Theoretical Investigation of Electric Polarizability in Porphyrin–Zinc and Porphyrin–Zinc–Thiazole Complexes Using Small Property-Oriented Basis Sets
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahoo, S.; Wickramathilaka, K.Y.; Njeri, E.; Silva, D.; Suib, S.L. A review on transition metal oxides in catalysis. Front. Chem. 2024, 12, 1374878. [Google Scholar] [CrossRef] [PubMed]
- Takaya, J. Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands. Chem. Sci. 2020, 12, 1964–1981. [Google Scholar] [CrossRef] [PubMed]
- Elattar, R.H.; El-Malla, S.F.; Kamal, A.H.; Mansour, F.R. Applications of metal complexes in analytical chemistry: A review article. Coord. Chem. Rev. 2024, 501, 215568. [Google Scholar] [CrossRef]
- Van Cleave, C.; Crans, D.C. The first-row transition metals in the periodic table of medicine. Inorganics 2019, 7, 111. [Google Scholar] [CrossRef]
- Regueiro Pschepiurca, M.E.; Vadra, N.; Suarez, S.A. Versatile metalloporphyrin-based electrochemical sensing applications: From small gasotransmitters to macromolecules. Eur. J. Inorg. Chem. 2023, 26, e202300005. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, J.; Liu, B.; Yang, J.; Hou, H. Recent advances in metalloporphyrins for environmental and energy applications. Chemosphere 2019, 219, 617–635. [Google Scholar] [CrossRef]
- Nasri, S.; Guergueb, M.; Brahmi, J.; Al-Ghamdi, Y.O.; Loiseau, F.; Nasri, H. Synthesis of a novel zinc(II) porphyrin complex, halide ion reception, catalytic degradation of dyes, and optoelectronic application. Crystals 2023, 13, 238. [Google Scholar] [CrossRef]
- Stracke, J.O.; Hutton, M.; Stewart, M.; Pendás, A.M.; Smith, B.; López-Otin, C.; Murphy, G.; Knäuper, V. Biochemical characterization of the catalytic domain of human matrix metalloproteinase 19. Evidence for a role as a potent basement membrane degrading enzyme. J. Biol. Chem. 2000, 275, 14809–14816. [Google Scholar] [CrossRef]
- Bajju, G.D.; Kundan, S.; Bhagat, M.; Gupta, D.; Kapahi, A.; Devi, G. Synthesis and spectroscopic and biological activities of Zn(II) porphyrin with oxygen donors. Bioinorg. Chem. App. 2014, 2014, 782762. [Google Scholar] [CrossRef]
- Masoudi, M. Synthesis and biological evaluation of 2-(2-hydrazinyl)thiazole derivatives with potential antibacterial and antioxidant activity. J. Sulf. Chem. 2024, 45, 758–770. [Google Scholar] [CrossRef]
- Lemilemu, F.; Bitew, M.; Demissie, T.B.; Eswaramoorthy, R.; Endale, M. Synthesis, antibacterial and antioxidant activities of thiazole-based Schiff base derivatives: A combined experimental and computational study. BMC Chem. 2021, 15, 67. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.T.; Elsharabasy, S.A.; Abdel-Aziem, A. Synthesis and antimicrobial activity of new series of thiazoles, pyridines and pyrazoles based on coumarin moiety. Sci. Rep. 2023, 13, 9912. [Google Scholar] [CrossRef] [PubMed]
- Piechowska, K.; Świtalska, M.; Cytarska, J.; Jaroch, K.; Łuczykowski, K.; Chałupka, J.; Wietrzyk, J.; Misiura, K.; Bojko, B.; Kruszewski, S.; et al. Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: Rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur. J. Med. Chem. 2019, 175, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Piechowska, K.; Mizerska-Kowalska, M.; Zdzisińska, B.; Cytarska, J.; Baranowska-Łączkowska, A.; Jaroch, K.; Łuczykowski, K.; Płaziński, W.; Bojko, B.; Kruszewski, S.; et al. Tropinone-derived alkaloids as potent anticancer agents: Synthesis, tyrosinase inhibition, mechanism of action, DFT calculation, and molecular docking studies. Int. J. Mol. Sci. 2020, 21, 9050. [Google Scholar] [CrossRef] [PubMed]
- Donarska, B.; Świtalska, M.; Wietrzyk, J.; Płaziński, W.; Łączkowski, K.Z. Spectrofluorimetric and computational investigation of new phthalimide derivatives towards human neutrophil elastase inhibition and antiproliferative activity. Int. J. Mol. Sci. 2023, 24, 110. [Google Scholar] [CrossRef]
- de Groot, M.J.; Havenith, R.W.; Vinkers, H.M.; Zwaans, R.; Vermeulen, N.P.E.; van Lenthe, J.H. Ab initio calculations on iron-porphyrin model systems for intermediates in the oxidative cycle of cytochrome P450s. J. Comput. Aided Mol. Des. 1998, 12, 183–193. [Google Scholar] [CrossRef]
- Gomila, R.M.; Quiñonero, D.; Frontera, A.; Ballester, P.; Deyà, P.M. Ab initio calculations on zinc porphyrins complexed to amines: Geometrical details and NMR chemical shifts. J. Mol. Struct. THEOCHEM 2000, 531, 381–386. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Pachter, R. Ground state electronic structures and spectra of zinc complexes of porphyrin, tetraazaporphyrin, tetrabenzoporphyrin, and phthalocyanine: A density functional theory study. J. Chem. Phys. 2001, 114, 10757–10767. [Google Scholar] [CrossRef]
- Koseki, J.; Maezono, R.; Tachikawa, M.; Towler, M.D.; Needs, R.J. Quantum Monte Carlo study of porphyrin transition metal complexes. J. Chem. Phys. 2008, 129, 085103. [Google Scholar] [CrossRef]
- Balanaya, M.P.; Kim, D.H. DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2008, 10, 5121–5127. [Google Scholar] [CrossRef]
- Durrant, M.C. A computational study of ligand binding affinities in iron(III) porphine and protoporphyrin IX complexes. Dalton Trans. 2014, 43, 9754–9765. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.J.; Song, C.; Ren, X.F. Theoretical study of zinc porphyrin-based dyes for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2017, 333, 200–207. [Google Scholar] [CrossRef]
- Ishimizu, Y.; Ma, Z.; Hada, M.; Fujii, H. Experimental and theoretical studies of the porphyrin ligand effect on the electronic structure and reactivity of oxoiron(IV) porphyrin π-cation-radical complexes. J. Biol. Inorg. Chem. 2019, 24, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bojorge, N.A.; Zaragoza-Galán, G.; Flores-Holguín, N.R.; Chávez-Rojo, M.A.; Castro-García, C.; Rodríguez-Valdez, L.M. Theoretical analysis of the electronic properties in Zinc-porphyrins derivatives. Theoretical analysis of the electronic properties in Zinc-porphyrins derivatives. J. Mol. Struct. 2019, 1191, 259–270. [Google Scholar] [CrossRef]
- Soury, R.; Chaabene, M.; Haque, A.; Jabli, M.; Alenezi, K.M.; Latif, S.; Abdulaziz, F.; Bchetnia, A.; Philouze, C. Two novel pyrazine Zn(II)-porphyrins complexes: Synthesis, photophysical properties, structure study, DFT-calculation and assessment of an azo dye removal from aqueous solution. J. Solid State Chem. 2022, 310, 123048. [Google Scholar] [CrossRef]
- Sadlej, A.J. Molecular electric polarizabilities. Electronic-field-variant (EFV) gaussian basis set for polarizability calculations. Chem. Phys. Lett. 1977, 47, 50–54. [Google Scholar] [CrossRef]
- Sadlej, A.J. Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Collect. Czech. Chem. Commun. 1988, 53, 1995–2016. [Google Scholar] [CrossRef]
- Baranowska, A.; Sadlej, A.J. Explicit time-dependence of basis functions and its consequences. Chem. Phys. Lett. 2004, 398, 270–275. [Google Scholar] [CrossRef]
- Benkova, Z.; Sadlej, A.J.; Oakes, R.E.; Bell, S.E.J. Reduced-size polarized basis sets for calculations of molecular electric properties. I. The basis set generation. J. Comput. Chem. 2005, 26, 145–153. [Google Scholar] [CrossRef]
- Benkova, Z.; Sadlej, A.J.; Oakes, R.E.; Bell, S.E.J. Reduced–size polarized basis sets for calculations of molecular electric properties. III. Second–row atoms. Theor. Chem. Acc. 2005, 113, 238–247. [Google Scholar] [CrossRef]
- Baranowska, A.; Siedlecka, M.; Sadlej, A.J. Reduced-size polarized basis sets for calculations of molecular electric properties. IV. First-row transition metals. Theor. Chem. Acc. 2007, 118, 959–972. [Google Scholar] [CrossRef]
- Pluta, T.; Sadlej, A.J. HyPol basis sets for high-level-correlated calculations of electric dipole hyperpolarizabilities. Chem. Phys. Lett. 1998, 297, 391–401. [Google Scholar] [CrossRef]
- Baranowska, A.; Sadlej, A.J. Polarized basis sets for accurate calculations of static and dynamic electric properties of molecules. J. Comput. Chem. 2010, 31, 552–560. [Google Scholar] [CrossRef]
- Stiehler, J.; Hinze, J. Calculation of static polarizabilities and hyperpolarizabilities for the atoms He through Kr with a numerical RHF method. J. Phys. B At. Mol. Opt. Phys. 1995, 28, 4055–4071. [Google Scholar] [CrossRef]
- Bauschlicher, C.W., Jr.; Maitre, P. Theoretical Study of the First Transition Row Oxides and Sulfides. Theor. Chim. Acta 1995, 90, 189–203. [Google Scholar] [CrossRef]
- Gutsev, G.L.; Andrews, L.; Bauschlicher, C.W., Jr. Similarities and differences in the structure of 3d-metal monocarbides and monoxides. Theor. Chem. Acc. 2003, 109, 298–308. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010, 133, 134105. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1998, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Aquilante, F.; De Vico, L.; Ferré, N.; Ghigo, G.; Malmqvist, P.-Å.; Neogrády, P.; Pedersen, T.B.; Pitonak, M.; Reiher, M.; Roos, B.O.; et al. MOLCAS 7: The next generation. J. Comput. Chem. 2010, 31, 224–247. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, C.01. 2009. Available online: https://gaussian.com/g09citation/ (accessed on 7 October 2024).
Atom | Exponent |
---|---|
Sc | 0.4120 |
Ti | 0.5060 |
V | 0.5740 |
Cr | 0.0686 |
Mn | 0.6750 |
Fe | 0.7440 |
Co | 0.8490 |
Ni | 0.9560 |
Cu | 0.8820 |
Zn | 1.1000 |
Atom | ML | ZPol [31] | ZPol-A | Ref. [34] |
---|---|---|---|---|
Sc | 0 | 143.46 | 143.84 | 145.03 |
1 | 146.68 | 147.00 | 148.13 | |
2 | 154.75 | 154.80 | 155.86 | |
average | 149.26 | 149.49 | 150.68 | |
Ti | 0 | 125.77 | 126.09 | 127.45 |
1 | 126.11 | 126.73 | 128.12 | |
2 | 128.36 | 128.67 | 129.48 | |
3 | 129.97 | 131.91 | 131.44 | |
average | 127.81 | 128.67 | 129.36 | |
V | 0 | 112.74 | 112.96 | 114.95 |
1 | 112.36 | 112.79 | 114.30 | |
2 | 112.04 | 112.30 | 113.19 | |
3 | 110.01 | 111.47 | 111.36 | |
average | 111.65 | 112.30 | 113.23 | |
Cr | 0 | 106.26 | 106.78 | 112.88 |
Mn | 0 | 89.20 | 89.33 | 90.14 |
Fe | 0 | 76.64 | 76.82 | 77.62 |
1 | 77.56 | 77.72 | 78.60 | |
2 | 80.48 | 80.60 | 81.62 | |
average | 78.54 | 78.70 | 79.61 | |
Co | 0 | 69.52 | 69.72 | 70.59 |
1 | 69.75 | 69.96 | 70.96 | |
2 | 70.50 | 70.69 | 71.49 | |
3 | 71.18 | 71.89 | 72.35 | |
average | 70.34 | 70.69 | 71.46 | |
Ni | 0 | 63.99 | 64.13 | 65.39 |
1 | 63.87 | 64.05 | 65.16 | |
2 | 63.66 | 63.81 | 64.68 | |
3 | 62.85 | 63.41 | 63.94 | |
average | 63.54 | 63.81 | 64.71 | |
Cu | 0 | 73.46 | 73.68 | 77.19 |
Zn | 0 | 53.22 | 53.37 | 54.07 |
Molecule | ZPol 1 | ZPol-A 2 | aVQZ | Ref. 3 |
---|---|---|---|---|
ScO | 1.570 | 1.511 | 1.518 | 1.54 |
TiO | 1.358 | 1.315 | 1.346 | 1.38 |
VO | 1.317 | 1.295 | 1.345 | 1.42 |
CrO | 1.537 | 1.562 | 1.579 | 1.53 |
MnO | 2.042 | 2.062 | 2.004 | 1.96 |
FeO | 2.019 | 2.055 | 1.954 | – |
CoO | 1.854 | 1.886 | 1.999 | – |
NiO | 1.876 | 1.937 | 1.842 | – |
CuO | 2.065 | 2.109 | 1.949 | 2.01 |
ZnO | 2.165 | 2.161 | 2.163 | 2.11 |
RMSE1 | 0.06 | 0.08 | – | – |
RMSE2 | 0.07 | 0.08 | – | – |
Basis set on Zn atom | ZPol | ZPol-A | SVPD | TZVPD | aVDZ | aVTZ | aVQZ |
Porphyrin–zinc complex | 337.85 | 337.67 | 337.02 | 338.33 | 339.15 | 339.24 | 339.96 |
Porphyrin–zinc–thiazole complex | 382.53 | 382.33 | 382.07 | 383.85 | 385.15 | 385.26 | 386.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuziemski, A.; Łączkowski, K.Z.; Baranowska-Łączkowska, A. Theoretical Investigation of Electric Polarizability in Porphyrin–Zinc and Porphyrin–Zinc–Thiazole Complexes Using Small Property-Oriented Basis Sets. Int. J. Mol. Sci. 2024, 25, 11044. https://doi.org/10.3390/ijms252011044
Kuziemski A, Łączkowski KZ, Baranowska-Łączkowska A. Theoretical Investigation of Electric Polarizability in Porphyrin–Zinc and Porphyrin–Zinc–Thiazole Complexes Using Small Property-Oriented Basis Sets. International Journal of Molecular Sciences. 2024; 25(20):11044. https://doi.org/10.3390/ijms252011044
Chicago/Turabian StyleKuziemski, Arkadiusz, Krzysztof Z. Łączkowski, and Angelika Baranowska-Łączkowska. 2024. "Theoretical Investigation of Electric Polarizability in Porphyrin–Zinc and Porphyrin–Zinc–Thiazole Complexes Using Small Property-Oriented Basis Sets" International Journal of Molecular Sciences 25, no. 20: 11044. https://doi.org/10.3390/ijms252011044
APA StyleKuziemski, A., Łączkowski, K. Z., & Baranowska-Łączkowska, A. (2024). Theoretical Investigation of Electric Polarizability in Porphyrin–Zinc and Porphyrin–Zinc–Thiazole Complexes Using Small Property-Oriented Basis Sets. International Journal of Molecular Sciences, 25(20), 11044. https://doi.org/10.3390/ijms252011044