8, 9113. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Saikia, S.K. Oxidative Stress in Fish: A Review. J. Sci. Res. 2020, 12, 145–160. [Google Scholar] [CrossRef]
- Roberts, R.J.; Agius, C.; Saliba, C.; Bossier, P.; Sung, Y.Y. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review. J. Fish Dis. 2010, 33, 789–801. [Google Scholar] [CrossRef]
- Storey, J.M.; Storey, K.B. Chaperone proteins: Universal roles in surviving environmental stress. Cell Stress Chaperones 2022, 28, 455–466. [Google Scholar] [CrossRef]
- Ma, F.; Liu, Z.; Kang, Y.; Quan, J. Genome-Wide Identification of hsp90 Gene in Rainbow Trout (Oncorhynchus mykiss) and Their Regulated Expression in Response to Heat Stress. DNA Cell Biol. 2020, 39, 428–440. [Google Scholar] [CrossRef]
- Xu, K.; Xu, H.; Han, Z. Genome-Wide Identification of Hsp70 Genes in the Large Yellow Croaker (Larimichthys crocea) and Their Regulated Expression Under Cold and Heat Stress. Genes 2018, 9, 590. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Sun, F.; Zhang, J.; Feng, J.; Liu, H.; Rajendran, K.V.; Sun, L.; Zhang, Y.; Jiang, Y.; et al. RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol. Genom. 2013, 45, 462–476. [Google Scholar] [CrossRef]
- De Maio, A. Heat shock proteins: Facts, thoughts, and dreams. Shock 1999, 11, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Lee, J.; Liem, D.; Ping, P. HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 2017, 618, 14–23. [Google Scholar] [CrossRef]
- Song, J.; McDowell, J.R. Comparative transcriptomics of spotted seatrout (Cynoscion nebulosus) populations to cold and heat stress. Ecol. Evol. 2021, 11, 1352–1367. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Qiao, Y.; He, J.; Qu, J.; Liu, Y.; Zhang, Q.; Wang, X. Molecular Mechanism Based on Histopathology, Antioxidant System and Transcriptomic Profiles in Heat Stress Response in the Gills of Japanese Flounder. Int. J. Mol. Sci. 2022, 23, 3286. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Navarro, I.; Rojas, P.; Capilla, E.; Albalat, A.; Castillo, J.; Montserrat, N.; Codina, M.; Gutiérrez, J. Insights into Insulin and Glucagon Responses in Fish. Fish Physiol. Biochem. 2002, 27, 205–216. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Z.; Quan, J.Q.; Li, L.L.; Zhao, G.Y.; Lu, J.H. RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). Mar. Biotechnol. 2022, 24, 5–17. [Google Scholar] [CrossRef]
- Varga, T.; Czimmerer, Z.; Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Et Biophys. Acta 2011, 1812, 1007–1022. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, H.; Hou, L.; Xing, K.; Shu, H. Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi. BMC Genom. 2019, 20, 938. [Google Scholar] [CrossRef]
- Albalat, A.; Saera-Vila, A.; Capilla, E.; Gutiérrez, J.; Pérez-Sánchez, J.; Navarro, I. Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus aurata). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 148, 151–159. [Google Scholar] [CrossRef]
- Zhao, T.; Ma, A.; Huang, Z.; Liu, Z.; Sun, Z.; Zhu, C.; Yang, J.; Li, Y.; Wang, Q.; Qiao, X.; et al. Transcriptome analysis reveals that high temperatures alter modes of lipid metabolism in juvenile turbot (Scophthalmus maximus) liver. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 40, 100887. [Google Scholar] [CrossRef]
- Duan, P.; Tian, Y.; Li, Z.; Chen, S.; Li, L.; Wang, X.; Wang, L.; Liu, Y.; Zhai, J.; Li, W.; et al. Comparative transcriptome analysis of hybrid Jinhu grouper (Epinephelus fuscoguttatus ♀ × Epinephelus tukula ♂) and Epinephelus fuscoguttatus under temperature stress. Aquaculture 2024, 578, 740037. [Google Scholar] [CrossRef]
- Li, Q.-Q.; Zhang, J.; Wang, H.-Y.; Niu, S.-F.; Wu, R.-X.; Tang, B.-G.; Wang, Q.-H.; Liang, Z.-B.; Liang, Y.-S. Transcriptomic Response of the Liver Tissue in Trachinotus ovatus to Acute Heat Stress. Animals 2023, 13, 2053. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, B.J. Alternative Splicing: New Insights from Global Analyses. Cell 2006, 126, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Wang, W.; Tian, C.; Niu, D.; Zhou, T.; Yang, Y.; Gao, D.; Liu, Z. Post-transcriptional regulation through alternative splicing after infection with Flavobacterium columnare in channel catfish (Ictalurus punctatus). Fish Shellfish Immunol. 2019, 91, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wen, H.; Qi, X.; Zhang, X.; Sun, Y.; Li, J.; He, F.; Zhang, M.; Zhang, K.; Yang, W.; et al. Alternative splicing (AS) mechanism plays important roles in response to different salinity environments in spotted sea bass. Int. J. Biol. Macromol. 2020, 155, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Li, X.; Li, F.; Ge, G.; Liu, R.; Song, G.; Li, Q.; Qiao, Z.; Cui, Z. Transcriptional Programs Underlying Cold Acclimation of Common Carp (Cyprinus carpio L.). Front. Genet. 2020, 11, 556418. [Google Scholar] [CrossRef]
- Chan, S.K.N.; Suresh, S.; Munday, P.; Ravasi, T.; Bernal, M.A.; Schunter, C. The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecol. Evol. 2022, 12, e8738. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, Q.; Dong, S.; Zhou, Y.; Yu, H.; Liu, D.; Yang, W. Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss. Biology 2022, 11, 222. [Google Scholar] [CrossRef]
- Cabej, N.R. Epigenetics of Reproduction in Animals. In Building the Most Complex Structure on Earth; Cabej, N.R., Ed.; Elsevier: Oxford, UK, 2013; pp. 59–120. [Google Scholar]
- Zhang, J.; Wen, H.; Qi, X.; Zhang, Y.; Dong, X.; Zhang, K.; Zhang, M.; Li, J.; Li, Y. Morphological and Molecular Responses of Lateolabrax maculatus Skeletal Muscle Cells to Different Temperatures. Int. J. Mol. Sci. 2022, 23, 9812. [Google Scholar] [CrossRef]
- Farah, C.S.; Reinach, F.C. The troponin complex and regulation of muscle contraction. FASEB J. 1995, 9, 755–767. [Google Scholar] [CrossRef]
- Jin, C.; Wang, M.; Song, W.; Kong, X.; Zhang, F.; Zhang, Q.; He, Y. Genome-Wide Identification, Characterization and Expression Profiling of myosin Family Genes in Sebastes schlegelii. Genes 2021, 12, 808. [Google Scholar] [CrossRef]
- Jéhannet, P.; Palstra, A.P.; Heinsbroek, L.T.N.; Kruijt, L.; Dirks, R.P.; Swinkels, W.; Komen, H. What Goes Wrong during Early Development of Artificially Reproduced European Eel Anguilla anguilla? Clues from the Larval Transcriptome and Gene Expression Patterns. Animals 2021, 11, 1710. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Shumate, A.; Wong, B.; Pertea, G.; Pertea, M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLoS Comput. Biol. 2022, 18, e1009730. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Shen, S.; Park, J.W.; Lu, Z.-x.; Lin, L.; Henry, M.D.; Wu, Y.N.; Zhou, Q.; Xing, Y. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. USA 2014, 111, E5593–E5601. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef]
- Kalvari, I.; Nawrocki, E.P.; Ontiveros-Palacios, N.; Argasinska, J.; Lamkiewicz, K.; Marz, M.; Griffiths-Jones, S.; Toffano-Nioche, C.; Gautheret, D.; Weinberg, Z.; et al. Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021, 49, D192–D200. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef] [PubMed]
- Friedländer, M.R.; Chen, W.; Adamidi, C.; Maaskola, J.; Einspanier, R.; Knespel, S.; Rajewsky, N. Discovering microRNAs from deep sequencing data using miRDeep. Nat. Biotechnol. 2008, 26, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Rehmsmeier, M.; Steffen, P.; Höchsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control | H6 | H12 | H24 | H48 | H72 |
---|---|---|---|---|---|---|
ALP | 263 ± 7.37 a | 12.4 ± 2.21cd | 18.9 ± 0.45 bc | 9.24 ± 3.72 d | 14.8 ± 4.06 bcd | 20.4 ± 5.15 b |
ALT | 7.04 ± 1.93 b | 8.89 ± 1.58 b | 8.16 ± 2.91 b | 13.5 ± 4.51 b | 13.6 ± 2.43 b | 21.1 ± 6.52 a |
AST | 21.2 ± 4.80 c | 164 ± 29.56 b | 297 ± 5.60 a | 210 ± 92.5 ab | 125 ± 40.2 b | 199 ± 69.3 b |
CK | 590 ± 91.8 d | 3759 ± 1289 bc | 3621 ± 1541 bc | 3058 ± 177 c | 4880 ± 164 b | 11,710 ± 820 a |
GLU | 33.1 ± 1.16 a | 20.0 ± 3.66 b | 13.7 ± 2.34 c | 9.83 ± 1.57 d | 3.10 ± 0.40 e | 1.86 ± 0.45 e |
γ-GT | 16.4 ± 1.39 a | 0.30 ± 0.10 b | 0.53 ± 0.23 b | 0.60 ± 0.35 b | 0.73 ± 0.12 b | 0.53 ± 0.31 b |
LDH | 123 ± 15.6 c | 513 ± 2.36 a | 602 ± 94.4 a | 354 ± 69.6 b | 305 ± 92.3 b | 392 ± 82.9 b |
TC | 4.28 ± 0.96 b | 6.61 ± 1.04 a | 5.45 ± 0.78 ab | 7.04 ± 0.57 a | 7.23 ± 1.51 a | 5.72 ± 1.62 ab |
TG | 1.08 ± 0.55 b | 1.23 ± 0.21 b | 1.35 ± 0.06 ab | 1.84 ± 0.31 a | 1.50 ± 0.23 ab | 1.09 ± 0.28 b |
AS Types | H6 vs. Control | H12 vs. Control | H24 vs. Control | H48 vs. Control | H72 vs. Control |
---|---|---|---|---|---|
Exon skipping (ES) | 60 (11:49) | 113 (24:89) | 414 (93:321) | 395 (95:300) | 211 (40:171) |
Mutually exclusive exon (MXE) | 24 (5:19) | 15 (5:10) | 23 (16:7) | 29 (13:16) | 38 (14:24) |
Total DAS events | 84 | 128 | 437 | 424 | 249 |
DAS gene | 73 | 107 | 360 | 367 | 212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wen, H.; Zheng, Y.; Zhang, C.; Zhang, Y.; Wang, L.; Sun, D.; Zhang, K.; Qi, X.; Li, Y. Integration of mRNA and miRNA Analysis Sheds New Light on the Muscle Response to Heat Stress in Spotted Sea Bass (Lateolabrax maculatus). Int. J. Mol. Sci. 2024, 25, 12098. https://doi.org/10.3390/ijms252212098
Liu C, Wen H, Zheng Y, Zhang C, Zhang Y, Wang L, Sun D, Zhang K, Qi X, Li Y. Integration of mRNA and miRNA Analysis Sheds New Light on the Muscle Response to Heat Stress in Spotted Sea Bass (Lateolabrax maculatus). International Journal of Molecular Sciences. 2024; 25(22):12098. https://doi.org/10.3390/ijms252212098
Chicago/Turabian StyleLiu, Cong, Haishen Wen, Yuan Zheng, Chong Zhang, Yonghang Zhang, Lingyu Wang, Donglei Sun, Kaiqiang Zhang, Xin Qi, and Yun Li. 2024. "Integration of mRNA and miRNA Analysis Sheds New Light on the Muscle Response to Heat Stress in Spotted Sea Bass (Lateolabrax maculatus)" International Journal of Molecular Sciences 25, no. 22: 12098. https://doi.org/10.3390/ijms252212098
APA StyleLiu, C., Wen, H., Zheng, Y., Zhang, C., Zhang, Y., Wang, L., Sun, D., Zhang, K., Qi, X., & Li, Y. (2024). Integration of mRNA and miRNA Analysis Sheds New Light on the Muscle Response to Heat Stress in Spotted Sea Bass (Lateolabrax maculatus). International Journal of Molecular Sciences, 25(22), 12098. https://doi.org/10.3390/ijms252212098