Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature
Abstract
:1. Introduction
2. Cough: A Vital Reflex
3. Acute Cough
4. Chronic Cough
5. Neuromodulators
5.1. Neuromodulator Drugs
5.1.1. Central Cough Suppressants
5.1.2. Peripheral Cough Suppressants
5.1.3. Drugs Acting Both Peripherally and Centrally on Cough Reflex
5.2. Natural Remedies with Neuromodulator Effects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murgia, V.; Manti, S.; Licari, A.; De Filippo, M.; Ciprandi, G.; Marseglia, G.L. Upper Respiratory Tract Infection-Associated Acute Cough and the Urge to Cough: New Insights for Clinical Practice. Pediatr. Allergy Immunol. Pulmonol. 2020, 33, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Andrani, F.; Aiello, M.; Bertorelli, G.; Crisafulli, E.; Chetta, A. Cough, a vital reflex. mechanisms, determinants and measurements. Acta Biomed. 2019, 89, 477–480. [Google Scholar] [PubMed]
- Chang, A.B.; Glomb, W.B. Guidelines for evaluating chronic cough in pediatrics: ACCP evidence-based clinical practice guidelines. Chest 2006, 129, 260S–283S. [Google Scholar] [CrossRef]
- Galway, N.C.; Shields, M.D. The child with an incessant dry cough. Paediatr. Respir. Rev. 2019, 30, 58–64. [Google Scholar] [CrossRef]
- Gilchrist, F.J. An approach to the child with a wet cough. Paediatr. Respir. Rev. 2019, 31, 75–81. [Google Scholar] [CrossRef]
- Marseglia, G.L.; Manti, S.; Chiappini, E.; Brambilla, I.; Caffarelli, C.; Calvani, M.; Cardinale, F.; Cravidi, C.; Duse, M.; Martelli, A.; et al. Acute cough in children and adolescents: A systematic review and a practical algorithm by the Italian Society of Pediatric Allergy and Immunology. Allergol. Immunopathol. 2021, 49, 155–169. [Google Scholar] [CrossRef]
- Marseglia, G.L.; Manti, S.; Chiappini, E.; Brambilla, I.; Caffarelli, C.; Calvani, M.; Cardinale, F.; Cravidi, C.; Duse, M.; Martelli, A.; et al. Chronic cough in childhood: A systematic review for practical guidance by the Italian Society of Pediatric Allergy and Immunology. Allergol. Immunopathol. 2021, 49, 133–154. [Google Scholar] [CrossRef]
- Morice, A.; Kardos, P. Comprehensive evidence-based review on European antitussives. BMJ Open Respir. Res. 2016, 3, e000137. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Lownik, E.; Ricco, J. Viral Infections of the Respiratory Tract. Fam. Med. 2016, 17, 507–517. [Google Scholar]
- Cheng, Z.R.; Chua, Y.X.; How, C.H.; Tan, Y.H. Approach to chronic cough in children. Singap. Med. J. 2021, 62, 513–519. [Google Scholar] [CrossRef]
- Weinberger, M. Chronic Cough and Causes in Children. J. Clin. Med. 2023, 12, 3947. [Google Scholar] [CrossRef] [PubMed]
- Jurca, M.; Ramette, A.; Dogaru, C.M.; Goutaki, M.; Spycher, B.D.; Latzin, P.; Gaillard, E.A.; Kuehni, C.E. Prevalence of cough throughout childhood: A cohort study. PLoS ONE 2017, 12, e0177485. [Google Scholar] [CrossRef]
- Bergmann, M.; Haasenritter, J.; Beidatsch, D.; Schwarm, S.; Hörner, K.; Bösner, S.; Grevenrath, P.; Schmidt, L.; Viniol, A.; Donner-Banzhoff, N.; et al. Coughing children in family practice and primary care: A systematic review of prevalence, aetiology and prognosis. BMC Pediatr. 2021, 21, 260. [Google Scholar] [CrossRef]
- Jin, H.J.; Kim, C.W. Understanding the Impact of Chronic Cough on the Quality of Life in the General Population. Allergy Asthma Immunol. Res. 2020, 12, 906–909. [Google Scholar] [CrossRef]
- Wei, W.; Liu, R.; ZhangTong, Y.; Qiu, Z. The efficacy of specific neuromodulators on human refractory chronic cough: A systematic review and meta-analysis. J. Thorac. Dis. 2016, 8, 2942–2951. [Google Scholar] [CrossRef]
- Gibson, P.G.; Simpson, J.L.; Ryan, N.M.; Vertigan, A.E. Mechanisms of cough. Curr. Opin. Allergy Clin. Immunol. 2014, 14, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.A.; McGovern, A.E.; Mazzone, S.B. Translating Cough Mechanisms into Better Cough Suppressants. Chest 2017, 152, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Belvisi, M.G.; Birrell, M.A.; Khalid, S.; Wortley, M.A.; Dockry, R.; Coote, J.; Holt, K.; Dubuis, E.; Kelsall, A.; Maher, S.A.; et al. Neurophenotypes in Airway Diseases. Insights from Translational Cough Studies. Am. J. Respir. Crit. Care Med. 2016, 193, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Canning, B.J. Functional implications of the multiple afferent pathways regulating cough. Pulm. Pharmacol. Ther. 2011, 24, 295–299. [Google Scholar] [CrossRef]
- Polverino, M.; Polverino, F.; Fasolino, M.; Andò, F.; Alfieri, A.; De Blasio, F. Anatomy and neuro-pathophysiology of the cough reflex arc. Multidiscip. Respir. Med. 2012, 7, 5. [Google Scholar] [CrossRef]
- Yanagihara, N.; Von Leden, H.; Werner-Kukuk, E. The physical parameters of cough: The larynx in a normal single cough. Acta Otolaryngol. 1966, 61, 495–510. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, S.B. Sensory regulation of the cough reflex. Pulm. Pharmacol. Ther. 2004, 17, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, S.B.; Farrell, M.J. Heterogeneity of cough neurobiology: Clinical implications. Pulm. Pharmacol. Ther. 2019, 55, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, S.B.; Reynolds, S.M.; Mori, N.; Kollarik, M.; Farmer, D.G.; Myers, A.C.; Canning, B.J. Selective expression of a sodium pump isozyme by cough receptors and evidence for its essential role in regulating cough. J. Neurosci. 2009, 29, 13662–13671. [Google Scholar] [CrossRef]
- Mazzone, S.B.; Undem, B.J. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol. Rev. 2016, 96, 975–1024. [Google Scholar] [CrossRef]
- Canning, B.J.; Mazzone, S.B.; Meeker, S.N.; Mori, N.; Reynolds, S.M.; Undem, B.J. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J. Physiol. 2004, 557, 543–558. [Google Scholar] [CrossRef]
- Chou, Y.L.; Mori, N.; Canning, B.J. Opposing effects of bronchopulmonary C-fiber subtypes on cough in guinea pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R489–R498. [Google Scholar] [CrossRef]
- Canning, B.J.; Reynolds, S.M.; Mazzone, S.B. Multiple mechanisms of reflex bronchospasm in guinea pigs. J. Appl. Physiol. 2001, 91, 2642–2653. [Google Scholar] [CrossRef]
- Chou, Y.L.; Scarupa, M.D.; Mori, N.; Canning, B.J. Differential effects of airway afferent nerve subtypes on cough and respiration in anesthetized guinea pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1572–R1584. [Google Scholar] [CrossRef]
- Dicpinigaitis, P.V.; Morice, A.H.; Birring, S.S.; McGarvey, L.; Smith, J.A.; Canning, B.J.; Page, C.P. Antitussive drugs–Past, present, and future. Pharmacol. Rev. 2014, 66, 468–512. [Google Scholar] [CrossRef]
- Nasra, J.; Belvisi, M.G. Modulation of sensory nerve function and the cough reflex: Understanding disease pathogenesis. Pharmacol. Ther. 2009, 124, 354–375. [Google Scholar] [CrossRef] [PubMed]
- Schelegle, E.S.; Green, J.F. An overview of the anatomy and physiology of slowly adapting pulmonary stretch receptors. Respir. Physiol. 2001, 125, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Ricco, M.M.; Kummer, W.; Biglari, B.; Myers, A.C.; Undem, B.J. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J. Physiol. 1996, 496, 521–530. [Google Scholar] [CrossRef]
- Zaccone, E.J.; Lieu, T.; Muroi, Y.; Potenzieri, C.; Undem, B.E.; Gao, P.; Han, L.; Canning, B.J.; Undem, B.J. Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways. PLoS ONE 2016, 11, e0155526. [Google Scholar] [CrossRef]
- Takemura, M.; Quarcoo, D.; Niimi, A.; Dinh, Q.T.; Geppetti, P.; Fischer, A.; Chung, K.F.; Groneberg, D.A. Is TRPV1 a useful target in respiratory diseases? Pulm. Pharmacol. Ther. 2008, 21, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Materazzi, S.; Nassini, R.; Gatti, R.; Trevisani, M.; Geppetti, P. Cough sensors: II. Transient receptor potential membrane receptors on cough sensors. Handb. Exp. Pharmacol. 2009, 187, 49–61. [Google Scholar]
- Ramsey, I.S.; Delling, M.; Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol. 2006, 68, 619–647. [Google Scholar] [CrossRef]
- Bonvini, S.J.; Birrell, M.A.; Smith, J.A.; Belvisi, M.G. Targeting TRP channels for chronic cough: From bench to bedside. Naunyn Schmiedebergs Arch. Pharmacol. 2015, 388, 401–420. [Google Scholar] [CrossRef]
- Picazo-Juárez, G.; Romero-Suárez, S.; Nieto-Posadas, A.; Llorente, I.; Jara-Oseguera, A.; Briggs, M.; McIntosh, T.J.; Simon, S.A.; Ladrón-de-Guevara, E.; Islas, L.D.; et al. Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J. Biol. Chem. 2011, 286, 24966–24976. [Google Scholar] [CrossRef]
- Lalloo, U.G.; Fox, A.J.; Belvisi, M.G.; Chung, K.F.; Barnes, P.J. Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs. J. Appl. Physiol. 1995, 79, 1082–1087. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, B.; Li, Q.; Luo, P.; Dong, L.; Rong, W. Sensitivity of bronchopulmonary receptors to cold and heat mediated by transient receptor potential cation channel subtypes in an ex vivo rat lung preparation. Respir. Physiol. Neurobiol. 2011, 177, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Jordt, S.E.; Tominaga, M.; Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl. Acad. Sci. USA 2000, 97, 8134–8139. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, T.; Higashi, T.; Togashi, K.; Iida, T.; Segi, E.; Sugimoto, Y.; Tominaga, T.; Narumiya, S.; Tominaga, M. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain. 2005, 1, 3. [Google Scholar] [CrossRef]
- Amadesi, S.; Nie, J.; Vergnolle, N.; Cottrell, G.S.; Grady, E.F.; Trevisani, M.; Manni, C.; Geppetti, P.; McRoberts, J.A.; Ennes, H.; et al. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J. Neurosci. 2004, 24, 4300–4312. [Google Scholar] [CrossRef]
- Watanabe, N.; Horie, S.; Michael, G.J.; Keir, S.; Spina, D.; Page, C.P.; Priestley, J.V. Immunohistochemical co-localization of transient receptor potential vanilloid (TRPV)1 and sensory neuropeptides in the guinea-pig respiratory system. Neuroscience 2006, 141, 1533–1543. [Google Scholar] [CrossRef]
- Piedimonte, G.; Rodriguez, M.M.; King, K.A.; McLean, S.; Jiang, X. Respiratory syncytial virus upregulates expression of the substance P receptor in rat lungs. Am. J. Physiol. 1999, 277, L831–L840. [Google Scholar] [CrossRef]
- Bautista, D.M.; Movahed, P.; Hinman, A.; Axelsson, H.E.; Sterner, O.; Högestätt, E.D.; Julius, D.; Jordt, S.E.; Zygmunt, P.M. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl. Acad. Sci. USA 2005, 102, 12248–12252. [Google Scholar] [CrossRef]
- Story, G.M.; Peier, A.M.; Reeve, A.J.; Eid, S.R.; Mosbacher, J.; Hricik, T.R.; Earley, T.J.; Hergarden, A.C.; Andersson, D.A.; Hwang, S.W.; et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112, 819–829. [Google Scholar] [CrossRef]
- Grace, M.; Birrell, M.A.; Dubuis, E.; Maher, S.A.; Belvisi, M.G. Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin. Thorax 2012, 67, 891–900. [Google Scholar] [CrossRef]
- Terada, Y.; Fujimura, M.; Nishimura, S.; Tsubota, M.; Sekiguchi, F.; Nishikawa, H.; Kawabata, A. Contribution of TRPA1 as a downstream signal of proteinase-activated receptor-2 to pancreatic pain. J. Pharmacol. Sci. 2013, 123, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Nassenstein, C.; Kwong, K.; Taylor-Clark, T.; Kollarik, M.; Macglashan, D.M.; Braun, A.; Undem, B.J. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J. Physiol. 2008, 586, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, I.; Gomes, P.; Aranake, S.; Shetty, M.; Karnik, P.; Damle, M.; Kuruganti, S.; Thorat, S.; Khairatkar-Joshi, N. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J. Recept. Signal Transduct. Res. 2011, 31, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Bessac, B.F.; Sivula, M.; von Hehn, C.A.; Escalera, J.; Cohn, L.; Jordt, S.E. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J. Clin. Investig. 2008, 118, 1899–1910. [Google Scholar] [CrossRef]
- Taylor-Clark, T.E.; McAlexander, M.A.; Nassenstein, C.; Sheardown, S.A.; Wilson, S.; Thornton, J.; Carr, M.J.; Undem, B.J. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J. Physiol. 2008, 586, 3447–3459. [Google Scholar] [CrossRef]
- Strotmann, R.; Harteneck, C.; Nunnenmacher, K.; Schultz, G.; Plant, T.D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2000, 2, 695–702. [Google Scholar] [CrossRef]
- Poole, D.P.; Amadesi, S.; Veldhuis, N.A.; Abogadie, F.C.; Lieu, T.; Darby, W.; Liedtke, W.; Lew, M.J.; McIntyre, P.; Bunnett, N.W. Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J. Biol. Chem. 2013, 288, 5790–5802. [Google Scholar] [CrossRef]
- Grant, A.D.; Cottrell, G.S.; Amadesi, S.; Trevisani, M.; Nicoletti, P.; Materazzi, S.; Altier, C.; Cenac, N.; Zamponi, G.W.; Bautista-Cruz, F.; et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J. Physiol. 2007, 578, 715–733. [Google Scholar] [CrossRef]
- Adcock, J.J.; Birrell, M.A.; Maher, S.A.; Bonvini, S.J.; Dubuis, E.D.; Wortley, M.A.; Baker, K.; Belvisi, M.G. Characterization of Aδ- And C-fibres Innervating Guinea-pig Airways. Thorax 2014, 69, A77. [Google Scholar] [CrossRef]
- McKemy, D.; Neuhausser, W.; Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416, 52–58. [Google Scholar] [CrossRef]
- Peier, A.M.; Moqrich, A.; Hergarden, A.C.; Reeve, A.J.; Andersson, D.A.; Story, G.M.; Earley, T.J.; Dragoni, I.; McIntyre, P.; Bevan, S.; et al. A TRP channel that senses cold stimuli and menthol. Cell 2002, 108, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Abe, J.; Hosokawa, H.; Okazawa, M.; Kandachi, M.; Sawada, Y.; Yamanaka, K.; Matsumura, K.; Kobayashi, S. TRPM8 protein localization in trigeminal ganglion and taste papillae. Brain Res. Mol. Brain Res. 2005, 136, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Willis, D.N.; Liu, B.; Ha, M.A.; Jordt, S.E.; Morris, J.B. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J. 2011, 25, 4434–4444. [Google Scholar] [CrossRef]
- Plevkova, J.; Kollarik, M.; Poliacek, I.; Brozmanova, M.; Surdenikova, L.; Tatar, M.; Mori, N.; Canning, B.J. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol. J. Appl. Physiol. 2013, 115, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, S.B.; Cole, L.J.; Ando, A.; Egan, G.F.; Farrell, M.J. Investigation of the neural control of cough and cough suppression in humans using functional brain imaging. J. Neurosci. 2011, 31, 2948–2958. [Google Scholar] [CrossRef]
- Eccles, R.; Mallefet, P. Soothing Properties of Glycerol in Cough Syrups for Acute Cough Due to Common Cold. Pharmacy 2017, 5, 4. [Google Scholar] [CrossRef]
- Eccles, R.; Morris, S.; Jawad, M. Lack of effect of codeine in the treatment of cough associated with acute upper respiratory tract infection. J. Clin. Pharm. Ther. 1992, 17, 175–180. [Google Scholar] [CrossRef]
- Lee, P.C.; Cotterill-Jones, C.; Eccles, R. Voluntary control of cough. Pulm. Pharmacol. Ther. 2002, 15, 317–320. [Google Scholar] [CrossRef]
- Lee, P.C.; Jawad, M.S.; Hull, J.D.; West, W.H.; Shaw, K.; Eccles, R. The antitussive effect of placebo treatment on cough associated with acute upper respiratory infection. Psychosom. Med. 2005, 67, 314–317. [Google Scholar] [CrossRef]
- De Blasio, F.; Dicpinigaitis, P.V.; Rubin, B.K.; De Danieli, G.; Lanata, L.; Zanasi, A. An observational study on cough in children: Epidemiology, impact on quality of sleep and treatment outcome. Cough 2012, 8, 1. [Google Scholar] [CrossRef]
- Schroeder, K.; Fahey, T. Over-the-counter medications for acute cough in children and adults in ambulatory settings. Cochrane Database Syst. Rev. 2012, 8, CD001831. [Google Scholar]
- Mameli, C.; Picca, M.; Buzzetti, R.; Pace, M.E.; Badolato, R.; Cravidi, C.; Zuccotti, G.V.; Marchisio, P.; Italian Society of Paediatrics Lombardy Section. Incidence of acute respiratory infections in preschool children in an outpatient setting before and during Covid-19 pandemic in Lombardy Region, Italy. Ital. J. Pediatr. 2022, 48, 18. [Google Scholar] [CrossRef] [PubMed]
- Lamas, A.; Ruiz de Valbuena, M.; Máiz, L. Cough in children. Arch. Bronconeumol. 2014, 50, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Pappas, D.E. The Common Cold. In Principles and Practice of Pediatric Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2018; pp. 199–202. [Google Scholar]
- Monto, A.S.; Foster-Tucker, J.E.; Callear, A.P.; Leis, A.M.; Godonou, E.T.; Smith, M.; Truscon, R.; Johnson, E.; Thomas, L.J.; Thompson, M.S.; et al. Respiratory Viral Infections from 2015 to 2022 in the HIVE Cohort of American Households: Incidence, illness characteristics, and seasonality. J. Infect. Dis. 2024, jiae423. [Google Scholar] [CrossRef]
- Garzon Mora, N.; Jaramillo, A.P.; Briones Andriuoli, R.; Torres, S.; Revilla, J.C.; Moncada, D. An Overview of the Effectiveness of Corticoids in Croup: A Systematic Literature Review. Cureus 2023, 15, e46317. [Google Scholar] [CrossRef]
- Cao, A.M.; Choy, J.P.; Mohanakrishnan, L.N.; Bain, R.F.; van Driel, M.L. Chest radiographs for acute lower respiratory tract infections. Cochrane Database Syst. Rev. 2013, 2013, CD009119. [Google Scholar] [CrossRef]
- Marseglia, G.L.; Pagella, F.; Klersy, C.; Barberi, S.; Licari, A.; Ciprandi, G. The 10-day mark is a good way to diagnose not only acute rhinosinusitis but also adenoiditis, as confirmed by endoscopy. Int. J. Pediatr. Otorhinolaryngol. 2007, 71, 581–583. [Google Scholar] [CrossRef]
- Martin, J.; Townshend, J.; Brodlie, M. Diagnosis and management of asthma in children. BMJ Paediatr. Open 2022, 6, e001277. [Google Scholar] [CrossRef]
- Costantino, S.; Torre, A.; Foti Randazzese, S.; Mollica, S.A.; Motta, F.; Busceti, D.; Ferrante, F.; Caminiti, L.; Crisafulli, G.; Manti, S. Association between Second-Hand Exposure to E-Cigarettes at Home and Exacerbations in Children with Asthma. Children 2024, 11, 356. [Google Scholar] [CrossRef]
- Kasi, A.S.; Kamerman-Kretzmer, R.J. Cough. Pediatr. Rev. 2019, 40, 157–167. [Google Scholar] [CrossRef]
- Tarlo, S.M.; Altman, K.W.; Oppenheimer, J.; Lim, K.; Vertigan, A.; Prezant, D.; Irwin, R.S.; CHEST Expert Cough Panel. Occupational and Environmental Contributions to Chronic Cough in Adults: Chest Expert Panel Report. Chest 2016, 150, 894–907. [Google Scholar] [CrossRef] [PubMed]
- Boulet, L.P.; Turmel, J.; Irwin, R.S.; CHEST Expert Cough Panel. Cough in the Athlete: CHEST Guideline and Expert Panel Report. Chest 2017, 151, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Vodicka, T.A.; Blair, P.S.; Buckley, D.I.; Heneghan, C.; Hay, A.D.; TARGET Programme Team. Duration of symptoms of respiratory tract infections in children: Systematic review. BMJ 2013, 347, f7027. [Google Scholar] [CrossRef] [PubMed]
- Budhiraja, G.; Singh, H.; Guram, D.; Pulkit Kaur, N. Foreign Body Aspiration in Pediatric Airway: A Clinical Study. Indian J. Otolaryngol. Head. Neck Surg. 2022, 74, 6448–6454. [Google Scholar] [CrossRef]
- Morice, A.H.; Millqvist, E.; Bieksiene, K.; Birring, S.S.; Dicpinigaitis, P.; Domingo Ribas, C.; Hilton Boon, M.; Kantar, A.; Lai, K.; McGarvey, L.; et al. ERS guidelines on the diagnosis and treatment of chronic cough in adults and children. Eur. Respir. J. 2020, 55, 1901136. [Google Scholar] [CrossRef]
- Chang, A.B.; Oppenheimer, J.J.; Weinberger, M.; Weir, K.; Rubin, B.K.; Irwin, R.S. Use of Management Pathways or Algorithms in Children with Chronic Cough: Systematic Reviews. Chest 2016, 149, 106–119. [Google Scholar] [CrossRef]
- Song, W.J.; Chang, Y.S.; Faruqi, S.; Kang, M.K.; Kim, J.Y.; Kang, M.G.; Kim, S.; Jo, E.J.; Lee, S.E.; Kim, M.H.; et al. Defining Chronic Cough: A Systematic Review of the Epidemiological Literature. Allergy Asthma Immunol. Res. 2016, 8, 146–155. [Google Scholar] [CrossRef]
- Singh, D.; Arora, V.; Sobti, P.C. Chronic/recurrent cough in rural children in Ludhiana, Punjab. Indian. Pediatr. 2002, 39, 23–29. [Google Scholar]
- Pan, G.; Zhang, S.; Feng, Y.; Takahashi, K.; Kagawa, J.; Yu, L.; Wang, P.; Liu, M.; Liu, Q.; Hou, S.; et al. Air pollution and children’s respiratory symptoms in six cities of Northern China. Respir. Med. 2010, 104, 1903–1911. [Google Scholar] [CrossRef]
- Drescher, B.J.; Chang, A.B.; Phillips, N.; Acworth, J.; Marchant, J.; Sloots, T.P.; David, M.; O’Grady, K.F. The development of chronic cough in children following presentation to a tertiary paediatric emergency department with acute respiratory illness: Study protocol for a prospective cohort study. BMC Pediatr. 2013, 13, 125. [Google Scholar] [CrossRef]
- Leonardi, G.S.; Houthuijs, D.; Nikiforov, B.; Volf, J.; Rudnai, P.; Zejda, J.; Gurzau, E.; Fabianova, E.; Fletcher, T.; Brunekreef, B. Respiratory symptoms, bronchitis and asthma in children of Central and Eastern Europe. Eur. Respir. J. 2002, 20, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Undem, B.J.; Zaccone, E.; McGarvey, L.; Mazzone, S.B. Neural dysfunction following respiratory viral infection as a cause of chronic cough hypersensitivity. Pulm. Pharmacol. Ther. 2015, 33, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Hara, J.; Fujimura, M.; Ueda, A.; Myou, S.; Oribe, Y.; Ohkura, N.; Kita, T.; Yasui, M.; Kasahara, K. Effect of pressure stress applied to the airway on cough-reflex sensitivity in Guinea pigs. Am. J. Respir. Crit. Care Med. 2008, 177, 585–592. [Google Scholar] [CrossRef]
- Chang, A.B. Pediatric cough: Children are not miniature adults. Lung 2010, 188, S33–S40. [Google Scholar] [CrossRef] [PubMed]
- Ioan, I.; Poussel, M.; Coutier, L.; Plevkova, J.; Poliacek, I.; Bolser, D.C.; Davenport, P.W.; Derelle, J.; Hanacek, J.; Tatar, M.; et al. What is chronic cough in children? Front. Physiol. 2014, 5, 322. [Google Scholar] [CrossRef] [PubMed]
- Mîndru, D.E.; Păduraru, G.; Rusu, C.D.; Țarcă, E.; Azoicăi, A.N.; Roșu, S.T.; Curpăn, A.Ș.; Ciomaga Jitaru, I.M.; Pădureț, I.A.; Luca, A.C. Foreign Body Aspiration in Children-Retrospective Study and Management Novelties. Medicina 2023, 59, 1113. [Google Scholar] [CrossRef]
- Wallis, C.; Alexopoulou, E.; Antón-Pacheco, J.L.; Bhatt, J.M.; Bush, A.; Chang, A.B.; Charatsi, A.M.; Coleman, C.; Depiazzi, J.; Douros, K.; et al. ERS statement on tracheomalacia and bronchomalacia in children. Eur. Respir. J. 2019, 54, 1900382. [Google Scholar] [CrossRef]
- Chang, A.B.; Upham, J.W.; Masters, I.B.; Redding, G.R.; Gibson, P.G.; Marchant, J.M.; Grimwood, K. Protracted bacterial bronchitis: The last decade and the road ahead. Pediatr. Pulmonol. 2016, 51, 225–242. [Google Scholar] [CrossRef]
- Cao, J.Y.; Wang, Y.C.; Deng, X.X. Efficacy of β2-adrenergic receptor agonist combined with corticosteroid in the treatment of children with cough variant asthma. World J. Clin. Cases 2023, 11, 7610–7618. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Wu, M.; Lin, H. Effect of Montelukast Combined with Budesonide on Inflammatory Response and Pulmonary Function in Children with Cough Variant Asthma: A Meta-analysis. J. Coll. Physicians Surg. Pak. 2023, 33, 1040–1049. [Google Scholar]
- Tian, C.; Xiong, S.; Li, S.; Song, X.; Zhang, Y.; Jiang, X.; Hou, X.; Zhang, Y.; Liu, C. Spirometry in the diagnosis of cough variant asthma in children. Pediatr. Pulmonol. 2024, 59, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; He, X.; Zhang, R. Clinical efficacy of montelukast sodium combination therapy for cough variant asthma in children: A meta-analysis. Pediatr. Pulmonol. 2024, 59, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.; Vandenplas, Y.; Singendonk, M.; Cabana, M.; DiLorenzo, C.; Gottrand, F.; Gupta, S.; Langendam, M.; Staiano, A.; Thapar, N.; et al. Pediatric Gastroesophageal Reflux Clinical Practice Guidelines: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 516–554. [Google Scholar] [CrossRef]
- Lee, A.S.; Lee, J.S.; He, Z.; Ryu, J.H. Reflux-Aspiration in Chronic Lung Disease. Ann. Am. Thorac. Soc. 2020, 17, 155–164. [Google Scholar] [CrossRef]
- Weinberger, M.; Hurvitz, M. Diagnosis and management of chronic cough: Similarities and differences between children and adults. F1000Res 2020, 9, 757. [Google Scholar] [CrossRef]
- Kravitz, H.; Gomberg, R.M.; Burnstine, R.C.; Hagler, S.; Korach, A. Psychogenic cough tic in children and adolescents: Nine case histories illustrate the need for re-evaluation of this common but frequently unrecognized problem. Clin. Pediatr. 1969, 8, 580–583. [Google Scholar] [CrossRef]
- Wright, M.F.A.; Balfour-Lynn, I.M. Habit-tic cough: Presentation and outcome with simple reassurance. Pediatr. Pulmonol. 2018, 53, 512–516. [Google Scholar] [CrossRef]
- Weinberger, M. The habit cough: Diagnosis and treatment. Pediatr. Pulmonol. 2018, 53, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.B.; Robertson, C.F.; van Asperen, P.P.; Glasgow, N.J.; Masters, I.B.; Teoh, L.; Mellis, C.M.; Landau, L.I.; Marchant, J.M.; Morris, P.S. A cough algorithm for chronic cough in children: A multicenter, randomized controlled study. Pediatrics 2013, 131, 1576–1583. [Google Scholar] [CrossRef]
- Karabel, M.; Kelekçi, S.; Karabel, D.; Gürkan, M.F. The evaluation of children with prolonged cough accompanied by American College of Chest Physicians guidelines. Clin. Respir. J. 2014, 8, 152–159. [Google Scholar] [CrossRef]
- Mukerji, S.S.; Yenduri, N.J.S.; Chiou, E.; Moonnumakal, S.P.; Bedwell, J.R. A multi-disciplinary approach to chronic cough in children. Laryngoscope Investig. Otolaryngol. 2022, 7, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Kantar, A.; Chang, A.B.; Shields, M.D.; Marchant, J.M.; Grimwood, K.; Grigg, J.; Priftis, K.N.; Cutrera, R.; Midulla, F.; Brand, P.L.P.; et al. ERS statement on protracted bacterial bronchitis in children. Eur. Respir. J. 2017, 50, 1602139. [Google Scholar] [CrossRef] [PubMed]
- Nadim, F.; Bucher, D. Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 2014, 29, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, D.; Nagai, T.; Yoshimoto, J.; Kaibuchi, K. Neuromodulator regulation and emotions: Insights from the crosstalk of cell signaling. Front. Mol. Neurosci. 2024, 17, 1376762. [Google Scholar] [CrossRef] [PubMed]
- Alcedo, J.; Prahlad, V. Neuromodulators: An essential part of survival. J. Neurogenet. 2020, 34, 475–481. [Google Scholar] [CrossRef]
- Marcus, D.J.; Bruchas, M.R. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol. Rev. 2023, 75, 1119–1139. [Google Scholar] [CrossRef]
- Mazzone, S.B. Neurobiology of Coughing in Children. J. Clin. Med. 2023, 12, 7285. [Google Scholar] [CrossRef]
- Chung, K.F.; McGarvey, L.; Song, W.J.; Chang, A.B.; Lai, K.; Canning, B.J.; Birring, S.S.; Smith, J.A.; Mazzone, S.B. Cough hypersensitivity and chronic cough. Nat. Rev. Dis. Primers 2022, 8, 45. [Google Scholar] [CrossRef]
- Manti, S.; Tosca, M.A.; Licari, A.; Brambilla, I.; Foiadelli, T.; Ciprandi, G.; Marseglia, G.L. Cough Remedies for Children and Adolescents: Current and Future Perspectives. Paediatr. Drugs 2020, 22, 617–634. [Google Scholar] [CrossRef]
- Marseglia, G.L.; Ciprandi, G. Levodropropizine for children and adolescents with acute post-viral cough: An evidence-based choice. Minerva Pediatr. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Nguyen, L.; Thomas, K.L.; Lucke-Wold, B.P.; Cavendish, J.Z.; Crowe, M.S.; Matsumoto, R.R. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol. Ther. 2016, 159, 1–22. [Google Scholar] [CrossRef]
- Corado, C.R.; McKemie, D.S.; Knych, H.K. Pharmacokinetics of dextromethorphan and its metabolites in horses following a single oral administration. Drug Test Anal. 2017, 9, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Yoder, K.E.; Shaffer, M.L.; La Tournous, S.J.; Paul, I.M. Child assessment of dextromethorphan, diphenhydramine, and placebo for nocturnal cough due to upper respiratory infection. Clin. Pediatr. 2006, 45, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Paul, I.M.; Beiler, J.; McMonagle, A.; Shaffer, M.L.; Duda, L.; Berlin, C.M., Jr. Effect of honey, dextromethorphan, and no treatment on nocturnal cough and sleep quality for coughing children and their parents. Arch. Pediatr. Adolesc. Med. 2007, 161, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Meeves, S.G.; Cruz-Rivera, M.; Leyva, R.A.; Wilson, B.L.; Moreira, S.A.; Gelotte, C.K.; Jayawardena, S. Objective and self-reported evidence of dextromethorphan antitussive efficacy in children, aged 6–11 years, with acute cough due to the common cold. Pediatr. Pulmonol. 2023, 58, 2229–2239. [Google Scholar] [CrossRef]
- Available online: http://www.mhra.gov.uk/home/groups/pl-p/documents/websiteresources/con041374.pdf (accessed on 30 August 2024).
- Bryner, J.K.; Wang, U.K.; Hui, J.W.; Bedodo, M.; MacDougall, C.; Anderson, I.B. Dextromethorphan abuse in adolescence: An increasing trend: 1999–2004. Arch. Pediatr. Adolesc. Med. 2006, 160, 1217–1222. [Google Scholar] [CrossRef]
- Pathan, H.; Williams, J. Basic opioid pharmacology: An update. Br. J. Pain 2012, 6, 11–16. [Google Scholar] [CrossRef]
- Knych, H.K.; Baden, R.W.; Gretler, S.R.; McKemie, D.S. Characterization of the in vitro CYP450 mediated metabolism of the polymorphic CYP2D6 probe drug codeine in horses. Biochem. Pharmacol. 2019, 168, 184–192. [Google Scholar] [CrossRef]
- Peechakara, B.V.; Tharp, J.G.; Eriator, I.I.; Gupta, M. Codeine. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526029/ (accessed on 30 August 2024).
- Available online: https://www.ema.europa.eu/en/medicines/human/referrals/codeine-containing-medicinal-products-treatment-cough-or-cold-paediatric-patients (accessed on 30 August 2024).
- Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-restricts-use-prescription-codeine-pain-and-cough-medicines-and (accessed on 30 August 2024).
- Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-requires-labeling-changes-prescription-opioid-cough-and-cold (accessed on 30 August 2024).
- Taylor, J.A.; Novack, A.H.; Almquist, J.R.; Rogers, J.E. Efficacy of cough suppressants in children. J. Pediatr. 1993, 122, 799–802. [Google Scholar] [CrossRef]
- Cunico, D.; Rossi, A.; Verdesca, M.; Principi, N.; Esposito, S. Pain Management in Children Admitted to the Emergency Room: A Narrative Review. Pharmaceuticals 2023, 16, 1178. [Google Scholar] [CrossRef]
- Machado, A.K.M.D.S.; Nemitz, M.C.; Todeschini, V.; Sangoi, M.D.S. Characteristics, Properties and Analytical Methods for Determination of Dropropizine and Levodropropizine: A Review. Crit. Rev. Anal. Chem. 2021, 51, 174–182. [Google Scholar] [CrossRef]
- Lavezzo, A.; Melillo, G.; Clavenna, G.; Omini, C. Peripheral site of action of levodropropizine in experimentally-induced cough: Role of sensory neuropeptides. Pulm. Pharmacol. 1992, 5, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Birring, S.; de Blasio, F.; Dicpinigaitis, P.V.; Fontana, G.; Lanata, L.; Page, C.; Saibene, F.; Zanasi, A. Antitussive therapy: A role for levodropropizine. Pulm. Pharmacol. Ther. 2019, 56, 79–85. [Google Scholar] [CrossRef]
- Mannini, C.; Lavorini, F.; Zanasi, A.; Saibene, F.; Lanata, L.; Fontana, G. A Randomized Clinical Trial Comparing the Effects of Antitussive Agents on Respiratory Center Output in Patients with Chronic Cough. Chest 2017, 151, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Zanasi, A.; Lanata, L.; Fontana, G.; Saibene, F.; Dicpinigaitis, P.; De Blasio, F. Levodropropizine for treating cough in adult and children: A meta-analysis of published studies. Multidiscip. Respir. Med. 2015, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, D.B.; Zhorov, B.S. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J. Gen. Physiol. 2017, 149, 465–481. [Google Scholar] [CrossRef]
- Di Maio, G.; Villano, I.; Ilardi, C.R.; Messina, A.; Monda, V.; Iodice, A.C.; Porro, C.; Panaro, M.A.; Chieffi, S.; Messina, G.; et al. Mechanisms of Transmission and Processing of Pain: A Narrative Review. Int. J. Environ. Res. Public Health 2023, 20, 3064. [Google Scholar] [CrossRef]
- Erb, T.O.; von Ungern-Sternberg, B.S.; Keller, K.; Frei, F.J. The effect of intravenous lidocaine on laryngeal and respiratory reflex responses in anaesthetised children. Anaesthesia 2013, 68, 13–20. [Google Scholar] [CrossRef]
- Hu, Y.; Du, M.C.; Zhu, G.H.; Long, X.; Jiang, J.J.; Gong, Y. 50% efficacy dose of intravenous lidocaine in supressing sufentanil-induced cough in children: A randomised controlled trial. BMC Anesthesiol. 2024, 24, 149. [Google Scholar] [CrossRef] [PubMed]
- Truesdale, K.; Jurdi, A. Nebulized lidocaine in the treatment of intractable cough. Am. J. Hosp. Palliat. Care 2013, 30, 587–589. [Google Scholar] [CrossRef]
- Parisi, G.F.; Licari, A.; Papale, M.; Manti, S.; Salpietro, C.; Marseglia, G.L.; Leonardi, S. Antihistamines: ABC for the pediatricians. Pediatr. Allergy Immunol. 2020, 31, 34–36. [Google Scholar] [CrossRef]
- Parisi, G.F.; Leonardi, S.; Ciprandi, G.; Corsico, A.; Licari, A.; Miraglia Del Giudice, M.; Peroni, D.; Salpietro, C.; Marseglia, G.L. Antihistamines in children and adolescents: A practical update. Allergol. Immunopathol. 2020, 48, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, G.; Buscaglia, S.; Catrullo, A.; Marchesi, E.; Bianchi, B.; Canonica, G.W. Loratadine in the treatment of cough associated with allergic rhinoconjunctivitis. Ann. Allergy Asthma Immunol. 1995, 75, 115–120. [Google Scholar] [PubMed]
- Smith, S.M.; Schroeder, K.; Fahey, T. Over-the-counter (OTC) medications for acute cough in children and adults in community settings. Cochrane Database Syst. Rev. 2014, 2014, CD001831. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, W.; Jiang, Z.; Xi, X.; Qi, G. Clinical efficacy of montelukast sodium combined with budesonide or combined with loratadine in treating children with cough variant asthma and influence on inflammatory factors in the serum. Exp. Ther. Med. 2019, 18, 411–417. [Google Scholar] [CrossRef]
- Ali, Z.; Ismail, M.; Khan, F.; Sajid, H. Association of H1-antihistamines with torsade de pointes: A pharmacovigilance study of the food and drug administration adverse event reporting system. Expert Opin. Drug Saf. 2021, 20, 101–107. [Google Scholar] [CrossRef]
- Catania, M.A.; Cuzzocrea, S. Pharmacological and clinical overview of cloperastine in treatment of cough. Ther. Clin. Risk Manag. 2011, 7, 83–92. [Google Scholar]
- Luo, H.Y.; Long, H.Z.; Zhou, Z.W.; Xu, S.G.; Li, F.J.; Cheng, Y.; Wen, D.D.; Deng, P.; Gao, L.C. Pharmacokinetics, Bioequivalence and Safety of Cloperastine in Chinese Healthy Subjects Under Fasting and Postprandial Conditions. Drugs R&D 2022, 22, 311–320. [Google Scholar]
- Scotti, L.; Borzani, M. Cloperastine fendizoate in the treatment of cough-producing diseases in pediatrics. Minerva Pediatr. 1988, 40, 283–286. [Google Scholar]
- Svitaylo, O.A. Efficacy and tolerability of cloperastine fendizoate in the treatment of children and adolescents with a cough caused by respiratory infections: Effect on night-time cough and the quality of sleep of patients and parents. A randomized, double-blind, placebo-controlled study. Int. J. Drugs Ther. 2005, 22, 35–43. [Google Scholar]
- Pecoraro, L.; Peterle, E.; Dalla Benetta, E.; Piazza, M.; Chatziparasidis, G.; Kantar, A. Well-Established and Traditional Use of Vegetal Extracts as an Approach to the “Deep Roots” of Cough. Children 2024, 11, 584. [Google Scholar] [CrossRef]
- Crichton, M.; Marshall, S.; Marx, W.; Isenring, E.; Lohning, A. Therapeutic health effects of ginger (Zingiber officinale): Updated narrative review exploring the mechanisms of action. Nutr. Rev. 2023, 8, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, K.E.; Frost, E.A.; Remnant, E.J.; Schell, K.R.; Cokcetin, N.N.; Carter, D.A. The role of honey in the ecology of the hive: Nutrition, detoxification, longevity, and protection against hive pathogens. Front. Nutr. 2022, 9, 954170. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Anjum, S.I.; Rahman, K.; Ansari, M.J.; Khan, W.U.; Kamal, S.; Khattak, B.; Muhammad, A.; Khan, H.U. Honey: Single food stuff comprises many drugs. Saudi J. Biol. Sci. 2018, 25, 320–325. [Google Scholar] [CrossRef]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and Health: A Review of Recent Clinical Research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar]
- Lam, S.H.F.; Homme, J.; Avarello, J.; Heins, A.; Pauze, D.; Mace, S.; Dietrich, A.; Stoner, M.; Chumpitazi, C.E.; Saidinejad, M. Use of antitussive medications in acute cough in young children. J. Am. Coll. Emerg. Physicians Open 2021, 2, e12467. [Google Scholar] [CrossRef]
- Anibasa, F.O.; Abuba, T.; Dankyau, M. Effect of Honey on Cough Symptoms in Children with Upper Respiratory Tract Infection: A Randomised Controlled Trial. West Afr. J. Med. 2022, 39, 928–934. [Google Scholar]
- Nishimura, T.; Muta, H.; Hosaka, T.; Ueda, M.; Kishida, K.; Honey and Coughs Study Group of the Society of Ambulatory and General Paediatrics of Japan. Multicentre, randomised study found that honey had no pharmacological effect on nocturnal coughs and sleep quality at 1–5 years of age. Acta Paediatr. 2022, 111, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Kuitunen, I.; Renko, M. Honey for acute cough in children—A systematic review. Eur. J. Pediatr. 2023, 182, 3949–3956. [Google Scholar] [CrossRef]
- Kuang, Y.; Li, B.; Fan, J.; Qiao, X.; Ye, M. Antitussive and expectorant activities of licorice and its major compounds. Bioorg. Med. Chem. 2018, 26, 278–284. [Google Scholar] [CrossRef]
- Rabbani, F.; Raeisi, M.; Keivanfar, M.; Saffaei, A.; Sabzghabaee, A.M. The Efficacy of an Oral Formulation of Glycyrrhiza glabra, Viola odorata, and Operculina turpethum as an Add-on Therapy for Mild-to-moderate Childhood Asthma: A Randomized Placebo-Controlled Clinical Trial. J. Res. Pharm. Pract. 2023, 11, 116–123. [Google Scholar] [CrossRef]
- Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/final-community-herbal-monograph-glycyrrhiza-glabra-l-andor-glycyrrhiza-inflata-bat-andor-glycyrrhiza-uralensis-fisch-radix-first-version_en.pdf (accessed on 30 August 2024).
- Riachi, L.G.; De Maria, C.A. Peppermint antioxidants revisited. Food Chem. 2015, 176, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Kenia, P.; Houghton, T.; Beardsmore, C. Does inhaling menthol affect nasal patency or cough? Pediatr. Pulmonol. 2008, 43, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/european-union-herbal-monograph-mentha-x-piperita-l-aetheroleum-revision-1_en.pdf (accessed on 30 August 2024).
- Eskandarpour, E.; Ahadi, A.; Jazani, A.M.; Azgomi, R.N.D.; Molatefi, R. Thymus vulgaris ameliorates cough in children with asthma exacerbation: A randomized, triple-blind, placebo-controlled clinical trial. Allergol. Immunopathol. 2024, 52, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-thymus-vulgaris-l-thymus-zygis-l-aetheroleum-revision-1_en.pdf (accessed on 30 August 2024).
Duration | Etiology | Evaluation | |
---|---|---|---|
Acute cough | <4 weeks | URTIs Croup LRTIs Ambiental agents’ exposition | As acute cough is usually self-limited, a “wait and see” approach is preferred |
Chronic cough | >4 weeks | PBB (children aged 1–2) Asthma (children aged >2) GERD, asthma, post-infective, psychogenic cough (adolescents) | As chronic cough is often a symptom of an underlying disease, pediatric-specific cough management protocols should be used |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foti Randazzese, S.; Toscano, F.; Gambadauro, A.; La Rocca, M.; Altavilla, G.; Carlino, M.; Caminiti, L.; Ruggeri, P.; Manti, S. Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature. Int. J. Mol. Sci. 2024, 25, 11229. https://doi.org/10.3390/ijms252011229
Foti Randazzese S, Toscano F, Gambadauro A, La Rocca M, Altavilla G, Carlino M, Caminiti L, Ruggeri P, Manti S. Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature. International Journal of Molecular Sciences. 2024; 25(20):11229. https://doi.org/10.3390/ijms252011229
Chicago/Turabian StyleFoti Randazzese, Simone, Fabio Toscano, Antonella Gambadauro, Mariarosaria La Rocca, Giulia Altavilla, Mariagrazia Carlino, Lucia Caminiti, Paolo Ruggeri, and Sara Manti. 2024. "Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature" International Journal of Molecular Sciences 25, no. 20: 11229. https://doi.org/10.3390/ijms252011229
APA StyleFoti Randazzese, S., Toscano, F., Gambadauro, A., La Rocca, M., Altavilla, G., Carlino, M., Caminiti, L., Ruggeri, P., & Manti, S. (2024). Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature. International Journal of Molecular Sciences, 25(20), 11229. https://doi.org/10.3390/ijms252011229