Chinese Herbal Medicines as Natural Alternative Products to Antibiotics in Weaned Piglets through Intestinal Microbiota Regulation
Abstract
:1. Introduction
2. Results
2.1. Chromatographic Fingerprint Analysis of GLZ
2.2. Antioxidant Capacity and Caco-2 Cell Viability of GLZ Treatment
2.3. Survival Rate, Growth Rate, and Feed Conversion Ratio among Four Groups of Weaned Piglets
2.4. Blood IgA, IgG, and IgE Levels among Four Groups of Weaned Piglets
2.5. Antioxidant Stress, Inflammation, and Apoptosis in the Small Intestine Tissue among Four Groups of Weaned Piglets
2.6. Gut Microbiota Diversity in the Large Intestine Tissue among Four Groups of Weaned Piglets
3. Discussion
4. Materials and Methods
4.1. GLZ Preparation and High-Performance Liquid Chromatography (HPLC) Analysis
4.2. Determination of Antioxidant Capacity of GLZ
4.3. Cell Viability Assay of GLZ
4.4. Animal Preparation and Grouping
4.5. Survival Rate, Growth Rate, and Feed Conversion Ratio Survey
4.6. Blood Immunoglobulin Test
4.7. Diarrhea Incidence Analysis
4.8. Histochemistry and Immunohistochemistry Staining
4.9. Western Blotting
4.10. DNA Extraction of Large Intestine Tissue and Next-Generation Sequencing (NGS)
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pluske, J.R.; Hampson, D.J.; Williams, I.H. Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci. 1997, 51, 215–236. [Google Scholar] [CrossRef]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Le Dividich, J.; Herpin, P. Effects of climatic conditions on the performance, metabolism and health status of weaned piglets: A review. Livest. Prod. Sci. 1994, 38, 79–90. [Google Scholar] [CrossRef]
- McCracken, B.A.; Gaskins, H.R.; Ruwe-Kaiser, P.J.; Klasing, K.C.; Jewell, D.E. Diet-dependent and diet-independent metabolic responses underlie growth stasis of pigs at weaning. J. Nutr. 1995, 125, 2838–2845. [Google Scholar] [PubMed]
- McCracken, B.A.; Spurlock, M.E.; Roos, M.A.; Zuckermann, F.A.; Gaskins, H.R. Weaning anorexia may contribute to local inflammation in the piglet small intestine. J. Nutr. 1999, 129, 613–619. [Google Scholar] [CrossRef]
- Fraser, D. Behavioural perspectives on piglet survival. J. Reprod. Fertil. Suppl. 1990, 40, 355–370. [Google Scholar] [CrossRef]
- Visek, W.J. The role of growth promotion by antibiotics. J. Anim. Sci. 1978, 46, 1447–1469. [Google Scholar] [CrossRef]
- Zimmerman, D.R. Role of subtherapeutic antimicrobials in pig production. J. Anim. Sci. 1986, 62 (Suppl. 3), 6. [Google Scholar]
- Li, J. Current status and prospects for in-feed antibiotics in the different stages of pork production—A review. Asian-Australas. J. Anim. Sci. 2017, 30, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Cromwell, G.L. Why and how antibiotics are used in swine production. Anim. Biotechnol. 2002, 13, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Tan, B.; Song, M.; Ji, P.; Kim, K.; Yin, Y.; Liu, Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front. Vet. Sci. 2019, 6, 46. [Google Scholar] [CrossRef]
- Jones, F.A. Herbs-useful plants. Their role in history and today. Eur. J. Gastroenterol. Hepatol. 1996, 8, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Lis-Balchin, M.; Deans, S.G. Bioactivity of selected plant essential oils against Listeria monocytogenes. J. Appl. Microbiol. 1997, 82, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118–122. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, G.; Yang, Q.; Ye, J.; Cai, X.; Tsering, P.; Cheng, X.; Hu, C.; Zhang, S.; Cao, P. Gut microbiota drives the attenuation of dextran sulphate sodium-induced colitis by Huangqin decoction. Oncotarget 2017, 8, 48863–48874. [Google Scholar] [CrossRef]
- Song, H.; Hou, X.; Zeng, M.; Chen, X.; Chen, X.; Yang, T.; Xu, F.; Peng, J.; Peng, Q.; Cai, X.; et al. Traditional Chinese Medicine Li-Zhong-Tang accelerates the healing of indomethacin-induced gastric ulcers in rats by affecting TLR-2/MyD88 signaling pathway. J. Ethnopharmacol. 2020, 259, 112979. [Google Scholar] [CrossRef]
- Yang, S.; Fu, Q.; Deng, H.; Wu, J.; Zhang, Q.; Wang, L.; Yao, X. Efficacy and Safety of Guizhi Decoction AssociatedFormulas for Allergic Rhinitis: A Systematic Review. Evid. Based Complement. Alternat Med. 2021, 2021, 3548740. [Google Scholar] [CrossRef]
- Wang, C.H.; Wu, W.J.; Su, L.Y.; Lu, C.W.; Wang, P.H.; Lee, M.C.; Chuang, W.C.; Wang, S.E.; Wu, C.H. Chinese Herbal Medicine Formula Guizhi Li-Zhong Tang as an Alternative to Antibiotic Feed Additives for Preventing Pneumonia in Piglets through Antioxidant, Anti-Inflammatory, and Antiapoptotic Protection. Evid. Based Complement. Alternat Med. 2021, 2021, 4978783. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020, 14, 185–192. [Google Scholar] [CrossRef]
- Lu, C.W.; Wang, S.E.; Wu, W.J.; Su, L.Y.; Wang, C.H.; Wang, P.H.; Wu, C.H. Alternative antibiotic feed additives alleviate pneumonia with inhibiting ACE-2 expression in the respiratory system of piglets. Food Sci. Nutr. 2020, 9, 1112–1120. [Google Scholar] [CrossRef]
- Muhammad, J.S.; Zaidi, S.F.; Shaharyar, S.; Refaat, A.; Usmanghani, K.; Saiki, I.; Sugiyama, T. Anti-inflammatory effect of cinnamaldehyde in Helicobacter pylori induced gastric inflammation. Biol. Pharm. Bull. 2015, 38, 109–115. [Google Scholar] [CrossRef]
- Tanaka, Y.; Uchi, H.; Furue, M. Antioxidant cinnamaldehyde attenuates UVB-induced photoaging. J. Dermatol. Sci. 2019, 96, 151–158. [Google Scholar] [CrossRef]
- Reddy, A.M.; Seo, J.H.; Ryu, S.Y.; Kim, Y.S.; Kim, Y.S.; Min, K.R.; Kim, Y. Cinnamaldehyde and 2-methoxycinnamaldehyde as NF-kappaB inhibitors from Cinnamomum cassia. Planta Med. 2004, 70, 823–827. [Google Scholar] [CrossRef]
- Baldwin, A.S., Jr. Series introduction: The transcription factor NF-kappaB and human disease. J. Clin. Invest. 2001, 107, 3–6. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Z.; Zeng, J. Role of NF-kappa B in liver ischemia reperfusion injury of rats. J. Huazhong Univ. Sci. Technol. Med. Sci. 2003, 23, 158–160. [Google Scholar]
- Thakur, A.; Sharma, R.; Jaswal, V.S.; Nepovimova, E.; Chaudhary, A.; Kuca, K. Psoralen: A Biologically Important Coumarin with Emerging Applications. Mini Rev. Med. Chem. 2020, 20, 1838–1845. [Google Scholar] [CrossRef]
- Oishi, K.; Yamamoto, S.; Oike, H.; Ohkura, N.; Taniguchi, M. Cinnamic acid shortens the period of the circadian clock in mice. Biochem. Biophys. Rep. 2017, 9, 232–237. [Google Scholar] [CrossRef]
- Yu, H.T.; Zhen, J.; Pang, B.; Gu, J.N.; Wu, S.S. Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats. J. Zhejiang Univ. Sci. B 2015, 16, 344–354. [Google Scholar] [CrossRef]
- Shaukat, A.; Guo, Y.F.; Jiang, K.; Zhao, G.; Wu, H.; Zhang, T.; Yang, Y.; Guo, S.; Yang, C.; Zahoor, A.; et al. Ginsenoside Rb1 ameliorates Staphylococcus aureus-induced Acute Lung Injury through attenuating NF-κB and MAPK activation. Microb. Pathog. 2019, 132, 302–312. [Google Scholar] [CrossRef]
- Li, F.; Nitteranon, V.; Tang, X.; Liang, J.; Zhang, G.; Parkin, K.L.; Hu, Q. In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem. 2012, 135, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.H.; Li, W.; Go, Y.; Oh, Y.C. Atractylodis Rhizoma Alba Attenuates Neuroinflammation in BV2 Microglia upon LPS Stimulation by Inducing HO-1 Activity and Inhibiting NF-κB and MAPK. Int. J. Mol. Sci. 2019, 20, 4015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Zhang, Y.; Xu, J.J.; Sun, L.L.; Li, S.Z. The protective role of liquiritin in high fructose-induced myocardial fibrosis via inhibiting NF-κB and MAPK signaling pathway. Biomed. Pharmacother. 2016, 84, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, R.; Liu, R. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol. Res. 2019, 144, 210–226. [Google Scholar] [CrossRef] [PubMed]
- Caspary, W.F. Physiology and pathophysiology of intestinal absorption. Am. J. Clin. Nutr. 1992, 55, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Pie, S.; Lalles, J.P.; Blazy, F.; Laffitte, J.; Seve, B.; Oswald, I.P. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar]
- Tao, S.; Zou, H.; Li, J.; Wei, H. Landscapes of Enteric Virome Signatures in Early-Weaned Piglets. Microbiol. Spectr. 2022, 10, e0169822. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- Brinkmann, S.; Spohn, M.S.; Schäberle, T.F. Bioactive natural products from Bacteroidetes. Nat. Prod. Rep. 2022, 39, 1045–1065. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Naureen, Z.; Medori, M.C.; Dhuli, K.; Donato, K.; Connelly, S.T.; Bellinato, F.; Gisondi, P.; Bertelli, M. Polyphenols and Lactobacillus reuteri in oral health. J. Prev. Med. Hyg. 2022, 63 (Suppl. 3), E246–E254. [Google Scholar]
- Hall, A.B.; Yassour, M.; Sauk, J.; Garner, A.; Jiang, X.; Arthur, T.; Lagoudas, G.K.; Vatanen, T.; Fornelos, N.; Wilson, R.; et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017, 9, 103. [Google Scholar] [CrossRef]
- Nie, K.; Ma, K.; Luo, W.; Shen, Z.; Yang, Z.; Xiao, M.; Tong, T.; Yang, Y.; Wang, X. Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Front. Cell Infect. Microbiol. 2021, 11, 757718. [Google Scholar] [CrossRef]
- Badal, V.D.; Vaccariello, E.D.; Murray, E.R.; Yu, K.E.; Knight, R.; Jeste, D.V.; Nguyen, T.T. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients 2020, 12, 3759. [Google Scholar] [CrossRef]
- Abdelsalam, N.A.; Hegazy, S.M.; Aziz, R.K. The curious case of Prevotella copri. Gut Microbes 2023, 15, 2249152. [Google Scholar] [CrossRef]
- Uzal, F.A.; Navarro, M.A.; Asin, J.; Boix, O.; Ballarà-Rodriguez, I.; Gibert, X. Clostridial diarrheas in piglets: A review. Vet. Microbiol. 2023, 280, 109691. [Google Scholar] [CrossRef]
- Doyle, A.A.; Stephens, J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019, 139, 104405. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Wu, Y.; Li, F.; Han, M.; Dai, Y.; Zheng, F.; Yue, H. In Vitro Transformation of Protopanaxadiol Saponins in Human Intestinal Flora and Its Effect on Intestinal Flora. Evid. Based Complement. Alternat Med. 2021, 2021, 1735803. [Google Scholar] [CrossRef]
- Park, M.; Bae, J.; Lee, D.S. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother. Res. 2008, 22, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Wang, J.; Chen, L.; Shan, J.; Di, L. Lactobacillus murinus Improved the Bioavailability of Orally Administered Glycyrrhizic Acid in Rats. Front. Microbiol. 2020, 11, 597. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Alagawany, M.; Abdel-Moneim, A.E.; Mohammed, N.G.; Khafaga, A.F.; Bin-Jumah, M.; Othman, S.I.; Allam, A.A.; Elnesr, S.S. Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry. Antibiotics 2020, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
Group/Age | 4 Weeks | 6 Weeks | 8 Weeks | 10 Weeks |
---|---|---|---|---|
SH | 100% (n = 31) | 94% (n = 29) | 81% (n = 25) | 71% (n = 22) |
LD | 100% (n = 32) | 91% (n = 29) | 78% (n = 25) | 78% (n = 25) |
RD | 100% (n = 32) | 97% (n = 31) | 91% (n = 29) | 91% (n = 29) |
RT | 100% (n = 31) | 96% (n = 30) | 84% (n = 26) | 81% (n = 25) |
Group/Age | 4 Weeks | 6 Weeks | 8 Weeks | 10 Weeks |
---|---|---|---|---|
SH | 10.3 ± 0.4 (n = 31) | 15.1 ± 0.6 ## (n = 29) | 20.3 ± 0.8 ## (n = 25) | 27.4 ± 1.1 ## (n = 22) |
LD | 10.6 ± 0.4 (n = 32) | 16.1 ± 0.6 ## (n = 29) | 21.8 ± 0.9 *,## (n = 25) | 29.6 ± 1.1 *,## (n = 25) |
RD | 10.2 ± 0.3 (n = 32) | 16.8 ± 0.5 *,## (n = 31) | 24.1 ± 0.8 **,## (n = 29) | 32.1 ± 0.9 **,## (n = 29) |
RT | 10.4 ± 0.4 (n = 31) | 16.5 ± 0.5 ## (n = 30) | 22.7 ± 0.8 *,## (n = 26) | 29.9 ± 1.0 **,## (n = 25) |
Group/Age | 4 Weeks | 6 Weeks | 8 Weeks | 10 Weeks |
---|---|---|---|---|
SH | 0.37 ± 0.06 (n = 31) | 0.34 ± 0.07 (n = 29) | 0.37 ± 0.09 (n = 25) | 0.50 ± 0.09 ## (n = 22) |
LD | 0.37 ± 0.08 (n = 32) | 0.39 ± 0.09 * (n = 29) | 0.41 ± 0.08 *,## (n = 25) | 0.56 ± 0.09 **,## (n = 25) |
RD | 0.36 ± 0.07 (n = 32) | 0.47± 0.08 **,## (n = 31) | 0.52 ± 0.08 **,## (n = 29) | 0.57 ± 0.10 **,## (n = 29) |
RT | 0.37 ± 0.07 (n = 31) | 0.43 ± 0.08 **,## (n = 30) | 0.44 ± 0.07 **,## (n = 26) | 0.51 ± 0.10 *,## (n = 25) |
Group/Age | 4 Weeks | 6 Weeks | 8 Weeks | 10 Weeks |
---|---|---|---|---|
SH | 30.1 ± 1.4 (n = 31) | 31.3 ± 1.6 # (n = 29) | 32.7 ± 2.9 # (n = 25) | 33.4 ± 3.8 # (n = 22) |
LD | 30.2 ± 1.4 (n = 32) | 32.8 ± 1.7 *,# (n = 29) | 33.8 ± 2.8 *,# (n = 25) | 34.6 ± 3.3 *,# (n = 25) |
RD | 30.1 ± 1.3 (n = 32) | 36.6 ± 1.6 **,## (n = 31) | 37.2 ± 2.8 **,## (n = 29) | 38.1 ± 3.0 **,## (n = 29) |
RT | 30.1 ± 1.4 (n = 31) | 33.1 ± 1.5 *,# (n = 30) | 34.1 ± 2.7 *,# (n = 26) | 35.9 ± 3.2 *,# (n = 25) |
Group/Age | SH | LD | RD | RT |
---|---|---|---|---|
IgA (ng/mL) | 101.4 ± 23.5 (n = 3) | 156.2 ± 27.1 ** (n = 3) | 187.3 ± 26.2 ** (n = 3) | 110.5 ± 24.1 (n = 3) |
IgE (ng/mL) | 233.7 ± 26.3 (n = 3) | 171.6 ± 22.5 ** (n = 3) | 134.5 ± 21.2 ** (n = 3) | 221.4 ± 22.3 (n = 3) |
IgG (μg/mL) | 76.6 ± 17.1 (n = 3) | 145.3 ± 25.3 ** (n = 3) | 174.8 ± 27.6 ** (n = 3) | 108.6 ± 21.2 * (n = 3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-H.; Chung, K.-T.; Su, L.-Y.; Wu, W.-J.; Wang, P.-H.; Lee, M.-C.; Shen, S.-C.; Wu, C.-H. Chinese Herbal Medicines as Natural Alternative Products to Antibiotics in Weaned Piglets through Intestinal Microbiota Regulation. Int. J. Mol. Sci. 2024, 25, 11034. https://doi.org/10.3390/ijms252011034
Wang C-H, Chung K-T, Su L-Y, Wu W-J, Wang P-H, Lee M-C, Shen S-C, Wu C-H. Chinese Herbal Medicines as Natural Alternative Products to Antibiotics in Weaned Piglets through Intestinal Microbiota Regulation. International Journal of Molecular Sciences. 2024; 25(20):11034. https://doi.org/10.3390/ijms252011034
Chicago/Turabian StyleWang, Che-Hsuan, Kou-Toung Chung, Li-Yu Su, Wan-Jhen Wu, Pei-Hwa Wang, Ming-Chung Lee, Szu-Chuan Shen, and Chung-Hsin Wu. 2024. "Chinese Herbal Medicines as Natural Alternative Products to Antibiotics in Weaned Piglets through Intestinal Microbiota Regulation" International Journal of Molecular Sciences 25, no. 20: 11034. https://doi.org/10.3390/ijms252011034
APA StyleWang, C. -H., Chung, K. -T., Su, L. -Y., Wu, W. -J., Wang, P. -H., Lee, M. -C., Shen, S. -C., & Wu, C. -H. (2024). Chinese Herbal Medicines as Natural Alternative Products to Antibiotics in Weaned Piglets through Intestinal Microbiota Regulation. International Journal of Molecular Sciences, 25(20), 11034. https://doi.org/10.3390/ijms252011034