A Label-Free Optical Flow Cytometry Based-Method for Rapid Assay of Disinfectants’ Bactericidal Activity
Abstract
:1. Introduction
2. Results
2.1. Qualitative and Quantitative Suspension Test Results
2.2. Rapid Enumeration of Potentially Viable Bacteria Using Label-Free FCM
2.3. Altered FCM Scatter Patterns Are Associated with Disinfectant Activity
2.4. Viability State of Bacteria following Exposure to QAC Disinfectants
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and QAC-Based Disinfectants Tested
4.2. Qualitative and Quantitative Suspension Tests
4.3. Flow Cytometer Set-up
4.4. Gating and Counting of Bacteria by Label-Free FCM and Plating
4.5. Bacterial Growth Evaluation Using FCM without Labelling
4.6. Bacterial Viability Evaluation Using FCM with Fluorescent Labelling
4.7. Flow Cytometry Gating Strategy
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyce, J.M. Quaternary ammonium disinfectants and antiseptics: Tolerance, resistance and potential impact on antibiotic resistance. Antimicrob. Resist. Infect. Control 2023, 12, 32. [Google Scholar] [CrossRef]
- Hora, P.I.; Pati, S.G.; McNamara, P.J.; Arnold, W.A. Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environ. Sci. Technol. Lett. 2020, 7, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Filippelli, G.M.; Salamova, A. Increased Indoor Exposure to Commonly Used Disinfectants during the COVID-19 Pandemic. Environ. Sci. Technol. Lett. 2020, 7, 760–765. [Google Scholar] [CrossRef]
- Cowley, N.L.; Forbes, S.; Amézquita, A.; McClure, P.; Humphreys, G.J.; McBain, A.J. Effects of Formulation on Microbicide Potency and Mitigation of the Development of Bacterial Insusceptibility. Appl. Environ. Microbiol. 2015, 81, 7330–7338. [Google Scholar] [CrossRef]
- Ledder, R.G.; Gilbert, P.; Willis, C.; McBain, A.J. Effects of chronic triclosan exposure upon the antimicrobial susceptibility of 40 ex-situ environmental and human isolates. J. Appl. Microbiol. 2006, 100, 1132–1140. [Google Scholar] [CrossRef]
- Rozman, U.; Duh, D.; Cimerman, M.; Turk, S.Š. Hygiene of Medical Devices and Minimum Inhibitory Concentrations for Alcohol-Based and QAC Disinfectants among Isolates from Physical Therapy Departments. Int. J. Environ. Res. Public Health 2022, 19, 14690. [Google Scholar] [CrossRef]
- Gadea, R.; Fernández Fuentes, M.A.; Pérez Pulido, R.; Gálvez, A.; Ortega, E. Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods. Food Microbiol. 2017, 63, 58–71. [Google Scholar] [CrossRef]
- Miloud, S.B.; Ali, M.M.; Boutiba, I.; Van Houdt, R.; Chouchani, C. First report of cross resistance to silver and antibiotics in Klebsiella pneumoniae isolated from patients and polluted water in Tunisia. Water Environ. J. 2021, 35, 730–739. [Google Scholar] [CrossRef]
- Molina-González, D.; Alonso-Calleja, C.; Alonso-Hernando, A.; Capita, R. Effect of sub-lethal concentrations of biocides on the susceptibility to antibiotics of multi-drug resistant Salmonella enterica strains. Food Control 2014, 40, 329–334. [Google Scholar] [CrossRef]
- Jia, Y.; Lu, H.; Zhua, L. Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds. Sci. Total Environ. 2022, 832, 155090. [Google Scholar] [CrossRef] [PubMed]
- Chng, K.R.; Li, C.; Bertrand, D.; Ng, A.H.Q.; Kwah, J.S.; Low, H.M.; Tong, C.; Natrajan, M.; Zhang, M.H.; Xu, L.; et al. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat. Med. 2020, 26, 941–951. [Google Scholar] [CrossRef]
- Knapp, L.; Amezquita, A.; McClure, P.; Stewart, S.; Maillard, J.Y. Development of a protocol for predicting bacterial resistance to microbicides. Appl. Environ. Microbiol. 2015, 81, 2652–2659. [Google Scholar] [CrossRef]
- EN 13727:2012+A2:2015; Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Bactericidal Activity in the Medical Area. Test Method and Requirements (Phase 2, Step 1). European Committee for Standardization, CEN-CENELEC: Brussels, Belgium, 2015; ISBN 978 0 580 89232 5.
- Ou, F.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. Absolute bacterial cell enumeration using flow cytometry. J. Appl. Microbiol. 2017, 123, 464–477. [Google Scholar] [CrossRef]
- Vanhauteghem, D.; Audenaert, K.; Demeyere, K.; Hoogendoorn, F.; Janssens, G.P.J.; Meyer, E. Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle. PLoS ONE 2019, 14, e0211583. [Google Scholar] [CrossRef]
- Wilkinson, M.G. Flow cytometry as a potential method of measuring bacterial viability in probiotic products: A review. Trends Food Sci. Technol. 2018, 78, 1–10. [Google Scholar] [CrossRef]
- He, S.; Hong, X.; Zhang, M.; Wu, L.; Yan, X. Label-Free Detection of Bacteria in Fruit Juice by Nano-Flow Cytometry. Anal. Chem. 2020, 92, 2393–2400. [Google Scholar] [CrossRef]
- Kennedy, D.; Wilkinson, M.G. Application of flow cytometry to the detection of pathogenic bacteria. Curr. Issues Mol. Biol. 2017, 23, 21–38. [Google Scholar] [CrossRef]
- Massicotte, R.; Mafu, A.A.; Ahmad, D.; Deshaies, F.; Pichette, G.; Belhumeur, P. Comparison between Flow Cytometry and Traditional Culture Methods for Efficacy Assessment of Six Disinfectant Agents against Nosocomial Bacterial Species. Front. Microbiol. 2017, 8, 112. [Google Scholar] [CrossRef]
- Wozniak-Kosek, A.; Kawiak, J. Flow cytometry analysis of the activity of disinfecting agents tested with Staphylococcus aureus and Escherichia coli. Pol. J. Microbiol. 2005, 54, 21–26. [Google Scholar]
- Phe, M.H.; Dossot, M.; Guilloteau, H.; Block, J.C. Highly chlorinated Escherichia coli cannot be stained by propidium iodide. Rev. Can. Microbiol. 2007, 53, 664–670. [Google Scholar] [CrossRef]
- Hansen, G.; Johansen, C.L.; Honoré, A.H.; Jensen, H.M.; Jespersen, L.; Arneborg, N. Fluorescent labelling negatively affects the physiology of Lactococcus lactis. Int. Dairy J. 2015, 49, 130–138. [Google Scholar] [CrossRef]
- Rosenberg, M.; Azevedo, N.F.; Ivask, A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 2019, 9, 6483. [Google Scholar] [CrossRef]
- Shi, L.; Günther, S.; Hübschmann, T.; Wick, L.Y.; Harms, H.; Müller, S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytom. Part A J. Int. Soc. Anal. Cytol. 2007, 71, 592–598. [Google Scholar] [CrossRef]
- Stiefel, P.; Schmidt-Emrich, S.; Maniura-Weber, K.; Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhou, Y.; Zhu, S.; Huang, T.; Wu, L.; Yan, X. Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer. Anal. Chem. 2012, 84, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Renggli, S.; Keck, W.; Jenal, U.; Ritz, D. Role of autofluorescence in flow cytometric analysis of Escherichia coli treated with bac-tericidal antibiotics. J. Bacteriol. 2013, 195, 4067–4073. [Google Scholar] [CrossRef] [PubMed]
- Clausen, C.H.; Dimaki, M.; Bertelsen, C.V.; Skands, G.E.; Rodriguez-Trujillo, R.; Thomsen, J.D.; Svendsen, W.E. Bacteria Detection and Differentiation Using Impedance Flow Cytometry. Sensors 2018, 18, 3496. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Huang, C.-H.; Pai, P.-C.; Seo, J.; Lei, K.F. A Review on Microfluidics-Based Impedance Biosensors. Biosensors 2023, 13, 83. [Google Scholar] [CrossRef]
- Spencer, D.C.; Paton, T.F.; Mulroney, K.T.; Inglis, T.J.J.; Sutton, J.M.; Morgan, H. A fast impedance-based antimicrobial susceptibility test. Nat. Commun. 2020, 11, 5328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, T.; Julian, T.; Ma, D.; Yang, Y.; Li, M.; Hosokawa, Y.; Yalikun, Y. A review on intelligent impedance cytometry systems: Development, applications and advances. Anal. Chem. Acta 1269, 2023, 341424. [Google Scholar] [CrossRef]
- Tang, T.; Liu, X.; Yuan, Y.; Zhang, T.; Kiya, R.; Yang, Y.; Suzuki, K.; Tanaka, Y.; Li, M.; Hosokawa, Y.; et al. Assessment of the electrical penetration of cell membranes using four-frequency impedance cytometry. Microsyst. Nanoeng. 2022, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Dowdell, K.S.; Olsen, K.; Martinez Paz, E.F.; Sun, A.; Keown, J.; Lahr, R.; Steglitz, B.; Busch, A.; LiPuma, J.J.; Olson, T.; et al. Investigating the suitability of online flow cytometry for monitoring full-scale drinking water ozone system disinfection effectiveness. Water Res. 2024, 257, 121702. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Wan, Q.; Tan, L.; Xu, X.; Wu, G.; Wang, J.; Xu, H.; Huang, T.; Wen, G. Evaluation of the vital viability and their application in fungal spores’ disinfection with flow cytometry. Chemosphere 2021, 269, 128700. [Google Scholar] [CrossRef] [PubMed]
- Chiang, E.L.C.; Lee, S.; Medriano, C.A.; Li, L.; Bae, S. Assessment of physiological responses of bacteria to chlorine and UV disinfection using a plate count method, flow cytometry and viability PCR. J. Appl. Microbiol. 2022, 132, 1788–1801. [Google Scholar] [CrossRef] [PubMed]
- König, P.; Wilhelm, A.; Schaudinn, C.; Poehlein, A.; Daniel, R.; Widera, M.; Averhoff, B.; Müller, V. The VBNC state: A fundamental survival strategy of Acinetobacter baumannii. mBio 2023, 14, e0213923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lotoux, A.; Milohanic, E.; Bierne, H. The Viable but Non-Culturable State of Listeria monocytogenes in the One-Health Continuum. Front. Cell. Infect. Microbiol. 2022, 12, 849915. [Google Scholar] [CrossRef]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef]
- Foddai, A.C.G.; Grant, I.R. Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Appl. Microbiol. Biotechnol. 2020, 104, 4281–4288. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.; Fernandes, B.; Silva, A.M.; Dias, N.; Azeredo, J. Evaluation by Flow Cytometry of Escherichia coli Viability in Lettuce after Disinfection. Antibiotics 2019, 9, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheswick, R.; Nocker, A.; Moore, G.; Jefferson, B.; Jarvis, P. Exploring the use of flow cytometry for understanding the efficacy of disinfection in chlorine contact tanks. Water Res. 2022, 217, 118420. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Cheswick, R.; Dutheil de la Rochere, P.M.; Denis, M.; Léziart, T.; Jarvis, P. When are bacteria dead? A step towards interpreting flow cytometry profiles after chlorine disinfection and membrane integrity staining. Environ. Technol. 2017, 38, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Helmi, K.; David, F.; Di Martino, P.; Jaffrezic, M.P.; Ingrand, V. Assessment of flow cytometry for microbial water quality monitoring in cooling tower water and oxidizing biocide treatment efficiency. J. Microbiol. Methods 2018, 152, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Mafu, A.A.; Massicotte, R.; Pichette, G.; Ahmad, D. Importance of mechanical action in a terminal disinfection process for decontamination of Clostridium difficile spores on hospital inert contact surfaces. Int. J. Infect. Control 2015, 11, 1–9. [Google Scholar] [CrossRef]
- Pereira, A.P.; Antunes, P.; Bierge, P.; Willems, R.J.L.; Corander, J.; Coque, T.M.; Pich, O.Q.; Peixe, L.; Freitas, A.R.; Novais, C. Unraveling Enterococcus susceptibility to quaternary ammonium compounds: Genes, phenotypes, and the impact of environmental conditions. Microbiol. Spectr. 2023, 11, e0232423. [Google Scholar] [CrossRef] [PubMed]
- Maillard, J.Y.; Pascoe, M. Disinfectants and antiseptics: Mechanisms of action and resistance. Nat. Rev. Microbiol. 2024, 22, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.S.; Lourenço, M.C.; Fonseca, L.d.S.; Leão, S.C.; Amorim, E.d.L.; Rocha, I.L.; Coelho, F.S.; Viana-Niero, C.; Gomes, K.M.; da Silva, M.G.; et al. Epidemic of postsurgical infections caused by Mycobacterium massiliense. J. Clin. Microbiol. 2009, 47, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Wang, Y.; Hammes, F. Automated flow cytometry as a flexible tool for comparing disinfection characteristics of indigenous bacterial communities and pure cultures. Ecotoxicol. Environ. Saf. 2021, 225, 112799. [Google Scholar] [CrossRef] [PubMed]
- Filbrun, A.B.; Richardson, J.C.; Khanal, P.C.; Tzeng, Y.L.; Dickson, R.M. Rapid, label-free antibiotic susceptibility determined directly from positive blood culture. Cytom. Part A 2022, 101, 564–576. [Google Scholar] [CrossRef]
References | Current Label-Free FCM Methods | Novelty of Our Developed Label-Free Optical FCM Method |
---|---|---|
[26,27] | Label-free optical FCM methods based on measurement of bacteria autofluorescence. | Our label-free FCM method uses light-scatter signal measurements for fast and accurate quantification of viable bacteria after exposure to disinfectants. It is not based on autofluorescence measurements. |
[28,29,30,31] | Impedance FCM methods based on the measurement of cell electrical proprieties. The impedance FCM does not allow the differentiation of various physiological states of bacteria. | Our label-free optical FCM method detects and quantifies bacteria based on forward- and side-scattered light (FSC-H and SSC-H) measurements. Further, the optical FCM with fluorescent labelling provides information about the impact of antimicrobial agents on microbial cells. |
Bacterial Strains Tested | Bactericidal Concentrations (%) of QAC Disinfectants | |||||||
---|---|---|---|---|---|---|---|---|
Sterisol® | Desogen® | Dezicon® | Terralin Protect® | Anios Oxyflor® | Isorapid® | Incidin Pro® | Cleanisept® | |
E. coli K12 NCTC 10538 | 0.078 | 0.006 | 0.0004 | 0.001 | 0.05 | 0.005 | 0.006 | 0.012 |
E. coli ESBL17 | 0.156 | 0.002 | 0.0004 | 0.001 | 0.003 | 0.097 | 0.003 | 0.025 |
P. aeruginosa ATCC 15442 | 0.625 | 0.05 | 0.0008 | 0.006 | 0.003 | 0.097 | 0.006 | 0.2 |
P. aeruginosa 1707 | 5 | 0.05 | 0.0015 | 0.05 | 0.006 | 0.019 | 0.003 | 0.05 |
S. aureus ATCC 6538 | 0.078 | 0.006 | 0.0002 | 0.006 | 0.025 | 0.005 | 0.012 | 0.006 |
S. aureus MRSA47 | 0.078 | 0.006 | 0.0004 | 0.006 | 0.003 | 0.003 | 0.003 | 0.006 |
E. hirae ATCC 10541 | 0.039 | 0.006 | 0.0005 | 0.006 | 0.05 | 0.001 | 0.003 | 0.012 |
E. faecium VRE 15 | 0.039 | 0.006 | 0.0001 | 0.003 | 0.006 | 0.002 | 0.012 | 0.003 |
Disinfectants | Bacterial Strains | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E. coli K12 NCTC 10538 | E. coli ESBL17 | P. aeruginosa ATCC 15442 | P. aeruginosa 1707 | S. aureus ATCC 6538 | S. aureus MRSA47 | E. hirae ATCC 10541 | E. faecium VRE 15 | Agreement | Agreement within ±1 Dilution | Agreement within ±2 Dilution | ||
Sterisol® | 8/8 (100%) | |||||||||||
Desogen® | 4/8 (50%) | 6/8 (75%) | 8/8 (100%) | |||||||||
Dezicon® | 8/8 (100%) | |||||||||||
Terralin Protect® | 8/8 (100%) | |||||||||||
Anios Oxyflor® | 8/8 (100%) | |||||||||||
Isorapid® | 6/8 (75%) | 8/8 (100%) | ||||||||||
Incidin Pro® | 8/8 (100%) | |||||||||||
Cleanisept® | 7/8 (87.5%) | 8/8 (100%) | ||||||||||
Agreement | ||||||||||||
Error is within ±1 dilution | ||||||||||||
Error is within ±2 dilution |
Bacterial Strains | Source | Resistance Phenotype | Antibiotic Resistance Patterns |
---|---|---|---|
S. aureus ATCC 6538 | Reference strain | - | |
P. aeruginosa ATCC 15442 | Reference strain | - | |
E. hirae ATCC 10541 | Reference strain | - | |
E. coli K12 NCTC 10538 | Reference strain | - | |
S. aureus MRSA47 | ND | MRSA | FOX, AZM, P, CN, E, TE, LZD |
P. aeruginosa 1707 | Tracheal secretion | CRPA | CAZ, A™, FEP, MEM, IMP, AK, TOB, CIP, CN, DOR |
E. faecalis VRE 15 | Tracheal secretion | VRE | TE, CN, CIP, P, VA |
E. coli ESBL17 | Urine | ESBL | CZ, PRL, AMP, CTX, A™, CXM, FEP, AMC, TE, CIP, SXT |
Disinfectant Products Containing QACs | Active Agents | Concentration Tested | Contact Time |
---|---|---|---|
Sterisol® 4th generation | Didecyldimethylammonium chloride, concentration in metric units 0.34%. Quaternary ammonium compounds, benzyl-C12-18-alkyldimethyl, chlorides, concentration in metric units 0.09%. | RTU | 5 min |
Desogen® 3rd generation | 10% glutaraldehyde. 15% benzyl-C12-C18-alkyldimethyl, chlorides. | 1% | 5 min |
Dezicon® 4th generation | 17% di decyl dimethyl ammonium chloride. 4.5% benzyl C12-C18-alkyl dimethyl chlorides. | RTU | 5 min |
Terralin Protect® 3rd generation | 22% benzyl-C12-18-alkyldimethylammonium chloride. 17% 2-phenoxyethanol. 0.9% amino alkyl glycine. | 2% | 15 min |
Anios Oxy Floor® 3rd generation | 750 ppm peracetic acid. 0.012% N-alkyl (C12-14)-N-benzyl-N, N-dimethyl ammonium chloride. | 0.5% | 5 min |
Isorapid® 5th generation | 20% ethanol. 28% 1-propanol. 0.056% quaternary ammonium compounds. | RTU | 1 min |
Incidin Pro™ 3rd generation | 10% 2-phenoxyethanol. 8% N,N-bis-(3-aminopropyl) dodecyl amine. 7.5% benzalkonium chloride. | 0.25% | 5 min |
Cleanisept™ 5th generation | 3.33% di decyl dimethyl ammonium chloride. 6.66% quaternary ammonium compounds, benzyl-C12-16-alkyldimethyl-chlorides. | 0.25% | 5 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pîndaru, A.M.; Măruțescu, L.; Popa, M.; Chifiriuc, M.C. A Label-Free Optical Flow Cytometry Based-Method for Rapid Assay of Disinfectants’ Bactericidal Activity. Int. J. Mol. Sci. 2024, 25, 7158. https://doi.org/10.3390/ijms25137158
Pîndaru AM, Măruțescu L, Popa M, Chifiriuc MC. A Label-Free Optical Flow Cytometry Based-Method for Rapid Assay of Disinfectants’ Bactericidal Activity. International Journal of Molecular Sciences. 2024; 25(13):7158. https://doi.org/10.3390/ijms25137158
Chicago/Turabian StylePîndaru, Andreea Maria, Luminița Măruțescu, Marcela Popa, and Mariana Carmen Chifiriuc. 2024. "A Label-Free Optical Flow Cytometry Based-Method for Rapid Assay of Disinfectants’ Bactericidal Activity" International Journal of Molecular Sciences 25, no. 13: 7158. https://doi.org/10.3390/ijms25137158
APA StylePîndaru, A. M., Măruțescu, L., Popa, M., & Chifiriuc, M. C. (2024). A Label-Free Optical Flow Cytometry Based-Method for Rapid Assay of Disinfectants’ Bactericidal Activity. International Journal of Molecular Sciences, 25(13), 7158. https://doi.org/10.3390/ijms25137158