SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives
Abstract
:1. Introduction
1.1. hSPRY2 Protein Structure and Their Interacting Partners
1.2. Molecular Mechanisms of SPRY2
1.3. SPRED2, a SPROUTY-Like Protein
1.4. SPRY2 in Neurodevelopment
1.5. SPROUTY2: Challenges and Unresolved Questions
2. Conclusions and Future Prospective
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SPRY2 | SPROUTY2 |
RTK | receptor tyrosine kinase |
BDNF | brain-derived neurotrophic factor |
EGFR | epidermal growth factor receptor |
EGF | epidermal growth factor receptor/ErbB family |
FGFR | fibroblast growth factor receptor |
FGF | fibroblast growth factor receptor family |
PDGFR | platelet-derived growth factor receptor |
PDGF | platelet-derived growth factor receptor family |
VEGFR | vascular endothelial growth factor receptor |
VEGF | vascular endothelial growth factor receptor family |
NGF | nerve growth factor |
NT | neurotrophin |
IGF | insulin-like growth factor |
Tyr | tyrosine |
Cys | cysteine |
PI-PLC | Phosphatidylinositol-specific phospholipase C |
GRB2 | growth factor receptor bound protein 2 |
c-Cbl | Casitas B lineage lymphoma |
PP2A | Phosphoprotein phosphatase 2A |
SIAH2 | Siah E3 Ubiquitin Protein Ligase 2 |
PKC⸹ | Protein kinase C delta |
TESK1 | Testis Associated Actin Remodeling Kinase 1 |
PTEN | Phosphatase and tensin homolog |
DYRK1A | Dual-specificity tyrosine-phosphorylation-regulated kinase 1A |
Mnk1 | MAP kinase-interacting serine/threonine-protein kinase 1 |
CIN85 | Cbl-interacting 85-kDa protein |
FRS2α | fibroblast growth factor receptor 2 alpha |
References
- Batool, Z.; Azfal, A.; Liaquat, L.; Sadir, S.; Nisar, R.; Inamullah, A.; Faiz Ghalib, A.U.; Haider, S. Receptor tyrosine kinases (RTKs): From biology to pathophysiology. In Receptor Tyrosine Kinases in Neurodegenerative and Psychiatric Disorders; Academic Press: Cambridge, MA, USA, 2023; pp. 117–185. [Google Scholar] [CrossRef]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Castrén, E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol. Psychiatry 2021, 90, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, I.N. Mechanisms of activation of receptor tyrosine kinases: Monomers or dimers. Cells 2014, 3, 304–330. [Google Scholar] [CrossRef] [PubMed]
- Choura, M.; Rebaï, A. Receptor tyrosine kinases: From biology to pathology. J. Recept. Signal Transduct. 2011, 31, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 2020, 5, 181. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y. Receptor tyrosine kinases: Biological functions and anticancer targeted therapy. Medcomm 2023, 4, e446. [Google Scholar] [CrossRef]
- Mele, S.; Johnson, T.K. Receptor tyrosine kinases in development: Insights from drosophila. Int. J. Mol. Sci. 2020, 21, 188. [Google Scholar] [CrossRef]
- Kiyatkin, A.; van Alderwerelt van Rosenburgh, I.K.; Klein, D.E.; Lemmon, M.A. Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics. Sci. Signal. 2020, 13, eaaz5267. [Google Scholar] [CrossRef]
- Pulivarthi, C.B.; Choubey, S.S.; Pandey, S.K.; Gautam, A.S.; Singh, R.K. Receptor tyrosine kinases: An overview. In Receptor Tyrosine Kinases in Neurodegenerative and Psychiatric Disorders; Academic Press: Cambridge, MA, USA, 2023; pp. 45–77. [Google Scholar] [CrossRef]
- Wu, P.-K.; Becker, A.; Park, J.-I. Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway. Int. J. Mol. Sci. 2020, 21, 5436. [Google Scholar] [CrossRef]
- Neben, C.L.; Lo, M.; Jura, N.; Klein, O.D. Feedback regulation of RTK signaling in development. Dev. Biol. 2019, 447, 71–89. [Google Scholar] [CrossRef]
- Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS Proteins and Their Regulators in Human Disease. Cell 2017, 170, 17–33. [Google Scholar] [CrossRef] [PubMed]
- del Corral, R.D.; Morales, A.V. The Multiple Roles of FGF Signaling in the Developing Spinal Cord. Front. Cell Dev. Biol. 2017, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.; Corrêa, S.A.L.; Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 2016, 73, 4397–4413. [Google Scholar] [CrossRef] [PubMed]
- Yim, D.G.R.; Ghosh, S.; Guy, G.R.; Virshup, D.M. Casein kinase 1 regulates Sprouty2 in FGF–ERK signaling. Oncogene 2015, 34, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Hanafusa, H.; Torii, S.; Yasunaga, T.; Nishida, E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat. Cell Biol. 2002, 4, 850–858. [Google Scholar] [CrossRef]
- Felfly, H.; Klein, O.D. Sprouty genes regulate proliferation and survival of human embryonic stem cells. Sci. Rep. 2013, 3, 2277. [Google Scholar] [CrossRef]
- Treccarichi, S.; Calì, F.; Vinci, M.; Ragalmuto, A.; Musumeci, A.; Federico, C.; Costanza, C.; Bottitta, M.; Greco, D.; Saccone, S.; et al. Implications of a De Novo Variant in the SOX12 Gene in a Patient with Generalized Epilepsy, Intellectual Disability, and Childhood Emotional Behavioral Disorders. Curr. Issues Mol. Biol. 2024, 46, 6407–6422. [Google Scholar] [CrossRef]
- Lito, P.; Rosen, N.; Solit, D.B. Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 2013, 19, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Chen, S.-H.; Yue, Y.G.; Buchanan, S.; Beckmann, R.P.; Peng, S.-B. Co-targeting BRAF and cyclin dependent kinases 4/6 for BRAF mutant cancers. Pharmacol. Ther. 2015, 149, 139–149. [Google Scholar] [CrossRef]
- Sharma, B.; Joshi, S.; Sassano, A.; Majchrzak, B.; Kaur, S.; Aggarwal, P.; Nabet, B.; Bulic, M.; Stein, B.L.; McMahon, B.; et al. Sprouty proteins are negative regulators of interferon (IFN) signaling and IFN-inducible biological responses. J. Biol. Chem. 2012, 287, 42352–42360. [Google Scholar] [CrossRef]
- Hausott, B.; Klimaschewski, L. Sprouty2—A Novel Therapeutic Target in the Nervous System? Mol. Neurobiol. 2019, 56, 3897–3903. [Google Scholar] [CrossRef] [PubMed]
- Guy, G.R.; Jackson, R.A.; Yusoff, P.; Chow, S.Y. Sprouty proteins: Modified modulators, matchmakers or missing links? J. Endocrinol. 2009, 203, 191–202. [Google Scholar]
- Edwin, F.; Anderson, K.; Ying, C.; Patel, T.B. Intermolecular Interactions of Sprouty Proteins and Their Implications in Development and Disease. Mol. Pharmacol. 2009, 76, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Lao, D.-H.; Yusoff, P.; Chandramouli, S.; Philp, R.J.; Fong, C.W.; Jackson, R.A.; Saw, T.Y.; Yu, C.Y.; Guy, G.R. Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J. Biol. Chem. 2007, 282, 9117–9126. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.W.; Leong, H.F.; Wong, E.S.M.; Lim, J.; Yusoff, P.; Guy, G.R. Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J. Biol. Chem. 2003, 278, 33456–33464. [Google Scholar] [CrossRef] [PubMed]
- Rubin, C.; Gur, G.; Yarden, Y. Negative regulation of receptor tyrosine kinases: Unexpected links to c-Cbl and receptor ubiquitylation. Cell Res. 2005, 15, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.S.M.; Fong, C.W.; Lim, J.; Yusoff, P.; Low, B.C.; Langdon, W.Y.; Guy, G.R. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J. 2002, 21, 4796–4808. [Google Scholar] [CrossRef]
- Qi, J.; Nakayama, K.; Gaitonde, S.; Goydos, J.S.; Krajewski, S.; Eroshkin, A.; Bar-Sagi, D.; Bowtell, D.; Ronai, Z. The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 16713–16718. [Google Scholar] [CrossRef]
- Nadeau, R.J.; Toher, J.L.; Yang, X.; Kovalenko, D.; Friesel, R. Regulation of Sprouty2 stability by mammalian seven-in-absentia homolog 2. J. Cell. Biochem. 2007, 100, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Haglund, K.; Schmidt, M.H.H.; Wong, E.S.M.; Guy, G.R.; Dikic, I. Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation. Embo Rep. 2005, 6, 635–641. [Google Scholar] [CrossRef]
- DaSilva, J.; Xu, L.; Kim, H.J.; Miller, W.T.; Bar-Sagi, D. Regulation of Sprouty Stability by Mnk1-Dependent Phosphorylation. Mol. Cell. Biol. 2006, 26, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Chandramouli, S.; Yu, C.Y.; Yusoff, P.; Lao, D.-H.; Leong, H.F.; Mizuno, K.; Guy, G.R. Tesk1 interacts with Spry2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling. J. Biol. Chem. 2008, 283, 1679–1691. [Google Scholar] [CrossRef] [PubMed]
- Aranda, S.; Alvarez, M.; Turró, S.; Laguna, A.; de la Luna, S. Sprouty2-Mediated Inhibition of Fibroblast Growth Factor Signaling Is Modulated by the Protein Kinase DYRK1A. Mol. Cell. Biol. 2008, 28, 5899–5911. [Google Scholar] [CrossRef] [PubMed]
- Edwin, F.; Singh, R.; Endersby, R.; Baker, S.J.; Patel, T.B. The tumor suppressor PTEN is necessary for human sprouty 2-mediated inhibition of cell proliferation. J. Biol. Chem. 2006, 281, 4816–4822. [Google Scholar] [CrossRef] [PubMed]
- Hanafusa, H.; Torii, S.; Yasunaga, T.; Matsumoto, K.; Nishida, E. Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor sprouty. J. Biol. Chem. 2004, 279, 22992–22995. [Google Scholar] [CrossRef] [PubMed]
- Poppleton, H.M.; Edwin, F.; Jaggar, L.; Ray, R.; Johnson, L.R.; Patel, T.B. Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase. Biochem. Biophys. Res. Commun. 2004, 323, 98–103. [Google Scholar] [CrossRef]
- Cabrita, M.A.; Jäggi, F.; Widjaja, S.P.; Christofori, G. A functional interaction between sprouty proteins and Caveolin-1. J. Biol. Chem. 2006, 281, 29201–29212. [Google Scholar] [CrossRef]
- Martínez, N.; García-Domínguez, C.A.; Domingo, B.; Oliva, J.L.; Zarich, N.; Sánchez, A.; Gutiérrez-Eisman, S.; Llopis, J.; Rojas, J.M. Sprouty2 binds Grb2 at two different proline-rich regions, and the mechanism of ERK inhibition is independent of this interaction. Cell. Signal. 2007, 19, 2277–2285. [Google Scholar] [CrossRef]
- Chow, S.Y.; Yu, C.Y.; Guy, G.R. Sprouty2 interacts with protein Kinase Cδ and disrupts phosphorylation of protein kinase D1. J. Biol. Chem. 2009, 284, 19623–19636. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, P.; Lao, D.-H.; Ong, S.H.; Wong, E.S.M.; Lim, J.; Lo, T.L.; Leong, H.F.; Fong, C.W.; Guy, G.R. Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 2002, 277, 3195–3201. [Google Scholar] [CrossRef]
- Brady, S.C.; Coleman, M.L.; Munro, J.; Feller, S.M.; Morrice, N.A.; Olson, M.F. Sprouty2 association with B-Raf is regulated by phosphorylation and kinase conformation. Cancer Res. 2009, 69, 6773–6781. [Google Scholar] [CrossRef] [PubMed]
- Impagnatiello, M.-A.; Weitzer, S.; Gannon, G.; Compagni, A.; Cotten, M.; Christofori, G. Mammalian Sprouty-1 and-2 Are Mem-brane-anchored Phosphoprotein Inhibitors of Growth Factor Signaling in Endothelial Cells. J. Cell Biol. 2001, 152, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Hausott, B.; Vallant, N.; Auer, M.; Yang, L.; Dai, F.; Brand-Saberi, B.; Klimaschewski, L. Sprouty2 down-regulation promotes axon growth by adult sensory neurons. Mol. Cell. Neurosci. 2009, 42, 328–340. [Google Scholar] [CrossRef]
- García-Domínguez, C.A.; Martínez, N.; Gragera, T.; Pérez-Rodríguez, A.; Retana, D.; León, G.; Sánchez, A.; Oliva, J.L.; Pérez-Sala, D.; Rojas, J.M. Sprouty2 and spred1-2 proteins inhibit the activation of the ERK pathway elicited by cyclopentenone prostanoids. PLoS ONE 2011, 6, e16787. [Google Scholar] [CrossRef] [PubMed]
- Ozakia, K.; Kadomotoa, R.; Asatoa, K.; Tanimuraa, S.; Itohb, N.; Kohno, M. Erk pathway positively regulates the expression of sprouty genes. Biochem. Biophys. Res. Commun. 2001, 285, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.M.; Morrison, D.J.; Basson, M.A.; Licht, J.D. Sprouty proteins: Multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 2006, 16, 45–54. [Google Scholar] [CrossRef]
- Zhang, Y.-W.; Woude, G.F.V. MIG-6 and SPRY2 in the Regulation of Receptor Tyrosine Kinase Signaling: Balancing Act via Negative Feedback Loops. In Future Aspects of Tumor Suppressor Gene; InTech: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef]
- Kim, H.J.; Taylor, L.J.; Bar-Sagi, D. Spatial Regulation of EGFR Signaling by Sprouty2. Curr. Biol. 2007, 17, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Rubin, C.; Litvak, V.; Medvedovsky, H.; Zwang, Y.; Lev, S.; Yarden, Y. Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr. Biol. 2003, 13, 297–307. [Google Scholar] [CrossRef]
- Walker, D.J.; Land, S.C. Regulation of vascular signalling by nuclear Sprouty2 in fetal lung epithelial cells: Implications for co-ordinated airway and vascular branching in lung development. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2018, 224, 105–114. [Google Scholar] [CrossRef]
- Gross, I.; Armant, O.; Benosman, S.; de Aguilar, J.L.G.; Freund, J.-N.; Kedinger, M.; Licht, J.D.; Gaiddon, C.; Loeffler, J.-P. Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death Differ. 2007, 14, 1802–1812. [Google Scholar] [CrossRef]
- Kajita, M.; Ikeda, W.; Tamaru, Y.; Takai, Y. Regulation of platelet-derived growth factor-induced Ras signaling by poliovirus receptor Necl-5 and negative growth regulator Sprouty2. Genes Cells 2007, 12, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Ishida, M.; Ichihara, M.; Mii, S.; Jijiwa, M.; Asai, N.; Enomoto, A.; Kato, T.; Majima, A.; Ping, J.; Murakumo, Y.; et al. Sprouty2 regulates growth and differentiation of human neuroblastoma cells through RET tyrosine kinase. Cancer Sci. 2007, 98, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Du, Z.; Zhu, J.; Yu, J.; Xu, Y. Sprouty2 suppresses the inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes through regulating the Raf/ERK and PTEN/AKT signals. Mol. Immunol. 2015, 67, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, C.; McCormick, F. SPRED proteins and their roles in signal transduction, development, and malignancy. Genes Dev. 2020, 34, 1410–1421. [Google Scholar] [CrossRef] [PubMed]
- Wakioka, T.; Sasaki, A.; Kato, R.; Shouda, T.; Matsumoto, A.; Miyoshi, K.; Tsuneoka, M.; Komiya, S.; Baron, R.; Yoshimura, A. Spred is a Sprouty-related suppressor of Ras signalling. Nature 2001, 412, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Hausott, B.; Kurnaz, I.; Gajovic, S.; Klimaschewski, L. Signaling by Neuronal Tyrosine Kinase Receptors: Relevance for Development and Regeneration. Anat. Rec. 2009, 292, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Kopec, A.M.; Carew, T.J. Growth factor signaling and memory formation: Temporal and spatial integration of a molecular network. Learn. Mem. 2013, 20, 531–539. [Google Scholar] [CrossRef]
- Mason, I. Initiation to end point: The multiple roles of fibroblast growth factors in neural development. Nat. Rev. Neurosci. 2007, 8, 583–596. [Google Scholar] [CrossRef]
- Lahti, L.; Saarimäki-Vire, J.; Rita, H.; Partanen, J. FGF signaling gradient maintains symmetrical proliferative divisions of midbrain neuronal progenitors. Dev. Biol. 2011, 349, 270–282. [Google Scholar] [CrossRef]
- Klimaschewski, L.; Claus, P. Fibroblast Growth Factor Signalling in the Diseased Nervous System. Mol. Neurobiol. 2021, 58, 3884–3902. [Google Scholar] [CrossRef]
- Öngür, D.; Pohlman, J.; Dow, A.L.; Eisch, A.J.; Edwin, F.; Heckers, S.; Cohen, B.M.; Patel, T.B.; Carlezon, W.A. Electroconvulsive Seizures Stimulate Glial Proliferation and Reduce Expression of Sprouty2 within the Prefrontal Cortex of Rats. Biol. Psychiatry 2007, 62, 505–512. [Google Scholar] [CrossRef]
- Dow, A.L.; Lin, T.V.; Chartoff, E.H.; Potter, D.; McPhie, D.L.; Veer, A.V.V.; Knoll, A.T.; Lee, K.N.; Neve, R.L.; Patel, T.B.; et al. Sprouty2 in the dorsal hippocampus regulates neurogenesis and stress responsiveness in rats. PLoS ONE 2015, 10, e0120693. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, H.; Yan, R.; Hu, M. PI3K/Akt and ERK/MAPK Signaling Promote Different Aspects of Neuron Survival and Axonal Regrowth Following Rat Facial Nerve Axotomy. Neurochem. Res. 2017, 42, 3515–3524. [Google Scholar] [CrossRef] [PubMed]
- Taketomi, T.; Yoshiga, D.; Taniguchi, K.; Kobayashi, T.; Nonami, A.; Kato, R.; Sasaki, M.; Sasaki, A.; Ishibashi, H.; Moriyama, M.; et al. Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nat. Neurosci. 2005, 8, 855–857. [Google Scholar] [CrossRef] [PubMed]
- Iroegbu, J.D.; Ijomone, O.K.; Femi-Akinlosotu, O.M.; Ijomone, O.M. ERK/MAPK signalling in the developing brain: Perturbations and consequences. Neurosci. Biobehav. Rev. 2021, 131, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Marvaldi, L.; Thongrong, S.; Kozłowska, A.; Irschick, R.; Pritz, C.O.; Bäumer, B.; Ronchi, G.; Geuna, S.; Hausott, B.; Klimaschewski, L. Enhanced axon outgrowth and improved long-distance axon regeneration in sprouty2 deficient mice. Dev. Neurobiol. 2014, 75, 217–231. [Google Scholar] [CrossRef]
- Markus, A.; Zhong, J.; Snider, W.D. Raf and Akt Mediate Distinct Aspects of Sensory Axon Growth. Neuron 2002, 35, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Atwal, J.K.; Massie, B.; Miller, F.D.; Kaplan, D.R. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 2000, 27, 265–277. [Google Scholar] [CrossRef]
- Pillai, A. Decreased expression of sprouty2 in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder: A correlation with BDNF expression. PLoS ONE 2008, 3, e1784. [Google Scholar] [CrossRef]
- Lao, D.-H.; Chandramouli, S.; Yusoff, P.; Fong, C.W.; Saw, T.Y.; Tai, L.P.; Yu, C.Y.; Leong, H.F.; Guy, G.R. A Src homology 3-binding sequence on the C terminus of sprouty2 is necessary for inhibition of the Ras/ERK pathway downstream of fibroblast growth factor receptor stimulation. J. Biol. Chem. 2006, 281, 29993–30000. [Google Scholar] [CrossRef]
- Taniguchi, K.; Ayada, T.; Ichiyama, K.; Kohno, R.-I.; Yonemitsu, Y.; Minami, Y.; Kikuchi, A.; Maehara, Y.; Yoshimura, A. Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem. Biophys. Res. Commun. 2007, 352, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Hausott, B.; Vallant, N.; Schlick, B.; Auer, M.; Nimmervoll, B.; Obermair, G.J.; Schwarzer, C.; Dai, F.; Brand-Saberi, B.; Klimaschewski, L. Sprouty2 and -4 regulate axon outgrowth by hippocampal neurons. Hippocampus 2012, 22, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yoon, J.; Lee, M.; Hwang, Y.-S.; Daar, I.O. Sprouty2 regulates positioning of retinal progenitors through suppressing the Ras/Raf/MAPK pathway. Sci. Rep. 2020, 10, 13752. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.H.; Zhao, G.; Wang, Q.; Lovicu, F.J. Sprouty gain of function disrupts lens cellular processes and growth by restricting RTK signaling. Dev. Biol. 2015, 406, 129–146. [Google Scholar] [CrossRef]
- Jamsuwan, S.; Klimaschewski, L.; Hausott, B. Simultaneous Knockdown of Sprouty2 and PTEN Promotes Axon Elongation of Adult Sensory Neurons. Front. Cell. Neurosci. 2020, 13, 583. [Google Scholar] [CrossRef]
Characteristics | SPROUTY 1 | SPROUTY 2 | SPROUTY 3 | SPROUTY 4 |
---|---|---|---|---|
UniProt ID | O43609 | O43597 | O43610 | Q9C004 |
Gene | SPRY1 | SPRY2 | SPRY3 | SPRY4 |
Chromosomal location | 4q26.1 | 13q31.1 | XqPAR2 | 5q31.3 |
Amino acid (aa) no and MW | 319 aa 35,122 Da | 315 aa 34,688 Da | 288 aa 31,222 Da | 299 aa 32,541 Da |
Tissue specificity | Primarily in adipose tissue | Low tissue specificity | Brain | Adipose tissue and brain |
Molecular function | Developmental protein | Developmental protein | Developmental protein (Primarily Neurogenesis) | Developmental protein |
Interacting partner | TESK1, and CAV1; Forms heterodimers with SPRY2 | GAB1, METTL13, SPRY2, RAF1, TESK1, GRB2, PPP2R1A/PP2A-A, PPP2CA/PP2A-C, c-Cbl, and CAV1; Forms heterodimers with SPRY1 | TESK1, USP11, and CAV1 | TESK1, RAF1, and CAV1 |
Conserved tyrosine residue | Y53 | Y55 | Y27 | Y52 |
SPR domain for RAS regulation | 183–295 aa | 177–291 aa | 154–260 aa | 166–273 aa |
Role in the RTK signaling pathway | Inhibits FGF-mediated phosphorylation of ERK1/2 | Inhibits FGF-mediated phosphorylation of ERK1/2 | Inhibits EGF-mediated activation of erk1/2 | Inhibits Ras-independent activation of RAF1 |
Alphafold protein structure |
Protein | Class/Family | Localization | Mechanism | Effect on SPRY2 | References |
---|---|---|---|---|---|
c-Cbl | E3 ubiquitin–protein ligase | Plasma membrane | Through their SH2-like domain, c-Cbl engages with the Tyr55 of SPRY2 | Leads ubiquitin-linked SPRY2 demolition | [26,27,28,29] |
SIAH2 | Ubiquitin Ligases | Cytoplasm | SIAH2 binds to the N-terminal of SPRY2 in a Tyr phosphorylation-independent manner | SIAH2 regulates the number of SPRY proteins by ubiquitinoylation | [30,31] |
CIN85 | Adaptor proteins | Plasma membrane | SH3 domains of CIN85 bind to Pro/Arg-rich motifs of the N and C-terminal of SPRY2 | It binds to SPRY2 and controls the clustering of c-Cbl | [32] |
Mnk1 | Ser kinase | Cytoplasm | Phosphorylates the Ser112 and Ser115/121 of SPRY2 | Modulates the tertiary structure of SPRY2 essential for SPRY2 activity | [33] |
TESK1 | Ser/Thr kinase | Cytoplasm | Intrudes with SPRY2/GRB2 binding and dephosphorylation of critical Ser residues by PP2A | Diminishes the SPRY2 inhibition effect on downstream signaling | [34] |
DYRK1A | Ser/Thr and Tyr kinase | Cytoplasm | Interacts with SPRY2 and phosphorylate Thr75 | Diminishes the SPRY2 inhibition of downstream signaling | [35] |
PTEN | Phosphatase | Cytoplasm | SPRY2 expression positively regulated the PTEN activity by enhancing its amount and also reducing its phosphorylation | Inhibits AKT downstream signaling by increasing SPRY2 expression | [36] |
PP2A | Ser/Thr protein phosphatase | Nucleus and cytoplasm | PP2A dephosphorylates Ser112 and Ser115 | Dephosphorylation of Ser residues influences phosphorylation of Tyr55 leading to stimulation of SPRY2 activity | [26] |
SHP2 | Ser/Thr protein phosphatase | Nuclear/cytoplasm | Active SHP2 resulted in the dephosphorylation of Tyr55 | Reduced SPRY2 binding to GRB2, which lessens SPRY2’s inhibitory effects on RTK signaling | [37] |
PTP1B | Phosphatases | Cytoplasmic face of the endoplasmic reticulum | Reduced Tyr phosphorylation of p130Cas | PTP1B reduced SPRY2’s capacity to impede cell migration but not cell proliferation | [38] |
TESK1 | Phosphatases | Cytoplasm | TESK1 inhibits SPRY2 translocation to membrane ruffles and also inhibits PP2A-mediated dephosphorylation of Ser residues on SPRY2 | Tesk1 inhibits SPRY2’s inhibitory mechanism by preventing it from interacting with the adaptor protein GRB2 | [34] |
Caveolin-1 | Cholesterol-binding protein | Plasma membrane-associated protein | SPRY2 associated with Cav-1 by CRD | Inhibits EGF-induced p42/44 ERK inhibition | [39] |
GRB2 | Member of GRB2/sem-5/DRK family | Cytoplasm | SH3 domain of GRB2 binds to SPRY2 | Prevents ERK activation upstream of RAS | [40] |
PKC⸹ | Member of PKC family | Cytoplasm | PhasphorylatedTyr55 facilitate SPRY2 binding to PKC⸹ | Inhibites ERK phosphorylation and consequently, inhibit RAS/ERK pathway | [41] |
Casein kinase-1 | Ser/Thr-protein kinase | Cytoplasm | Controls SPRY2 in a phosphorylation-dependent manner | CK1 activity and recruitment are necessary for SPRY2 function | [16] |
RAF | Ser/Thr-protein kinase | Cytoplasm | Phosphorylation of Ser111 and S120 residue of SPRY2 is required for Raf binding | RAF kinase activity was significantly decreased upon attachment to SPRY2; inhibit RAS/MAP kinase pathway | [42,43] |
Signaling Cascade | Receptor | Function | SPRY2 Activation | Mechanism of Action | Cascade Downstream Function | References |
---|---|---|---|---|---|---|
FGF signaling | RTK | Antagonist for FGF signaling | Phosphorylation of Tyr-227 | The conserved Tyr residue at the N-terminal of SPRY2 binds to GRB2, and inhibits FGF downstream signaling cascade | Endothelial growth, migration, and morphogenesis | [16] |
EGF signaling | RTK | Antagonist for EGF signaling | Phosphorylation of Tyr-55 | SPRY2 binds to adaptor CIN85 and leads to EGFR degradation or endocytosis | Endothelium development | [50,51] |
VEGF signaling | RTK | Antagonist for VEGF signaling | Tyr phosphorylation of SPRY is not required | SPRY binds to RAF1 and blocks further VEGF signaling | Vascular branching in lung development | [52] |
BDNF signaling | RTK | Antagonist for BDNF signaling | Phosphorylation of SPRY on critical Tyr residues | Inhibits neurite formation and the expression of neurofilament light chain; overexpression of SPRY2 induces neuronal cell death | Neuronal differentiation and neurite outgrowth | [53] |
IFN signaling (Jak-Stat pathways) | IFN receptor | Antagonist of p38 MAPK pathway | Phosphorylation of SPRY2 on Ser-112 and Ser-121 | Suppresses the p38 MAPK | Inhibits cell proliferation and suppresses tumor formation; antiviral and antineoplastic properties | [22] |
PDGFsignaling | PDGF receptor | An antagonist of RAF-MEK-ERK signaling | Phosphorylation of Tyr by c-Src | PDGF activated c-Src, phosphorylated the SPRY2 at Tyr55, and inhibited PDGF-induced ERK activation | NIH3T3 cell proliferation (in vitro study) | [54] |
GDNF signaling (Glial cell-derived neurotrophic factor) | RET receptorTyr kinase | Antagonist of ERK pathway | Phosphorylation of Tyr 55 | Inhibits GDNF-induced ERK activation | Regulation of neural cell proliferation, differentiation, and migration of enteric neural crest cells | [55] |
AKT pathway | Antagonist of AKT pathway | SPRY2 decreases PTEN phosphorylation on Ser380, Thr382 and Thr383 | Unphosphorylated PTEN is more stable and blocks PI3K/AKT signaling | Suppressed the cell proliferation and production of proinflammatory cytokines and matrix metalloproteinases | [56] |
Aim | SPROUTY Mutation/Downregulation/Overexpression | Study on | Techniques | Description | Effect on the Signaling Pathway | References |
---|---|---|---|---|---|---|
Study the role of the SPRY2 C-terminal SH3-binding motif | Y55F and R309A | Pheochromocytoma cells (PC-12 cells) | Immunoblot and Neurite growth | Double-point mutation inhibits SPRY2 Binding activity with both GRB2 and c-Cbl | MAPK/ERK not inhibited | [73] |
SPRY2 P314A mutant | PC-12 cells | Immunoblot and Neurite growth | Mutant SPRY2 showed less binding to GRB2 | inhibition of MAPK/ERK pathway | ||
Study the siRNA-based inhibition of SPRY2 | Deletion of SPRY2 by siRNA technology | PC-12, C6 glioblastoma cells and NIH3T3 fibroblasts cells | qRT-PCR, Western blot, and neurite outgrowth | Down-regulation of SPRY 1, -2, and -4 increased the neurite length of PC12 cells | Activation of RAS/ERK pathway in response to SPRY2 downregulation | [45] |
Role of SPRY2 and SPRY4 on embryonic morphogenesis and regulation | KO of SPRY2 and SPRY4 (Double KO by siRNAs) | Mice | KO mice lung bud and brain culture and mice phenotype | SPRY2 KO mice showed severe defects in craniofacial, limb, and lung morphogenesis | SPRY2/SPRY4 important for modulating FGF8/FGF10 signaling | [74] |
Role of SPRY2 and -4 on the regulation of axon outgrowth | KO of SPRY2 and SPRY4 (Double KO by siRNAs) | Hippocampal neurons of BALB/c mice | Double KO by siRNAs; qRT-PCR, Axonal growth, and neuronal morphologies assay | Downregulation of SPRY2 and -4 promote axon growth | FGF signaling is regulated by both SPRY2 and 4 | [75] |
Role of SPRY2 in neurogenesis and stress responsiveness | Downregulation of SPRY2 expression | Male Sprague Dawley rats | Behavior activity | Trigger neurogenesis and improve stress resilience indicators, such as the accelerated eradication of conditioned fear | Decrease SPRY2 expression; increase FGF2 signaling | [65] |
Effect of SPRY2 in growth and differentiation of human neuroblastoma cells through GDNF-ERK signaling | Transfection of SPRY2 (and others) in HEK-293 cells | SPRY2-deficient mice | HEK 293T cells; TGW cell proliferation assay | During development, SPRY2 adversely controls the proliferation of enteric neural crest cells | Expression of SPRY2 inhibits GDNF-induced ERK activation | [55] |
Role of SPRY2 in BDNF-induced neuronal differentiation and survival | Overexpression and KO of SPRY2 | Mice neuron | Neuritogenesis assay, immunoblot | Overexpression of SPRY2 induces neuronal cell death, whereas downregulation of SPRY2 promotes neuronal survival | SPRY2 downregulates BDNF-driven signaling | [53] |
Role of SPRY2 in eye development | Overexpression and KO of SPRY2 | Xenopus embryos | Histology and immunohistochemistry | KO of SPRY2 inhibit retinal progenitor’s growth resulted in small eye size | SPROUTY2 suppresses MAPK activity | [76] |
Role of SPRY2 in eye and lens development | Overexpression | Mice | Eye histology and lens differentiation study | Overexpression of SPRY2 in the lens resulted in reduced lens and eye size | SPRY2 protein interferes in the FGF-and EGF-mediated MAPK/ERK1/2 signaling | [77] |
Role of SPRY2 in axon outgrowth and regeneration | Downregulation | SPRY2−/+ and SPRY2−/− Mice | Neuron culture, immunocytochemistry and histochemistry | SPRY2 limited the axon outgrowth and nerve regeneration | Downregulate MAPK/ERK signaling | [69] |
Role of SPRY2 in axon regerneration | Downregulation | Spry2−/− KO mice | Immunocytochemistry and axon growth assay | Downregulation of SPRY2 promotes axon regeneration | Suppression of SPRY2 expression increased the ERK activation | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puranik, N.; Jung, H.; Song, M. SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 11043. https://doi.org/10.3390/ijms252011043
Puranik N, Jung H, Song M. SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences. 2024; 25(20):11043. https://doi.org/10.3390/ijms252011043
Chicago/Turabian StylePuranik, Nidhi, HoJeong Jung, and Minseok Song. 2024. "SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives" International Journal of Molecular Sciences 25, no. 20: 11043. https://doi.org/10.3390/ijms252011043
APA StylePuranik, N., Jung, H., & Song, M. (2024). SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences, 25(20), 11043. https://doi.org/10.3390/ijms252011043