Using Spectral Flow Cytometry for CAR T-Cell Clinical Trials: Game Changing Technologies Enabling Novel Therapies
Abstract
:1. Introduction
1.1. CAR T-Cells
1.2. Spectral Cytometry
1.3. The Intersection of Clinical Need and Technilogical Advances
2. Critical Measurements during CAR T-Cell Clinical Trials
2.1. Extensive CAR T-Cells Immunophenotyping
2.2. CAR T-Cells Identification
2.3. Measuring Antigen Expression
2.4. Measuring Endogenous Immune Cells
2.5. Absolute Counts for Cellular Therapies
2.6. B Cell Hematological Malignancy Monitoring
3. Immunogenicity
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- DePriest, B.P.; Vieira, N.; Bidgoli, A.; Paczesny, S. An overview of multiplexed analyses of CAR T-cell therapies: Insights and potential. Expert Rev. Proteom. 2021, 18, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Li, Z.; Zhou, J.; Wang, W. Current Status and Perspectives of Dual-Targeting Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Hematological Malignancies. Cancers 2022, 14, 3230. [Google Scholar] [CrossRef]
- Hou, J.; Li, Y.; Lin, Q. Bispecific antibodies and dual-targeting CAR-T cells for multiple myeloma: Latest updates from the 2023 ASCO annual meeting. Exp. Hematol. Oncol. 2023, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Konecny, A.J.; Mage, P.L.; Tyznik, A.J.; Prlic, M.; Mair, F. OMIP-102: 50-color phenotyping of the human immune system with in-depth assessment of T cells and dendritic cells. Cytom. Part A 2024, 105, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Mitra-Kaushik, S.; Mehta-Damani, A.; Stewart, J.J.; Green, C.; Litwin, V.; Gonneau, C. The Evolution of Single-Cell Analysis and Utility in Drug Development. AAPS J. 2021, 23, 98. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.P.; Rajwa, B.; Gregori, G.; Jones, J.; Patsekin, V. Multispectral cytometry of single bio-particles using a 32-channel detector. In Advanced Biomedical and Clinical Diagnostic Systems III; SPIE: Bellingham, WA, USA, 2005; p. 359. [Google Scholar]
- Grégori, G.; Patsekin, V.; Rajwa, B.; Jones, J.; Ragheb, K.; Holdman, C.; Robinson, J.P. Hyperspectral cytometry at the single-cell level using a 32-channel photodetector. Cytom. Part A 2011, 81, 35–44. [Google Scholar] [CrossRef]
- Futamura, K.; Sekino, M.; Hata, A.; Ikebuchi, R.; Nakanishi, Y.; Egawa, G.; Kabashima, K.; Watanabe, T.; Furuki, M.; Tomura, M. Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytom. Part A 2015, 87, 830–842. [Google Scholar] [CrossRef]
- Barnett, D.; Walker, B.; Landay, A.; Denny, T.N. CD4 immunophenotyping in HIV infection. Nat. Rev. Microbiol. 2008, 6, S7–S15. [Google Scholar] [CrossRef] [PubMed]
- Kestens, L.; Mandy, F. Thirty-five years of CD4 T-cell counting in HIV infection: From flow cytometry in the lab to point-of-care testing in the field. Cytometry B Clin. Cytom. 2017, 92, 437–444. [Google Scholar] [CrossRef]
- Giorgi, J.V.; Cheng, H.-L.; Margolick, J.B.; Bauer, K.D.; Ferbas, J.; Waxdal, M.; Schmid, I.; Hultin, L.E.; Jackson, A.L.; Park, L.; et al. Quality control in the flow cytometric measurement of T-lymphocyte subsets: The Multicenter AIDS Cohort Study experience. Clin. Immunol. Immunopathol. 1990, 55, 173–186. [Google Scholar] [CrossRef]
- Available online: https://www.nist.gov/programs-projects/nist-flow-cytometry-standards-consortium (accessed on 10 August 2024).
- Gonneau, C.; Wang, L.; Mitra-Kaushik, S.; Trampont, P.C.; Litwin, V. Progress towards global standardization for quantitative flow cytometry. Bioanalysis 2021, 13, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Sommer, U.; Eck, S.; Marszalek, L.; Stewart, J.J.; Bradford, J.; McCloskey, T.W.; Green, C.; Vitaliti, A.; Oldaker, T.; Litwin, V. High-sensitivity flow cytometric assays: Considerations for design control and analytical validation for identification of Rare events. Cytom. Part B Clin. Cytom. 2020, 100, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Looney, C.M.; Strauli, N.; Cascino, M.D.; Garma, H.; Schroeder, A.V.; Takahashi, C.; O’Gorman, W.; Green, C.; Herman, A.E. Development of a novel, highly sensitive assay for quantification of minimal residual B cells in autoimmune disease and comparison to traditional methods across B-cell–depleting agents. Clin. Immunol. 2023, 248, 109265. [Google Scholar] [CrossRef] [PubMed]
- Kröger, N.; Gribben, J.; Chabannon, C.; Yakoub-Agha, I.; Einsele, H. (Eds.) The EBMT/EHA CAR-T Cell Handbook; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Peinelt, A.; Bremm, M.; Kreyenberg, H.; Cappel, C.; Banisharif-Dehkordi, J.; Erben, S.; Rettinger, E.; Jarisch, A.; Meisel, R.; Schlegel, P.-G.; et al. Monitoring of Circulating CAR T Cells: Validation of a Flow Cytometric Assay, Cellular Kinetics, and Phenotype Analysis Following Tisagenlecleucel. Front. Immunol. 2022, 13, 830773. [Google Scholar] [CrossRef]
- Yakoub-Agha, I.; Chabannon, C.; Bader, P.; Basak, G.W.; Bonig, H.; Ciceri, F.; Corbacioglu, S.; Duarte, R.F.; Einsele, H.; Hudecek, M.; et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: Best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2019, 105, 297–316. [Google Scholar] [CrossRef]
- Lanitis, E.; Dangaj, D.; Irving, M.; Coukos, G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 2017, 28, xii18–xii32. [Google Scholar] [CrossRef]
- Wagner, J.; Wickman, E.; DeRenzo, C.; Gottschalk, S. CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality? Mol. Ther. 2020, 28, 2320–2339. [Google Scholar] [CrossRef] [PubMed]
- Owens, K.; Bozic, I. Modeling CAR T-Cell Therapy with Patient Preconditioning. Bull. Math. Biol. 2021, 83, 42. [Google Scholar] [CrossRef]
- Ferrer-Font, L.; Pellefigues, C.; Mayer, J.U.; Small, S.J.; Jaimes, M.C.; Price, K.M. Panel Design and Optimization for High-Dimensional Immunophenotyping Assays Using Spectral Flow Cytometry. Curr. Protoc. Cytom. 2020, 92, e70. [Google Scholar] [CrossRef]
- Clinical Laboratory Standards Institute (CLSI) (Ed.) Validation of Assays Performed by Flow Cytometry, 1st ed.; CLSI document H62; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Nettey, L.; Giles, A.J.; Chattopadhyay, P.K. OMIP-050: A 28-color/30-parameter Fluorescence Flow Cytometry Panel to Enumerate and Characterize Cells Expressing a Wide Array of Immune Checkpoint Molecules. Cytom. Part A 2018, 93, 1094–1096. [Google Scholar] [CrossRef]
- Mousset, C.M.; Hobo, W.; Woestenenk, R.; Preijers, F.; Dolstra, H.; van der Waart, A.B. Comprehensive Phenotyping of T Cells Using Flow Cytometry. Cytom. Part A 2019, 95, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Stroukov, W.; Mastronicola, D.; Albany, C.J.; Catak, Z.; Lombardi, G.; Scottà, C. OMIP-090: A 20-parameter flow cytometry panel for rapid analysis of cell diversity and homing capacity in human conventional and regulatory T cells. Cytom. Part A 2023, 103, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Belkina, A.C.; Snyder-Cappione, J.E. OMIP-037: 16-color panel to measure inhibitory receptor signatures from multiple human immune cell subsets. Cytom. Part A 2016, 91, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Staser, K.W.; Eades, W.; Choi, J.; Karpova, D.; DiPersio, J.F. OMIP-042: 21-color flow cytometry to comprehensively immunophenotype major lymphocyte and myeloid subsets in human peripheral blood. Cytom. Part A 2018, 93, 186–189. [Google Scholar] [CrossRef]
- Larbi, A.; Fulop, T. From “truly naïve” to “exhausted senescent” T cells: When markers predict functionality. Cytom. Part A 2014, 85, 25–35. [Google Scholar] [CrossRef]
- López-Cantillo, G.; Urueña, C.; Camacho, B.A.; Ramírez-Segura, C. CAR-T Cell Performance: How to Improve Their Persistence? Front. Immunol. 2022, 13, 878209. [Google Scholar] [CrossRef]
- Fraietta, J.A.; Lacey, S.F.; Orlando, E.J.; Pruteanu-Malinici, I.; Gohil, M.; Lundh, S.; Boesteanu, A.C.; Wang, Y.; O’Connor, R.S.; Hwang, W.-T.; et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 2018, 24, 563–571. [Google Scholar] [CrossRef]
- Miller, B.C.; Sen, D.R.; Al Abosy, R.; Bi, K.; Virkud, Y.V.; LaFleur, M.W.; Yates, K.B.; Lako, A.; Felt, K.; Naik, G.S.; et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 2019, 20, 326–336. [Google Scholar] [CrossRef]
- McLellan, A.D.; Rad, S.M.A.H. Chimeric antigen receptor T cell persistence and memory cell formation. Immunol. Cell Biol. 2019, 97, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Gumber, D.; Wang, L.D. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine 2022, 77, 103941. [Google Scholar] [CrossRef]
- Whitlow, M.; Bell, B.A.; Feng, S.-L.; Filpula, D.; Hardman, K.D.; Hubert, S.L.; Rollence, M.L.; Wood, J.F.; Schott, M.E.; Milenic, D.E.; et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. Des. Sel. 1993, 6, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zaro, J.L.; Shen, W.-C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 2012, 65, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, S.; Onuoha, S.; Thomas, S.; Pignataro, D.S.; Hough, R.; Ghorashian, S.; Vora, A.; Bonney, D.; Veys, P.; Rao, K.; et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: A phase 1 trial. Nat. Med. 2021, 27, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, J.Y.; Patel, S.; Muffly, L.; Hossain, N.M.; Oak, J.; Baird, J.H.; Frank, M.J.; Shiraz, P.; Sahaf, B.; Craig, J.; et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: A phase 1 trial. Nat. Med. 2021, 27, 1419–1431. [Google Scholar] [CrossRef]
- Chmielewski, M.; Hombach, A.A.; Abken, H. CD28 cosignalling does not affect the activation threshold in a chimeric antigen receptor-redirected T-cell attack. Gene Ther. 2010, 18, 62–72. [Google Scholar] [CrossRef]
- Tian, L.; Nelson, A.R.; Lowe, T.; Weaver, L.; Yuan, C.; Wang, H.; DeRose, P.; Stetler-Stevenson, M.; Wang, L. Standardization of flow cytometric detection of antigen expression. Cytom. Part B Clin. Cytom. 2024, 106, 25–34. [Google Scholar] [CrossRef]
- Davis, K.A.; Abrams, B.; Iyer, S.B.; Hoffman, R.A.; Bishop, J.E. Determination of CD4 antigen density on cells: Role of antibody valency, avidity, clones, and conjugation. Cytometry 1998, 33, 197–205. [Google Scholar] [CrossRef]
- Wang, L.; Degheidy, H.; Abbasi, F.; Mostowski, H.; Marti, G.; Bauer, S.; Hoffman, R.A.; Gaigalas, A.K. Quantitative Flow Cytometry Measurements in Antibodies Bound per Cell Based on a CD4 Reference. Curr. Protoc. Cytom. 2016, 75, 1.29.1–1.29.14. [Google Scholar] [CrossRef]
- Degheidy, H.; Abbasi, F.; Mostowski, H.; Gaigalas, A.K.; Marti, G.; Bauer, S.; Wang, L. Consistent, multi-instrument single tube quantification of CD20 in antibody bound per cell based on CD4 reference. Cytom. Part B Clin. Cytom. 2015, 90, 159–167. [Google Scholar] [CrossRef]
- Wagner, D.L.; Fritsche, E.; Pulsipher, M.A.; Ahmed, N.; Hamieh, M.; Hegde, M.; Ruella, M.; Savoldo, B.; Shah, N.N.; Turtle, C.J.; et al. Immunogenicity of CAR T cells in cancer therapy. Nat. Rev. Clin. Oncol. 2021, 18, 379–393. [Google Scholar] [CrossRef]
- Khan, A.N.; Chowdhury, A.; Karulkar, A.; Jaiswal, A.K.; Banik, A.; Asija, S.; Purwar, R. Immunogenicity of CAR-T Cell Therapeutics: Evidence, Mechanism and Mitigation. Front. Immunol. 2022, 13, 886546. [Google Scholar] [CrossRef] [PubMed]
- Potthoff, B.; McBlane, F.; Spindeldreher, S.; Sickert, D. A cell-based immunogenicity assay to detect antibodies against chimeric antigen receptor expressed by tisagenlecleucel. J. Immunol. Methods 2020, 476, 112692. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Guidance for Industry: Immunogenicity Testing of Therapeutic Protein Products—Developing and Validating Assays for Anti-Drug Antibody Detection; Food and Drug Administration: Rockville, MD, USA, 2019. [Google Scholar]
- European Medicines Agency (EMA). Guideline on Immunogenicity Assessment of Therapeutic Proteins; European Medicines Agency: Amsterdam, The Netherlands, 2017. [Google Scholar]
Antigen | Purpose in Panel | Function |
---|---|---|
CCR10 | TH subsets | Chemokine response, epithelial immunity |
CD3 | T cell lineage marker | T cell co-receptors, signaling |
CD4 | Identify CD4+ T cell subsets | Interacts with the β2-domain of MHC class II |
CD8 | Identify CD8+ T cell subsets | Interacts with the α3 portion of MHC class I |
CD14 | Monocyte lineage marker, increase purity of lymphocyte gate | Co-receptor for LPS and other microbial products |
CD16 | NK cells | Fc receptor FcγRIII |
CD19 | B cell lineage marker, increase purity of NK cell gate | B cell signaling |
CD25 | Treg surface staining | IL-2 receptor alpha chain |
CD27 | Differentiation, Co-stimulation | Co-stimulatory immune checkpoint molecule |
CD28 | Differentiation, Co-stimulation | T cell co-stimulatory receptor |
CD38 | Activation marker | Adhesion and signal transduction |
CD45 | Pan leucocyte marker | Signaling |
CD45RA | Differentiation | Signaling |
CD56 | NK cells | Cell adhesion |
CD62L | Differentiation | Cell adhesion, Secondary lymphoid tissue homing |
CD95 | Differentiation | homing |
CD122 | Differentiation | IL-2/IL-15 signaling |
CD127 | Treg surface staining, Differentiation | IL-7 signaling |
CD137 (4-1BB) | Activation marker | Co-stimulatory, immune checkpoint |
CD152 (CTLA-4) | Co-inhibitory | Inhibitory signaling |
CD161 (KLRB1) | TH subsets, Th17 associated | Inhibitory signaling |
CD183 (CXCR3) | TH subsets, Th1 associated | Leukocyte trafficking, Homing to inflamed tissues |
CD185 (CXCR5) | TH subsets, Tfh associated | T cell migration to lymph nodes |
CD194 (CCR4) | TH subsets, Th2 associated | Chemokine response |
CD196 (CCR6) | TH subsets, Th17 associated | Chemokine response |
CD197 (CCR7) | Differentiation | Chemokine response |
CD223 (3 LAG-3) | Co-inhibitory | Inhibitory signaling, immune checkpoint |
CD279 (PD1) | T cell exhaustion | Inhibitory signaling, immune checkpoint |
CD366 (TIM-3) | Co-inhibitory | Inhibitory signaling, immune checkpoint |
HLA-DR | Activation marker | MHC class II cell surface receptor, Ag presentation |
KLRG1 | Senescence | Inhibitory signaling, immune checkpoint |
TIGIT | Co-inhibitory | Immune regulatory |
Antigen | Naïve (Tn) | Stem-like Memory T Cells (Tscm) | Central Memory T Cells (Tcm) | Effector Memory T Cells (Tem) | Effector T Cells (Teff) |
---|---|---|---|---|---|
CD45RA | +++ | ++ | ++ | + | − |
CCR7 | +++ | +++ | +/− | − | |
CD62L | +++ | +++ | +++ | +/− | − |
CD127 | +/+++ | +++ | +++ | + | +/− |
CD122 | + | +++ | +++ | + | +/− |
CD28 | ++ | +++ | +++ | ++ | − |
CD27 | +/− | ++ | ++ | +/−− | |
CD95 | +/− | − | − | ++ | +++ |
KLRG1 | − | − | − | + | +++ |
Antigen | CD4 Subset [25] | |||||
---|---|---|---|---|---|---|
Th1 | Th2 | Th9 | Th17 | Th22 | Tfh | |
CCR10 | + | |||||
CD45RA | − | − | − | − | − | − |
CD161 (KLRB1) | + | |||||
CD183 (CXCR3) | + | − | − | +/− | − | − |
CD185 (CXCR5) | − | − | − | − | − | + |
CD194 (CCR4) | − | + | − | + | + | − |
CD196 (CCR6) | − | − | + | + | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beadnell, T.C.; Jasti, S.; Wang, R.; Davis, B.H.; Litwin, V. Using Spectral Flow Cytometry for CAR T-Cell Clinical Trials: Game Changing Technologies Enabling Novel Therapies. Int. J. Mol. Sci. 2024, 25, 10263. https://doi.org/10.3390/ijms251910263
Beadnell TC, Jasti S, Wang R, Davis BH, Litwin V. Using Spectral Flow Cytometry for CAR T-Cell Clinical Trials: Game Changing Technologies Enabling Novel Therapies. International Journal of Molecular Sciences. 2024; 25(19):10263. https://doi.org/10.3390/ijms251910263
Chicago/Turabian StyleBeadnell, Thomas C., Susmita Jasti, Ruqi Wang, Bruce H. Davis, and Virginia Litwin. 2024. "Using Spectral Flow Cytometry for CAR T-Cell Clinical Trials: Game Changing Technologies Enabling Novel Therapies" International Journal of Molecular Sciences 25, no. 19: 10263. https://doi.org/10.3390/ijms251910263
APA StyleBeadnell, T. C., Jasti, S., Wang, R., Davis, B. H., & Litwin, V. (2024). Using Spectral Flow Cytometry for CAR T-Cell Clinical Trials: Game Changing Technologies Enabling Novel Therapies. International Journal of Molecular Sciences, 25(19), 10263. https://doi.org/10.3390/ijms251910263