The Green Extraction of Blueberry By-Products: An Evaluation of the Bioactive Potential of the Anthocyanin/Polyphenol Fraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. MAE/MASWE Parameter Optimization
2.2. Laboratory Scale-Up and Extract Characterization
2.3. Antioxidant Activity
2.4. Bioactivity Performance
2.4.1. Enzyme Inhibition Activity
2.4.2. Antiproliferative Activity
2.4.3. Antioxidative Activity in Cells with Induced Oxidative Stress
2.5. Thermal Stability
2.6. A Sustainability Assessment of the Process
3. Materials and Methods
3.1. Blueberry Pomace and Chemicals
3.2. Microwave and Microwave-Assisted Subcritical Water Extraction
3.3. General Procedure for Conventional Extraction
3.4. Colorimetric Assay
3.4.1. Total Polyphenol Content (TPC) Determination
3.4.2. Total Anthocyanin Content (TAC) Determination
3.4.3. Total Tannin Content Determination
3.4.4. Antioxidant Activity
DPPH· Assay
ABTS· + Assay
Electrochemical Antioxidant Activity Determination
3.4.5. Enzyme Inhibition Activity
α-Amylase Inhibition Test
β-Glucosidase Inhibition Test
Acetylcholinesterase Inhibition Test
Tyrosinase Inhibition Test
3.4.6. In Vitro Test on Living Cells
Cell Culture and Proliferation Assay
Measurement of Reactive Oxygen Species
3.4.7. Thermal Stability
3.4.8. A Sustainability Assessment of the MAE Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dry Yield | TPC | TAC | |
---|---|---|---|
mgextract/gmatrix | mgGAE/gextract | mgCya-3-glu/gextract | |
MAE 1° | 94.94 | 109.93 | 22.23 |
MASWE 2° | 47.47 | 151.67 | 0 |
Conv. | 100.51 | 233.43 | 35.92 |
Reaction Order | Differential Rate Law | Integrated Rate Law | Characteristic Kinetic Plot | Slop of Kinetic Plot | Units of Rate Constant |
---|---|---|---|---|---|
Zero | mole L−1 s−1 | ||||
First | s−1 | ||||
Second | L mole−1 s−1 |
MAE 1° | |||
---|---|---|---|
Reaction Order Zero [M] vs. time | First-Order Reaction ln[M] vs. time | Second-Order Reaction 1/[M] vs. time | |
45 °C | y = −0.00001x + 0.1417 R2 = 0.9345 | y = −0.0002x − 1.8975 R2 = 0.9963 | y = 0.0022x + 5.3264 R2 = 0.9634 |
60 °C | y = −0.000077x + 0.181890 R2 = 0.9765 | y = −0.0006x − 1.673 R2 = 0.9934 | y = 0.0054x + 4.9881 R2 = 0.9856 |
80 °C | y = −0.000293x + 0.172064 R2 = 0.9373 | y = −0.0029x − 1.7104 R2 = 0.9562 | y = 0.033171x + 4.749454 R2 = 0.9300 |
100 °C | y = −0.000700x + 0.154423 R2 = 0.8392 | y = −0.012738x − 1.712313 R2 = 0.9854 | y = 0.482027x − 5.405676 R2 = 0.8582 |
Contr. | |||
Reaction Order Zero [M] vs. time | First-Order Reaction ln[M] vs. time | Second-Order Reaction 1/[M] vs. time | |
45 °C | y = −0.000015x + 0.169502 R2 = 0.9367 | y = −0.000169x − 1.702361 R2 = 0.9967 | y = 0.00234x + 3.82670 R2 = 0.9271 |
60 °C | y = −0.0001x + 0.2279 R2 = 0.9622 | y = −0.000856x − 1.425694 R2 = 0.9933 | y = 0.00696x + 3.57196 R2 = 0.9748 |
80 °C | y = −0.0004x + 0.2052 R2 = 0.9015 | y = −0.004018x − 1.510549 R2 = 0.9765 | y = 0.04891x + 3.03949 R2 = 0.9749 |
100 °C | y = −0.0009x + 0.1986 R2 = 0.8397 | y = −0.012895x − 1.469994 R2 = 0.9964 | y = 0.36898x − 3.73888 R2 = 0.8827 |
Conv. | |||
Reaction Order Zero [M] vs. time | First-Order Reaction ln[M] vs. time | Second-Order Reaction 1/[M] vs. time | |
45 °C | y = −0.000007x + 0.100726 R2 = 0.9234 | y = −0.000111x − 2.266225 R2 = 0.9819 | y = 0.00185x + 8.88767 R2 = 0.9838 |
60 °C | y = −0.000046x + 0.114338 R2 = 0.9052 | y = −0.000565x − 2.150258 R2 = 0.9466 | y = 0.00719x + 8.27849 R2 = 0.9696 |
80 °C | y = −0.0002x + 0.1039 R2 = 0.8765 | y = −0.003116x − 2.226536 R2 = 0.9540 | y = 0.05973x + 8.00636 R2 = 0.9841 |
100 °C | y = −0.0005x + 0.0977 R2 = 0.7721 | y = −0.012295x − 2.228502 R2 = 0.9842 | y = 0.61166x − 2.37868 R2 = 0.9304 |
Form. 1° + 2° | |||
Reaction Order Zero [M] vs. time | First-Order Reaction ln[M] vs. time | Second-Order Reaction 1/[M] vs. time | |
45 °C | y = −0.000008x + 0.094515 R2 = 0.9381 | y = −0.000157x − 2.298634 R2 = 0.9932 | y = 0.00356x + 7.78990 R2 = 0.9641 |
60 °C | y = −0.000056x + 0.115428 R2 = 0.9778 | y = −0.000775x − 2.111502 R2 = 0.9949 | y = 0.01180x + 7.30491 R2 = 0.9705 |
80 °C | y = −0.0002x + 0.1072 R2 = 0.9255 | y = −0.003301x − 2.167922 R2 = 0.9880 | y = 0.06732x + 6.55359 R2 = 0.9431 |
100 °C | y = −0.0005x + 0.0996 R2 = 0.7707 | y = −0.010892x − 2.262965 R2 = 0.9227 | y = 0.39325x + 5.05235 R2 = 0.9807 |
References
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of Food Agro-Industrial By-Products: From the Past to the Present and Perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef] [PubMed]
- Zabaniotou, A.; Kamaterou, P. Food Waste Valorization Advocating Circular Bioeconomy—A Critical Review of Potentialities and Perspectives of Spent Coffee Grounds Biorefinery. J. Clean. Prod. 2019, 211, 1553–1566. [Google Scholar] [CrossRef]
- Girard, K.K.; Sinha, N.K. Cranberry, Blueberry, Currant, and Gooseberry. In Handbook of Fruits and Fruit Processing, 2nd ed.; Sinha, N.K., Sidhu, J.S., Barta, J., Wu, J.S.B., Cano, M.P., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; Chapter 24; pp. 399–417. [Google Scholar]
- FAOSTAT (Food and Agriculture Organization Corporate Statistical Database). Crops and Livestock Products; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 5 June 2024).
- Tobar-Bolaños, G.; Casas-Forero, N.; Orellana-Palma, P.; Petzold, G. Blueberry Juice: Bioactive Compounds, Health Impact, and Concentration Technologies—A Review. J. Food Sci. 2021, 86, 5062–5077. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wu, T.; Chu, X.; Tang, S.; Cao, W.; Liang, F.; Fang, Y.; Pan, S.; Xu, X. Fermented Blueberry Pomace with Antioxidant Properties Improves Fecal Microbiota Community Structure and Short Chain Fatty Acids Production in an In Vitro Model. LWT-Food Sci. Technol. 2020, 125, 109260. [Google Scholar] [CrossRef]
- Czernicka, M.; Sowa-Borowiec, P.; Puchalski, C.; Czerniakowski, Z.W. Content of Bioactive Compounds in Highbush Blueberry Vaccinium corymbosum L. Leaves as a Potential Raw Material for Food Technology or Pharmaceutical Industry. Foods 2024, 13, 246. [Google Scholar] [CrossRef] [PubMed]
- Gouw, V.P.; Jung, J.; Zhao, Y. Functional Properties, Bioactive Compounds, and In Vitro Gastrointestinal Digestion Study of Dried Fruit Pomace Powders as Functional Food Ingredients. LWT-Food Sci. Technol. 2017, 80, 136–144. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry Polyphenols and Human Health: Evidence of Antioxidant, Anti-Inflammatory, Microbiota Modulation, and Cell-Protecting Effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Istek, N.; Gurbuz, O. Investigation of the Impact of Blueberries on Metabolic Factors Influencing Health. J. Funct. Foods 2017, 38, 298–307. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; da Silva, T.G.; Flores, T.R. Effects of Blueberry and Cranberry on Type 2 Diabetes Parameters in Individuals with or without Diabetes: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1093–1109. [Google Scholar] [CrossRef]
- Kapoor, P.; Tiwari, A.; Sharma, S.; Tiwari, V.; Sheoran, B.; Ali, U.; Garg, M. Effect of Anthocyanins on Gut Health Markers, Firmicutes-Bacteroidetes Ratio and Short-Chain Fatty Acids: A Systematic Review via Meta-Analysis. Sci. Rep. 2023, 13, 1729. [Google Scholar] [CrossRef] [PubMed]
- Ashique, S.; Mukherjee, T.; Mohanty, S.; Garg, A.; Mishra, N.; Kaushik, M.; Bhowmick, M.; Chattaraj, B.; Mohanto, S.; Srivastava, S.; et al. Blueberries in Focus: Exploring the Phytochemical Potentials and Therapeutic Applications. J. Agric. Food Res. 2024, 18, 101300. [Google Scholar] [CrossRef]
- Liu, H.; Qin, S.; Sirohi, R.; Ahluwalia, V.; Zhou, Y.; Sindhu, R.; Binod, P.; Singhnia, R.R.; Patel, A.K.; Juneja, A.; et al. Sustainable Blueberry Waste Recycling Towards Biorefinery Strategy and Circular Bioeconomy: A Review. Bioresour. Technol. 2021, 332, 125181. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Abert-Vian, M.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Chaji, S.; Capaldi, G.; Gallina, L.; Grillo, G.; Boffa, L.; Cravotto, G. Semi-Industrial Ultrasound-Assisted Extraction of Grape-Seed Proteins. J. Sci. Food Agric. 2024, 104, 5689–5697. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Pulsed Electric Field Assisted Extraction of Natural Food Pigments and Colorings from Plant Matrices. Food Chem. X 2022, 15, 100398. [Google Scholar] [CrossRef]
- Grillo, G.; Tabasso, S.; Capaldi, G.; Cravotto, G. Food-Waste Valorisation: Synergistic Effects of Enabling Technologies and Eutectic Solvents on the Recovery of Bioactives from Violet Potato Peels. Foods 2023, 12, 2214. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-By-Products, Seaweeds and Microalgae—An Update. TrAC Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Grillo, G.; Capaldi, G.; Radošević, K.; Jakopović, Ž.; Markov, K.; Brncic, M.; Gallina, L.; Gaudino, E.C.; Cravotto, G. Unlocking the Bioactive Potential of Pomegranate Peels: A Green Extraction Approach. Antioxidants 2023, 12, 1796. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent Advances in the Extraction of Bioactive Compounds with Subcritical Water: A Review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Aimone, C.; Grillo, G.; Boffa, L.; Giovando, S.; Cravotto, G. Tannin Extraction from Chestnut Wood Waste: From Lab Scale to Semi-Industrial Plant. Appl. Sci. 2023, 13, 2494. [Google Scholar] [CrossRef]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, Environment-Friendly and Sustainable Techniques for Extraction of Food Bioactive Compounds and Waste Valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Janicka, P.; Płotka-Wasylka, J.; Jatkowska, N.; Chabowska, A.; Fares, M.Y.; Andruch, V.; Kaykhaii, M.; Gębicki, J. Trends in the New Generation of Green Solvents in Extraction Processes. Curr. Opin. Green Sustain. Chem. 2022, 37, 100670. [Google Scholar] [CrossRef]
- Capaldi, G.; Binello, A.; Aimone, C.; Mantegna, S.; Grillo, G.; Cravotto, G. New Trends in Extraction-Process Intensification: Hybrid and Sequential Green Technologies. Ind. Crops Prod. 2024, 209, 117906. [Google Scholar] [CrossRef]
- Alonso-Riaño, P.; Ramos, C.; Trigueros, E.; Beltrán, S.; Sanz, M.T. Study of Subcritical Water Scale-Up from Laboratory to Pilot System for Brewer’s Spent Grain Valorization. Ind. Crops Prod. 2023, 191, 115927. [Google Scholar] [CrossRef]
- Capaldi, G.; Voss, M.; Tabasso, S.; Stefanetti, V.; Branciari, R.; Chaji, S.; Grillo, G.; Cravotto, C.; Tagliazucchi, D.; Lo Fiego, D.P.L.; et al. Upgrading Hazelnut Skins: Green Extraction of Polyphenols from Lab to Semi-Industrial Scale. Food Chem. 2024, 463, 140999. [Google Scholar]
- Ferreira, L.F.; Minuzzi, N.M.; Rodrigues, R.F.; Pauletto, R.; Rodrigues, E.; Emanuelli, T.; Bochi, V.C. Citric Acid Water-Based Solution for Blueberry Bagasse Anthocyanins Recovery: Optimization and Comparisons with Microwave-Assisted Extraction (MAE). LWT-Food Sci. Technol. 2020, 133, 110064. [Google Scholar] [CrossRef]
- Roger, A.S. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar]
- Espino, M.; Fernández, M.d.l.A.; Gomez, F.J.V.; Boiteux, J.; Silva, M.F. Green Analytical Chemistry Metrics: Towards a Sustainable Phenolics Extraction from Medicinal Plants. Microchem. J. 2018, 141, 438–443. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Tobiszewski, M.; Wojnowski, W.; Psillakis, E. A Tutorial on AGREEprep: An Analytical Greenness Metric for Sample Preparation. Adv. Sample Prep. 2022, 3, 100025. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Wojnowski, W. Complementary Green Analytical Procedure Index (ComplexGAPI) and Software. Green Chem. 2021, 23, 10462–10473. [Google Scholar] [CrossRef]
- Phan, T.V.T.; Gallardo, C.; Mane, J. GREEN MOTION: A New and Easy to Use Green Chemistry Metric from Laboratories to Industry. Green Chem. 2015, 17, 2846–2857. [Google Scholar] [CrossRef]
- Oancea, S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants 2021, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Saona, L.E.; Wrolstad, R.E. Extraction, Isolation, and Purification of Anthocyanins. Curr. Protoc. Food Anal. Chem. 2001. [Google Scholar] [CrossRef]
- Binello, A.; Grillo, G.; Barge, A.; Allegrini, P.; Ciceri, D.; Cravotto, G. A Cross-Flow Ultrasound-Assisted Extraction of Curcuminoids from Curcuma longa L.: Process Design to Avoid Degradation. Foods 2020, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, H.; Tao, W.; Han, Q.; Dong, H.; Zhang, J.; Jing, Y.; Wang, Y.; Xiong, Q.; Xu, T. An effective method for extracting anthocyanins from blueberry based on freeze-ultrasonic thawing technology. Ultrason. Sonochem. 2020, 68, 105192. [Google Scholar] [CrossRef] [PubMed]
- Lončarić, A.; Celeiro, M.; Jozinović, A.; Jelinić, J.; Kovač, T.; Jokić, S.; Babić, J.; Moslavac, T.; Zavadlav, S.; Lores, M. Green Extraction Methods for Extraction of Polyphenolic Compounds from Blueberry Pomace. Foods 2020, 9, 1521. [Google Scholar] [CrossRef]
- Lee, J.; Wrolstad, R.E. Extraction of Anthocyanins and Polyphenolics from Blueberry Processing Waste. J. Food Sci. 2004, 69, C564–C573. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. Metal Ions, Metal Chelators and Metal Chelating Assay as Antioxidant Method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Hui, X.; Wu, G.; Han, D.; Stipkovits, L.; Wu, X.; Tang, S.; Brennan, M.A.; Brennan, C.S. The effects of bioactive compounds from blueberry and blackcurrant powders on the inhibitory activities of oat bran pastes against α-amylase and α-glucosidase linked to type 2 diabetes. Food Res. Int. 2020, 138, 109756. [Google Scholar] [CrossRef] [PubMed]
- Kashtoh, H.; Baek, K.-H. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. Plants 2023, 12, 2944. [Google Scholar] [CrossRef]
- Sengupta, S.; Datta, M.; Datta, S. β-Glucosidase: Structure, Function and Industrial Applications. In Glycoside Hydrolases: Biochemistry, Biophysics, and Biotechnology—Foundations and Frontiers in Enzymology; Goyal, A., Sharma, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 97–120. [Google Scholar]
- Parizadeh, H.; Garampalli, R.H. Evaluation of Some Lichen Extracts for β-Glucosidase Inhibitory as a Possible Source of Herbal Anti-diabetic Drugs. Am. J. Biochem. 2016, 6, 46–50. [Google Scholar]
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Kaur, S.; Chowdhary, S.; Kumar, D.; Bhattacharyya, R.; Banerjee, D. Organophosphorus and Carbamate Pesticides: Molecular Toxicology and Laboratory Testing. Clin. Chim. Acta 2023, 551, 117584. [Google Scholar] [CrossRef] [PubMed]
- Zolghadri, S.; Bahrami, A.; Khan, M.T.H.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A Comprehensive Review on Tyrosinase Inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed]
- Fergus-Lavefve, L.; Howard, L.; Adams, S.H.; Baum, J.I. The Effects of Blueberry Phytochemicals on Cell Models of Inflammation and Oxidative Stress. Adv. Nutr. 2022, 13, 1279–1309. [Google Scholar] [CrossRef]
- Grace, M.H.; Xiong, J.; Esposito, D.; Ehlenfeldt, M.; Lila, M.A. Simultaneous LC-MS quantification of anthocyanins and non-anthocyanin phenolics from blueberries with widely divergent profiles and biological activities. Food Chem. 2019, 277, 336–346. [Google Scholar] [CrossRef] [PubMed]
- FAO Strategic Framework and SDGs. Available online: https://www.fao.org/about/strategy-programme-budget/strategic-framework/fao-sdg/en/ (accessed on 2 August 2024).
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Grillo, G.; Gunjević, V.; Radošević, K.; Redovniković, I.R.; Cravotto, G. Deep Eutectic Solvents and Nonconventional Technologies for Blueberry-Peel Extraction: Kinetics, Anthocyanin Stability, and Antiproliferative Activity. Antioxidants 2020, 9, 1069. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Packer, L., Ed.; Academic Press: San Diego, CA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Giusti, M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Peri, C.; Pompei, C. Estimation of Different Phenolic Groups in Vegetable Extracts. Phytochemistry 1971, 10, 2187–2189. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Locatelli, M.; Gindro, R.; Travaglia, F.; Coïsson, J.D.; Rinaldi, M.; Arlorio, M. Study of the DPPH-scavenging activity: Development of a free software for the correct interpretation of data. Food Chem. 2009, 114, 889–897. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Corpas, F.J.; Rodríguez-Ruiz, M.; Campos, M.J.; Taboada, J.; Palma, J.M. Electrochemical Detection of Total Antioxidant Capacity (TAC) in Plant Tissues from Different Origins. In ROS Signaling in Plants; Corpas, F.J., Palma, J.M., Eds.; Methods in Molecular Biology; Humana: New York, NY, USA, 2024; pp. 1–12. [Google Scholar]
- Chokki, M.; Cudălbeanu, M.; Zongo, C.; Dah-Nouvlessounon, D.; Ghinea, I.O.; Furdui, B.; Raclea, R.; Savadogo, A.; Baba-Moussa, L.; Avamescu, S.M.; et al. Exploring Antioxidant and Enzymes (α-Amylase and β-Glucosidase) Inhibitory Activity of Morinda lucida and Momordica charantia Leaves from Benin. Foods 2020, 9, 434. [Google Scholar] [CrossRef]
- Zavala-Ocampo, L.M.; Aguirre-Hernández, E.; López-Camacho, P.Y.; Cárdenas-Vázquez, R.; Dorazco-González, A.; Basurto-Islas, G. Acetylcholinesterase Inhibition and Antioxidant Activity Properties of Petiveria alliacea L. J. Ethnopharmacol. 2022, 292, 115239. [Google Scholar] [CrossRef]
- Di Petrillo, A.; González-Paramás, A.M.; Era, B.; Medda, R.; Pintus, F.; Santos-Buelga, C.; Fais, A. Tyrosinase Inhibition and Antioxidant Properties of Asphodelus microcarpus Extracts. BMC Complement. Altern. Med. 2016, 16, 453. [Google Scholar] [CrossRef]
- Logarušić, M.; Radošević, K.; Bis, A.; Panić, M.; Slivac, I.; Srček, V.G. Biological Potential of Flaxseed Protein Hydrolysates Obtained by Different Proteases. Plant Foods Hum. Nutr. 2020, 75, 518–524. [Google Scholar] [CrossRef]
α-Amylase mmolAE/gextract | β-Glucosidase mmolCE/gextract | Acetylcholinesterase µmolDE/gextract | Tyrosinase mmolKAE/gextract | |
---|---|---|---|---|
MAE 1° | 0.021 (0.015 ÷ 0.030) | 0.017 (0.013 ÷ 0.021) | 0.044 (0.036 ÷ 0.052) | 0.118 (0.109 ÷ 0.127) |
MASWE 2° | ND * | 0.010 (0.008 ÷ 0.013) | 0.076 (0.059 ÷ 0.098) | 0.607 (0.515 ÷ 0.710) |
Conv. | ND * | 0.0167 (0.021 ÷ 0.013) | 0.039 (0.024 ÷ 0.061) | ND * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capaldi, G.; Aimone, C.; Calcio Gaudino, E.; Radošević, K.; Bagović, M.; Grillo, G.; Cravotto, G. The Green Extraction of Blueberry By-Products: An Evaluation of the Bioactive Potential of the Anthocyanin/Polyphenol Fraction. Int. J. Mol. Sci. 2024, 25, 11032. https://doi.org/10.3390/ijms252011032
Capaldi G, Aimone C, Calcio Gaudino E, Radošević K, Bagović M, Grillo G, Cravotto G. The Green Extraction of Blueberry By-Products: An Evaluation of the Bioactive Potential of the Anthocyanin/Polyphenol Fraction. International Journal of Molecular Sciences. 2024; 25(20):11032. https://doi.org/10.3390/ijms252011032
Chicago/Turabian StyleCapaldi, Giorgio, Clelia Aimone, Emanuela Calcio Gaudino, Kristina Radošević, Martina Bagović, Giorgio Grillo, and Giancarlo Cravotto. 2024. "The Green Extraction of Blueberry By-Products: An Evaluation of the Bioactive Potential of the Anthocyanin/Polyphenol Fraction" International Journal of Molecular Sciences 25, no. 20: 11032. https://doi.org/10.3390/ijms252011032
APA StyleCapaldi, G., Aimone, C., Calcio Gaudino, E., Radošević, K., Bagović, M., Grillo, G., & Cravotto, G. (2024). The Green Extraction of Blueberry By-Products: An Evaluation of the Bioactive Potential of the Anthocyanin/Polyphenol Fraction. International Journal of Molecular Sciences, 25(20), 11032. https://doi.org/10.3390/ijms252011032