Environmental Diagnosis through a Flow Cytometric Approach
Abstract
:1. Introduction
1.1. Bioindicators: What They Are and Why to Use Them
1.2. Biomarkers: Different Meanings and Applications
1.3. The Breakthrough of FC in the Immunology of Invertebrates
2. Biochemical and Functional Tests to Study Ecosystem Health in a Laboratory Setting
2.1. Bioindicators and Biomarkers: Flow Cytometry Works Well
- In the paper of Canesi et al. [54], the effects of 50 nm amino-modified polystyrene nanoparticles (PS-NH2) were investigated in the marine bivalve M. galloprovincialis haemocytes. FC was employed to obtain the haemocyte absolute counts and dead, apoptotic, and necrotic cells simultaneouslyand in real-time, using Annexin V-FITC and propidium iodide (PI) tests.
- In the same study [54], the investigation of the apoptotic process was analysed more in depth, allowing for the detection of the effects of PS-NH2 on the mitochondrial membrane potential (MMP, Δψm), evaluated by the fluorescent dye tetramethylrhodamine, ethyl ester perchlorate (TMRE). TMRE is a quantitative marker used to measure the maintenance of the MMP. It accumulates in the mitochondrial matrix based on the Nernst equation. TMRE specifically stains mitochondria and is not present in cells when the Δψm collapses, which is an early stage in apoptotic processes [54]. Indeed, in addition to the apoptotic process, mitochondria also provide complex information from the environment and intracellular milieu, including the presence of reactive oxygen species (ROS) and toxic substances [55].
- Mitochondria can be further analysed using FC, specifically concerning the composition of their inner membrane, successfully employing the cardiolipin (CL) sensitive probe, 10-nonyl-acridine orange (NAO), which is able to sense CL peroxidation [54].
- Subsequently, Auguste et al. examined the impact of repeated exposure to PS-NH2 on the immune responses of M. galloprovincialis [35]. The study involved an initial exposure of 24 h, followed by a rest period (with a 72 h duration), and then a second exposure of another 24 h. FC was used to determine the total haemocytes count (THC) and to characterise various cell types in mussel haemolymph from both control and PS-NH2-exposed mussels under different experimental conditions. It is important to note that the FC methodology feature enables the use of specific gates to distinguish the different cell subpopulations, as well as to exclude spermatozoa, cell debris, and aggregates from analyses.
- Finally, our FC group addressed oxidative stress at the single cell level, reporting data on C-DCF (cytosolic- H2DCFDA), MitoSOX (Mitochondrial Superoxide Indicators), and GSH (Intracellular Glutathione) probe labelling [36] on each event belonging to each of the heterogeneous subpopulations of the samples. The setup protocols were optimised, starting from yet-to-be-applied protocols for humans, and are efficient at collecting precise oxidative stress parameters and monitoring the possible peak in oxyradical production at mitochondrial (MitoSOX) and cytosolic (C-DCF) levels.
- FC was also employed recently [14] to evaluate the heavy metal content, using stains such as Leadmium Green [56], in terrestrial isopods. These aspects will be discussed more in depth in Section 2.2 (Terrestrial ecosystems: recent advances). Furthermore, FC is an essential tool for the detection of the efficacy of yet uncommercialised fluorophores: the Fly probe, developed by a research group from Urbino [57,58], for example, is helpful when tracing divalent metals (i.e., copper Cu2+).
2.2. Marine Ecosystems: Recent Advances
2.3. Terrestrial Ecosystems: Recent Advances
Relationship between Soil Chemistry and Metal Content in Isopods
3. Flow Cytometry in Environmental Diagnosis: Final Considerations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhury, S.; Dubey, V.K.; Choudhury, S.; Das, A.; Jeengar, D.; Sujatha, B.; Kumar, A.; Kumar, N.; Semwal, A.; Kumar, V. Insects as Bioindicator: A Hidden Gem for Environmental Monitoring. Front. Environ. Sci. 2023, 11, 1146052. [Google Scholar] [CrossRef]
- Carter, J.L.; Resh, V.H.; Hannaford, M.J. Macroinvertebrates as Biotic Indicators of Environmental Quality. In Methods in Stream Ecology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 2, pp. 293–318. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, Q.; Xu, W.; Zhang, D.; Xiao, J.; Song, H.; Xiao, F.; Wang, J.; Xie, W. Soil Meso- and Microfauna Community Acts as an Environmental Bioindicator in Urban Greenway Landscapes. Geoderma 2024, 442, 116775. [Google Scholar] [CrossRef]
- Stenger, L.R.; Ferguson, F.M.; Skvarla, M. Water Mites and Their Use as Bioindicators of Water Quality Conditions: A Pennsylvania Case Study. Acarologia 2024, 64, 146–163. [Google Scholar] [CrossRef]
- Markert, B.; Breure, A.M.; Zechmeister, H.G. Bioindicators and Biomonitors. Principles, Concepts and Applications; Nriagu, J.O., Ed.; Elsevier, Science Ltd.: Amsterdam, The Netherlands, 2003; pp. 3–21. [Google Scholar]
- Markert, B. Definitions and Principles for Bioindication and Biomonitoring of Trace Metals in the Environment. J. Trace Elem. Med. Biol. 2007, 21, 77–82. [Google Scholar] [CrossRef]
- Polechońska, L.; Klink, A. Macrophytes as Passive Bioindicators of Trace Element Pollution in the Aquatic Environment. Wiley Interdiscip. Rev. Water 2023, 10, e1630. [Google Scholar] [CrossRef]
- Choix, F.J.; Palacios, O.A.; Nevarez-Moorillón, G.V. Traditional and New Proposals for Environmental Microbial Indicators—A Review. Environ. Monit. Assess. 2023, 195, 1–17. [Google Scholar] [CrossRef]
- Wolterbeek, B. Biomonitoring of Trace Element Air Pollution: Principles, Possibilities and Perspectives. Environ. Poll. 2002, 120, 11–21. [Google Scholar] [CrossRef]
- Wlodkowic, D.; Karpiński, T.M. Live-Cell Systems in Real-Time Biomonitoring of Water Pollution: Practical Considerations and Future Perspectives. Sensors 2021, 21, 7028. [Google Scholar] [CrossRef]
- Materon, E.M.; Ibáñez-Redín, G.; Joshi, N.; Gonçalves, D.; Oliveira, O.N.; Faria, R.C. Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment. In Nanosensors for Environmental Applications. Environmental Chemistry for a Sustainable World; Springer: Cham, Switzerland, 2020; Volume 43, pp. 87–129. [Google Scholar] [CrossRef]
- Boonpeng, C.; Fuangkeaw, P.; Boonpragob, K. Bark, Soil and Lichens Are Effective Indicators of Dust from Limestone Industries in Thailand. Environ. Monit. Assess 2023, 195, 1–14. [Google Scholar] [CrossRef]
- Chandel, P.; Mahajan, D.; Thakur, K.; Kumar, R.; Kumar, S.; Brar, B.; Sharma, D.; Sharma, A.K. A Review on Plankton as a Bioindicator: A Promising Tool for Monitoring Water Quality. World Water Policy 2024, 10, 213–232. [Google Scholar] [CrossRef]
- Panza, G.; Montanari, M.; Lopez, D.; Burattini, S.; Ciacci, C.; Fumelli, P.P.; Pasini, G.; Fusi, V.; Giorgi, L.; Grandoni, F.; et al. Flow Cytometric Analysis of Hepatopancreatic Cells from Armadillidium vulgare Highlights Terrestrial Isopods as Efficient Environmental Bioindicators in Ex Vivo Settings. Environ. Sci. Pollut. Res. Int. 2024, 31, 9745–9763. [Google Scholar] [CrossRef] [PubMed]
- Barr, D.B. Biological Monitoring: Theory and Applications—Bioindicators and Biomarkers for Environmental Quality and Human Exposure Assessment. Environ. Health Perspect. 2008, 116, A312. [Google Scholar] [PubMed Central]
- Delmail, D. Risk Management of European Inland Waters Using Macrophyte Biomonitoring. Front. Environ. Sci. 2014, 2, 83502. [Google Scholar] [CrossRef]
- Moore, M.N.; Depledge, M.H.; Readman, J.W.; Paul Leonard, D.R. An Integrated Biomarker-Based Strategy for Ecotoxicological Evaluation of Risk in Environmental Management. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2004, 552, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Flynn, C.D.; Chang, D.; Mahmud, A.; Yousefi, H.; Das, J.; Riordan, K.T.; Sargent, E.H.; Kelley, S.O. Biomolecular Sensors for Advanced Physiological Monitoring. Nat. Rev. Bioeng. 2023, 1, 560–575. [Google Scholar] [CrossRef]
- Chahouri, A.; Yacoubi, B.; Moukrim, A.; Banaoui, A. Bivalve Molluscs as Bioindicators of Multiple Stressors in the Marine Environment: Recent Advances. Cont. Shelf. Res. 2023, 264, 105056. [Google Scholar] [CrossRef]
- Truchet, D.M.; Negro, C.L.; Buzzi, N.S.; Mora, M.C.; Marcovecchio, J.E. Assessment of Metal Contamination in an Urbanized estuary (Atlantic Ocean) Using Crabs as Biomonitors: A Multiple Biomarker Approach. Chemosphere 2023, 312, 137317. [Google Scholar] [CrossRef]
- Cooper, E.L. Advances in Comparative and Environmental Physiology—Invertebrate Immune Responses: Cells and Molecular Products, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012; Number of Pages XV, 216; ISBN 139783642796951. [Google Scholar]
- Ortolani, C.; Papa, S.; Whitby, L.; Canonico, B.; Brando, B.; Buoro, S.; D’Atri, M.; Del Zotto, G.; Tecchio, A.; Vidali, M. Flow Cytometry Today: Everything You Need to Know about Flow Cytometry, 1st ed.; Springer: Cham, Switzerland, 2002; Number of Pages XXIX, 544; pp. 1–544. 2002. [Google Scholar] [CrossRef]
- Chen, L.; Song, L. Development of Flow Cytometry and Its Application in Plant Research. Sheng Wu Gong Cheng Xue Bao 2023, 39, 472–487. [Google Scholar] [CrossRef]
- Cossarizza, A.; Pinti, M.; Troiano, L.; Cooper, E.L. Flow Cytometry as a Tool for Analysing Invertebrate Cells. Invertebr. Surv. J. 2005, 2, 32–40. [Google Scholar]
- Ottaviani, E.; Cossarizza, A. Immunocytochemical Evidence of Vertebrate Bioactive Peptide-like Molecules in the Immuno Cell Types of the Freshwater Snail Plianorbarius corneus (L.) (Gastropoda, Pulmonata). FEBS Lett. 1990, 267, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, H.M. Practical Flow Cytometry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Gosling, E. Marine Bivalve Molluscs, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; ISBN 9780470674949. [Google Scholar]
- Van Nguyen, T.; Alfaro, A.C. Applications of Flow Cytometry in Molluscan Immunology: Current Status and Trends. Fish Shellfish Immunol. 2019, 94, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Cho, B.; Lee, D.; Kim, H.; Shim, J.; Nam, J.W. Molecular Traces of Drosophila Hemocytes Reveal Transcriptomic Conservation with Vertebrate Myeloid Cells. PLoS Genet. 2023, 19, e1011077. [Google Scholar] [CrossRef] [PubMed]
- El-Samad, L.M.; Bakr, N.R.; El-Ashram, S.; Radwan, E.H.; Abdul Aziz, K.K.; Hussein, H.K.; El Wakil, A.; Hassan, M.A. Silver Nanoparticles Instigate Physiological, Genotoxicity, and Ultrastructural Anomalies in Midgut Tissues of Beetles. Chem. Biol. Interact. 2022, 367, 110166. [Google Scholar] [CrossRef] [PubMed]
- El-Samad, L.M.; El-Gerbed, M.S.; Hussein, H.S.; Flaven-Pouchon, J.; El Wakil, A.; Moussian, B. Imidacloprid-Induced Pathophysiological Damage in the Midgut of Locusta migratoria (Orthoptera: Acrididae) in the Field. Environ. Sci. Poll. Res. Int. 2022, 29, 57644–57655. [Google Scholar] [CrossRef] [PubMed]
- Dabour, K.; Al Naggar, Y.; Masry, S.; Naiem, E.; Giesy, J.P. Cellular Alterations in Midgut Cells of Honey Bee Workers (Apis millefera L.) Exposed to Sublethal Concentrations of CdO or PbO Nanoparticles or Their Binary Mixture. Sci. Total Environ. 2019, 651, 1356–1367. [Google Scholar] [CrossRef]
- Montanari, M.; Burattini, S.; Ciacci, C.; Ambrogini, P.; Carloni, S.; Balduini, W.; Lopez, D.; Panza, G.; Papa, S.; Canonico, B. Automated–Mechanical Procedure Compared to Gentle Enzy-Matic Tissue Dissociation in Cell Function Studies. Biomolecules 2022, 12, 701. [Google Scholar] [CrossRef]
- Canonico, B.; Carloni, S.; Montanari, M.; Ambrogini, P.; Papa, S.; Alonso-Alconada, D.; Balduini, W. Melatonin Modulates Cell Cycle Dynamics and Promotes Hippocampal Cell Proliferation After Ischemic Injury in Neonatal Rats. Mol. Neurobiol. 2024, 61, 6910–6919. [Google Scholar] [CrossRef]
- Auguste, M.; Balbi, T.; Ciacci, C.; Canonico, B.; Papa, S.; Borello, A.; Vezzulli, L.; Canesi, L. Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Front. Immunol. 2020, 11, 503705. [Google Scholar] [CrossRef]
- Balbi, T.; Trenti, F.; Panevska, A.; Bajc, G.; Guella, G.; Ciacci, C.; Canonico, B.; Canesi, L.; Sepčić, K. Ceramide Aminoethylphosphonate as a New Molecular Target for Pore-Forming Aegerolysin-Based Protein Complexes. Front. Mol. Biosci. 2022, 9, 902706. [Google Scholar] [CrossRef]
- Baun, A.; Hartmann, N.B.; Grieger, K.; Kusk, K.O. Ecotoxicity of Engineered Nanoparticles to Aquatic Invertebrates: A Brief Review and Recommendations for Future Toxicity Testing. Ecotoxicology 2008, 17, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.; Pinheiro, J.P.; Cancio, I.; Pereira, C.G.; Cardoso, C.; Bebianno, M.J. Effects of Copper Nanoparticles Exposure in the Mussel Mytilus galloprovincialis. Environ. Sci. Technol. 2011, 45, 9356–9362. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.S.; Chaurand, P.; Rose, J.; Auffan, M.; Bottero, J.Y.; Jones, J.C.; Schultz, I.R.; Vikesland, P.J. Filter-Feeding Bivalves Store and Biodeposit Colloidally Stable Gold Nanoparticles. Environ. Sci. Technol. 2011, 45, 6592–6599. [Google Scholar] [CrossRef] [PubMed]
- Montes, M.O.; Hanna, S.K.; Lenihan, H.S.; Keller, A.A. Uptake, Accumulation, and Biotransformation of Metal Oxide Nanoparticles by a Marine Suspension-Feeder. J. Hazard. Mater. 2012, 225–226, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Canesi, L.; Ciacci, C.; Fabbri, R.; Marcomini, A.; Pojana, G.; Gallo, G. Bivalve Molluscs as a Unique Target Group for Nanoparticle Toxicity. Mar. Environ. Res. 2012, 76, 16–21. [Google Scholar] [CrossRef]
- Moore, M.N. Do Nanoparticles Present Ecotoxicological Risks for the Health of the Aquatic Environment? Environ. Int. 2006, 32, 967–976. [Google Scholar] [CrossRef]
- Banfalvi, G. Methods to Detect Apoptotic Cell Death. Apoptosis 2017, 22, 306–323. [Google Scholar] [CrossRef]
- Koç, E.; Çelik-Uzuner, S.; Uzuner, U.; Çakmak, R. The Detailed Comparison of Cell Death Detected by Annexin V-PI Counterstain Using Fluorescence Microscope, Flow Cytometry and Automated Cell Counter in Mammalian and Microalgae Cells. J. Fluoresc. 2018, 28, 1393–1404. [Google Scholar] [CrossRef]
- Rani, V.; Asthana, S.; Vadhera, M.; Yadav, U.C.S.; Atale, N. Tools and Techniques to Measure Oxidative Stress. In Free Radicals in Human Health and Diseas, 1st ed.; Springer: New Delhi, India, 2015; pp. 43–56. [Google Scholar] [CrossRef]
- Kalinovic, S.; Oelze, M.; Kröller-Schön, S.; Steven, S.; Vujacic-Mirski, K.; Kvandová, M.; Schmal, I.; Al Zuabi, A.; Münzel, T.; Daiber, A. Comparison of Mitochondrial Superoxide Detection Ex Vivo/In Vivo by MitoSOX HPLC Method with Classical Assays in Three Different Animal Models of Oxidative Stress. Antioxidants 2019, 8, 514. [Google Scholar] [CrossRef]
- Xiao, B.; Deng, X.; Zhou, W.; Tan, E.K. Flow Cytometry-Based Assessment of Mitophagy Using Mitotracker. Front. Cell. Neurosci. 2016, 10, 177504. [Google Scholar] [CrossRef]
- Elefantova, K.; Lakatos, B.; Kubickova, J.; Sulova, Z.; Breier, A. Detection of the Mitochondrial Membrane Potential by the Cationic Dye JC-1 in L1210 Cells with Massive Overexpression of the Plasma Membrane ABCB1 Drug Transporter. Int. J. Mol. Sci. 2018, 19, 1985. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Sung, T.; Lin, N.; Abraham, R.T.; Jessen, B.A. Lysosomal Adaptation: How Cells Respond to Lysosomotropic Compounds. PLoS ONE 2017, 12, e0173771. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, I.; Vainikka, L.; Persson, H.L.; Öllinger, K. Real-Time Monitoring of Lysosomal Membrane Permeabilization Using Acridine Orange. Methods Protoc. 2023, 6, 72. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Song, C.; Li, Y.; Wang, Q.; Zhu, X.; Wu, J.; Tian, Y.; Fan, H.; Hu, J.; Li, C.; et al. The Establishment and Application Studies on Precise Lysosome PH Indicator Based on Self-Decomposable Nanoparticles. Nanoscale Res. Lett. 2020, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ligasová, A.; Frydrych, I.; Koberna, K. Basic Methods of Cell Cycle Analysis. Int. J. Mol. Sci. 2023, 24, 3674. [Google Scholar] [CrossRef]
- Manti, A.; Canonico, B.; Mazzeo, R.; Santolini, R.; Ciandrini, E.; Sisti, D.; Rocchi, M.B.L.; Nannoni, F.; Protano, G.; Papa, S. Effects of Landfill Leachate Treatment on Hepatopancreas of Armadillidium vulgare (Crustacea, Isopoda). Environ. Toxicol. Chem. 2013, 32, 2593–2601. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Bergami, E.; Monopoli, M.P.; Dawson, K.A.; Papa, S.; Canonico, B.; Corsi, I. Evidence for Immunomodulation and Apoptotic Processes Induced by Cationic Polystyrene Nanoparticles in the Hemocytes of the Marine Bivalve Mytilus. Mar. Environ. Res. 2015, 111, 34–40. [Google Scholar] [CrossRef]
- Jia, G.; Aroor, A.R.; Martinez-Lemus, L.A.; Sowers, J.R. Mitochondrial Functional Impairment in Response to Environmental Toxins in the Cardiorenal Metabolic Syndrome. Arch. Toxicol. 2015, 89, 147–153. [Google Scholar] [CrossRef]
- Malaiyandi, L.M.; Sharthiya, H.; Dineley, K.E. Fluorescence Detection of Intracellular Cadmium with Leadmium Green. BioMetals 2016, 29, 625–635. [Google Scholar] [CrossRef]
- Ambrosi, G.; Ciattini, S.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.; Micheloni, M.; Paoli, P.; Rossi, P.; Zappia, G. A New Versatile Solvatochromic Amino-Macrocycle. From Metal Ions to Cell Sensing in Solution and in the Solid State. Chem. Commun. 2009, 7039–7041. [Google Scholar] [CrossRef]
- Canonico, B.; Cangiotti, M.; Montanari, M.; Papa, S.; Fusi, V.; Giorgi, L.; Ciacci, C.; Ottaviani, M.F.; Staneva, D.; Grabchev, I. Characterization of a Fluorescent 1,8-Naphthalimide-Functionalized PAMAM Dendrimer and Its Cu(Ii) Complexes as Cytotoxic Drugs: EPR and Biological Studies in Myeloid Tumor Cells. Biol. Chem. 2022, 403, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Tse, Y.T.; Lo, H.S.; Chan, S.M.N.; Sze, E.T.P. Flow Cytometry as a Rapid Alternative to Quantify Small Microplastics in Environmental Water Samples. Water 2022, 14, 1436. [Google Scholar] [CrossRef]
- Bianco, A.; Carena, L.; Peitsaro, N.; Sordello, F.; Vione, D.; Passananti, M. Rapid Detection of Nanoplastics and Small Microplastics by Nile-Red Staining and Flow Cytometry. Environ. Chem. Lett. 2023, 21, 647–653. [Google Scholar] [CrossRef]
- Li, J.; Huang, F.; Zhang, G.; Zhang, Z.; Zhang, X. Separation and Flow Cytometry Analysis of Microplastics and Nanoplastics. Front. Chem. 2023, 11, 1201734. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Song, Y.; Ma, R.; Li, J.; Li, G.; Zhang, D. Characterization and Identification of Microplastics Using Raman Spectroscopy Coupled with Multivariate Analysis. Anal. Chim. Acta 2022, 1197, 339519. [Google Scholar] [CrossRef]
- Felipo-Benavent, M.; Martínez-Romero, A.; Valls, M.; Rojo-Solís, C.; Álvaro, T.; García-Párraga, D.; Rubio-Guerri, C.; O’Connor, J.E. Physiological Values of Phagocytic Capacity in Marine Mammals and Alterations during Pathological Situations. Front. Vet. Sci. 2024, 11, 1389977. [Google Scholar] [CrossRef]
- Abd Malek, M.N.; Frontalini, F. Benthic Foraminifera as Bioindicators of Marine Pollution: A Bibliometric Approach to Unravel Trends, Patterns and Perspectives. Mar. Pollut. Bull. 2024, 199, 115941. [Google Scholar] [CrossRef]
- Semprucci, F.; Frontalini, F.; Covazzi-Harriague, A.; Coccioni, R.; Balsamo, M. Meio- and Macrofauna in the Marine Area of the Monte St. Bartolo Natural Park (Central Adriatic Sea, Italy). Sci. Mar. 2013, 77, 189–199. [Google Scholar] [CrossRef]
- Frontalini, F.; Losada, M.T.; Toyofuku, T.; Tyszka, J.; Goleń, J.; de Nooijer, L.; Canonico, B.; Cesarini, E.; Nagai, Y.; Bickmeyer, U.; et al. Foraminiferal Ultrastructure: A Perspective From Fluorescent and Fluorogenic Probes. J. Geophys. Res. Biogeosci. 2019, 124, 2823–2850. [Google Scholar] [CrossRef]
- Frontalini, F.; Curzi, D.; Cesarini, E.; Canonico, B.; Giordano, F.M.; De Matteis, R.; Bernhard, J.M.; Pieretti, N.; Gu, B.; Eskelsen, J.R.; et al. Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia Parkinsoniana. PLoS ONE 2016, 11, e0162401. [Google Scholar] [CrossRef]
- Ishitani, Y.; Ciacci, C.; Ujiié, Y.; Tame, A.; Tiboni, M.; Tanifuji, G.; Inagaki, Y.; Frontalini, F. Fascinating Strategies of Marine Benthic Organisms to Cope with Emerging Pollutant: Titanium Dioxide Nanoparticles. Environ. Poll. 2023, 330, 121538. [Google Scholar] [CrossRef] [PubMed]
- Ciacci, C.; Grimmelpont, M.V.; Corsi, I.; Bergami, E.; Curzi, D.; Burini, D.; Bouchet, V.M.P.; Ambrogini, P.; Gobbi, P.; Ujiié, Y.; et al. Nanoparticle-Biological Interactions in a Marine Benthic Foraminifer. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Losada Ros, M.T.; Al-Enezi, E.; Cesarini, E.; Canonico, B.; Bucci, C.; Martins, M.V.A.; Papa, S.; Frontalini, F. Assessing the Cadmium Effects on the Benthic Foraminifer Ammonia Cf. Parkinsoniana: An Acute Toxicity Test. Water 2020, 12, 1018. [Google Scholar] [CrossRef]
- Pastorino, P.; Bertoli, M.; Brizio, P.; Abete, M.C.; Dalla Nora, V.; Prearo, M.; Pizzul, E. First Insights Into Trace Element Accumulation by Philoscia Affinis (Crustacea, Isopoda): A Novel Tracer to Assess Soil Contamination in Lowland Plains? Biol. Trace Elem. Res. 2021, 199, 4782–4791. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, C.A.M.; Loureiro, S.; Zidar, P. Terrestrial Isopods as Model Organisms in Soil Ecotoxicology: A Review. ZooKeys 2018, 801, 127–162. [Google Scholar] [CrossRef] [PubMed]
- Nolde, N.; Drobne, D.; Valant, J.; Padovan, I.; Horvat, M. Lysosomal Membrane Stability in Laboratory- and Field-Exposed Terrestrial Isopods Porcellio Scaber (Isopoda, Crustacea). Environ. Toxicol. Chem. 2009, 25, 2114–2122. [Google Scholar] [CrossRef]
- Souty-Grosset, C.; Faberi, A. Effect of Agricultural Practices on Terrestrial Isopods: A Review. Zookeys 2018, 2018, 63. [Google Scholar] [CrossRef]
- Kampe, S.; Schlechtriem, C. Bioaccumulation of Hexachlorobenzene in the Terrestrial Isopod Porcellio Scaber. Environ. Toxicol. Chem. 2016, 35, 2867–2873. [Google Scholar] [CrossRef]
- Jelassi, R.; Khemaissia, H.; Ghemari, C.; Raimond, M.; Souty-Grosset, C.; Nasri-Ammar, K. The Induced Damage in the Hepatopancreas of Orchestia Species after Exposure to a Mixture of Cu/Zn—An Ultrastructural Study. Microsc. Res. Tech. 2020, 83, 148–155. [Google Scholar] [CrossRef]
- Hopkin, S.P.; Martin, M.H. The Distribution of Zinc, Cadmium, Lead and Copper within the Woodlouse Oniscus asellus (Crustacea, Isopoda). Oecologia 1982, 54, 227–232. [Google Scholar] [CrossRef]
- Gál, J.; Markiewicz-Patkowska, J.; Hursthouse, A.; Tatner, P. Metal Uptake by Woodlice in Urban Soils. Ecotoxicol. Environ. Saf. 2008, 69, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Godet, J.P.; Demuynck, S.; Waterlot, C.; Lemière, S.; Souty-Grosset, C.; Scheifler, R.; Douay, F.; Leprĉtre, A.; Pruvot, C. Growth and Metal Accumulation in Porcellio Scaber Exposed to Poplar Litter from Cd-, Pb-, and Zn-Contaminated Sites. Ecotoxicol. Environ. Saf. 2011, 74, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Witzel, B. Uptake, Storage and Loss of Cadmium and Lead in the Woodlouse Porcellio scaber (Crustacea, Isopoda). Water Air Soil Pollut. 1998, 108, 51–68. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Hassall, M. Woodlice (Isopoda: Oniscidea): Their Potential for Assessing Sustainability and Use as Bioindicators. Agric. Ecosyst. Environ. 1999, 74, 157–165. [Google Scholar] [CrossRef]
- Odendaal, J.P.; Reinecke, A.J. Bioaccumulation of Cadmium and Zinc, and Field Validation of a Histological Biomarker in Terrestrial Isopods. Bull. Environ. Contam. Toxicol. 2004, 72, 769–776. [Google Scholar] [CrossRef]
- Vijver, M.G.; Vink, J.P.M.; Jager, T.; van Straalen, N.M.; Wolterbeek, H.T.; van Gestel, C.A.M. Kinetics of Zn and Cd Accumulation in the Isopod Porcellio Scaber Exposed to Contaminated Soil and/or Food. Soil Biol. Biochem. 2006, 38, 1554–1563. [Google Scholar] [CrossRef]
- Raessler, M.; Rothe, J.; Hilke, I. Accurate Determination of Cd, Cr, Cu and Ni in Woodlice and Their Skins—Is Moulting a Means of Detoxification? Sci. Tot. Environ. 2005, 337, 83–90. [Google Scholar] [CrossRef]
- Nannoni, F.; Mazzeo, R.; Protano, G.; Santolini, R. Bioaccumulation of Heavy Elements by Armadillidium vulgare (Crustacea, Isopoda) Exposed to Fallout of a Municipal Solid Waste Landfill. Ecol. Indic. 2015, 49, 24–31. [Google Scholar] [CrossRef]
- Nannoni, F.; Protano, G. Chemical and Biological Methods to Evaluate the Availability of Heavy Metals in Soils of the Siena Urban Area (Italy). Sci. Tot. Environ. 2016, 568, 1–10. [Google Scholar] [CrossRef]
- Ghannem, S.; Daouadi, S.; Touaylia, S.; Ghannem, S.; Daouadi, S.; Touaylia, S. Effect of Heavy Metal Pollution on Invertebrates. In Heavy Metals—Recent Advances; IntechOpen: London, UK, 2023; 700p. [Google Scholar] [CrossRef]
- Marutescu, L.G. Current and Future Flow Cytometry Applications Contributing to Antimicrobial Resistance Control. Microorganisms 2023, 11, 1300. [Google Scholar] [CrossRef]
- El-Hajjar, L.; Ali Ahmad, F.; Nasr, R. A Guide to Flow Cytometry: Components, Basic Principles, Experimental Design, and Cancer Research Applications. Curr. Protoc. 2023, 3, e721. [Google Scholar] [CrossRef] [PubMed]
Keyword | First Time Associated with FC |
---|---|
machine learning | 2016 |
gastrointestinal microbiome | 2016 |
environmental stress | 2008 |
plastic | 2003 |
heavy metal | 1994 |
immunoblotting | 1991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panza, G.; Frontalini, F.; Ciacci, C.; Protano, G.; Montanari, M.; Lopez, D.; Nannoni, F.; Papa, S.; Ortolani, C.; Rebecchi, F.; et al. Environmental Diagnosis through a Flow Cytometric Approach. Int. J. Mol. Sci. 2024, 25, 11069. https://doi.org/10.3390/ijms252011069
Panza G, Frontalini F, Ciacci C, Protano G, Montanari M, Lopez D, Nannoni F, Papa S, Ortolani C, Rebecchi F, et al. Environmental Diagnosis through a Flow Cytometric Approach. International Journal of Molecular Sciences. 2024; 25(20):11069. https://doi.org/10.3390/ijms252011069
Chicago/Turabian StylePanza, Giovanna, Fabrizio Frontalini, Caterina Ciacci, Giuseppe Protano, Mariele Montanari, Daniele Lopez, Francesco Nannoni, Stefano Papa, Claudio Ortolani, Federica Rebecchi, and et al. 2024. "Environmental Diagnosis through a Flow Cytometric Approach" International Journal of Molecular Sciences 25, no. 20: 11069. https://doi.org/10.3390/ijms252011069
APA StylePanza, G., Frontalini, F., Ciacci, C., Protano, G., Montanari, M., Lopez, D., Nannoni, F., Papa, S., Ortolani, C., Rebecchi, F., Fusi, V., Santolini, R., & Canonico, B. (2024). Environmental Diagnosis through a Flow Cytometric Approach. International Journal of Molecular Sciences, 25(20), 11069. https://doi.org/10.3390/ijms252011069