Downregulation of the GhROD1 Gene Improves Cotton Fiber Fineness by Decreasing Acyl Pool Saturation, Stimulating Small Heat Shock Proteins (sHSPs), and Reducing H2O2 Production
Abstract
:1. Introduction
2. Results
2.1. Downregulation of GhROD1 Significantly Increases Linoleic Acid in Fibers
2.2. Downregulating GhROD1 Improves Fiber Fineness
2.3. Downregulation of GhROD1 Leads to Upregulation of sHSPs and Downregulation of Secondary Wall Synthesis-Associated Genes
2.4. Small HSPs Inhibit Secondary Wall Synthesis by Reducing ROS Levels in Fibers
3. Discussion
3.1. GhROD1-Mediated DAG-to-PC Interconversion May Contribute to Fatty Acid Desaturation in Cotton Fibers
3.2. Alterations in Phospholipid Fatty Acid of Fibers May Activate the ER Stress Response
3.3. The Upregulation of sHSPs Can Reduce the Accumulation of ROS in Cells and Inhibit the Synthesis of Secondary Wall
4. Materials and Methods
4.1. Construction of Vectors
4.2. Plant Materials and Growth Conditions
4.3. RNA Extraction and qRT-PCR
4.4. Fatty Acid Analysis
4.5. Lipidomic Analyses
4.6. Fiber Cell Wall Thickness and Quality Assessment
4.7. RNA Sequencing and Transcriptome Analysis
4.8. Ovule Culture and Treatment
4.9. Statistical Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, J.; Maeda, M.; Chang, A.; Landivar, J.; Yeom, J.; McGinty, J. Unmanned aerial system assisted framework for the selection of high yielding cotton genotypes. Comput. Electron. Agric. 2018, 152, 74–81. [Google Scholar] [CrossRef]
- Khan, M.A.; Wahid, A.; Ahmad, M.; Tahir, M.T.; Ahmed, M.; Ahmad, S.; Hasanuzzaman, M. World cotton production and consumption: An overview. In Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies; Ahmad, S., Hasanuzzaman, M., Eds.; Springer: Singapore, 2020; pp. 1–7. [Google Scholar]
- Kim, H.J.; Triplett, B.A. Cotton fiber growth in planta and in vitro models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001, 127, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Haigler, C.H.; Betancur, L.; Stiff, M.R.; Tuttle, J.R. Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Front. Plant Sci. 2012, 3, 104. [Google Scholar] [CrossRef] [PubMed]
- Ohlrogge, J.; Browse, J.; Jaworski, J.; Somerville, C. Lipids. In Biochemistry and Molecular Biology of Plants; Buchanan, B.B., Gruissem, W., Jones, R.L., Eds.; Wiley: Oxford, UK, 2015; pp. 337–344. [Google Scholar]
- Shi, Y.H.; Zhu, S.W.; Mao, X.Z.; Feng, J.X.; Qin, Y.M.; Zhang, L.; Cheng, J.; Wei, L.P.; Wang, Z.Y.; Zhu, Y.X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 2006, 18, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.Y.; Wang, L.J.; Chen, S.P.; Hu, W.L.; Chen, X.Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 2007, 17, 422–434. [Google Scholar] [CrossRef]
- Wang, X.C.; Li, Q.; Jin, X.; Xiao, G.H.; Liu, G.J.; Liu, N.J.; Qin, Y.M. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. J. Proteomics 2015, 114, 16–27. [Google Scholar] [CrossRef]
- Xu, F.; Chen, Q.; Huang, L.; Luo, M. Advances about the roles of membranes in cotton fiber development. Membranes 2021, 11, 471. [Google Scholar] [CrossRef]
- Wanjie, S.W.; Welti, R.; Moreau, R.A.; Chapman, K.D. Identification and quantification of glycerolipids in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases. Lipids 2005, 40, 773–785. [Google Scholar] [CrossRef]
- Liu, G.J.; Xiao, G.H.; Liu, N.J.; Liu, D.; Chen, P.S.; Qin, Y.M.; Zhu, Y.X. Targeted lipidomics studies reveal that linolenic acid promotes cotton fiber elongation by activating phosphatidylinositol and phosphatidylinositol monophosphate biosynthesis. Mol. Plant 2015, 8, 911–921. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A comprehensive classification system for lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef]
- van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Stymne, S.; Appelqvist, L.A. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds. Eur. J. Biochem. 1978, 90, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Bates, P.D. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim. Biophys. Acta 2016, 1861, 1214–1225. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Xin, Z.; Ren, Z.; Miquel, M.; Browse, J. An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 18837–18842. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, B.A.; Romsdahl, T.B.; McGinn, M.G.; Nazarenus, T.J.; Cahoon, E.B.; Chapman, K.D.; Sedbrook, J.C. CRISPR/Cas9-Induced fad2 and rod1 mutations stacked with fae1 confer high oleic acid seed oil in pennycress (Thlaspi arvense L.). Front. Plant Sci. 2021, 12, 652319. [Google Scholar] [CrossRef] [PubMed]
- Sandgrind, S.; Li, X.; Ivarson, E.; Wang, E.S.; Guan, R.; Kanagarajan, S.; Zhu, L.H. Improved fatty acid composition of field cress (Lepidium campestre) by CRISPR/Cas9-mediated genome editing. Front. Plant Sci. 2023, 14, 1076704. [Google Scholar] [CrossRef]
- Bai, S.; Wallis, J.G.; Denolf, P.; Engelen, S.; Bengtsson, J.D.; Van Thournout, M.; Dierickx, J.; Haesendonckx, B.; Browse, J. The biochemistry of headgroup exchange during triacylglycerol synthesis in canola. Plant J. 2020, 103, 83–94. [Google Scholar] [CrossRef]
- Joseph, G.; Montalvo, J. Relationships between micronaire, fineness, and maturity.part I. fundamentals. J. Cotton Sci. 2005, 9, 81–88. [Google Scholar]
- Kaur, H.; Petla, B.P.; Kamble, N.U.; Singh, A.; Rao, V.; Salvi, P.; Ghosh, S.; Majee, M. Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Front. Plant Sci. 2015, 6, 713. [Google Scholar] [CrossRef]
- Zhai, M.; Sun, Y.; Jia, C.; Peng, S.; Liu, Z.; Yang, G. Over-expression of JrsHSP17.3 gene from Juglans regia confer the tolerance to abnormal temperature and NaCl stresses. J. Plant Biol. 2016, 59, 549–558. [Google Scholar] [CrossRef]
- Zhong, L.; Shi, Y.; Xu, S.; Xie, S.; Huang, X.; Li, Y.; Qu, C.; Liu, J.; Liao, J.; Huang, Y.; et al. Heterologous overexpression of heat shock protein 20 genes of different species of yellow Camellia in Arabidopsis thaliana reveals their roles in high calcium resistance. BMC Plant Biol. 2024, 24, 5. [Google Scholar] [CrossRef] [PubMed]
- Potikha, T.S.; Collins, C.C.; Johnson, D.I.; Delmer, D.P.; Levine, A. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 1999, 119, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, X.; Wang, L.; Zeng, J.; Huang, L.; Xiong, L.; Song, S.; Zhao, J.; Hou, L.; Wang, F.; et al. Sucrose enhanced reactive oxygen species generation promotes cotton fibre initiation and secondary cell wall deposition. Plant Biotechnol. J. 2021, 19, 1092–1094. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Ji, M.; You, J.; Zhang, Y.; Lindsey, K.; Zhang, X.; Tu, L.; Wang, M. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. Plant J. 2024, 118, 405–422. [Google Scholar] [CrossRef]
- Nakamura, Y. Plant phospholipid diversity: Emerging functions in metabolism and protein-lipid interactions. Trends Plant Sci. 2017, 22, 1027–1040. [Google Scholar] [CrossRef]
- Bates, P.D.; Fatihi, A.; Snapp, A.R.; Carlsson, A.S.; Browse, J.; Lu, C. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol. 2012, 160, 1530–1539. [Google Scholar] [CrossRef]
- Eichmann, T.O.; Lass, A. DAG tales: The multiple faces of diacylglycerol—Stereochemistry, metabolism, and signaling. Cell Mol. Life Sci. 2015, 72, 3931–3952. [Google Scholar] [CrossRef]
- Shindou, H.; Shimizu, T. Acyl-CoA:lysophospholipid acyltransferases. J. Biol. Chem. 2009, 284, 1–5. [Google Scholar] [CrossRef]
- Jennings, W.; Epand, R.M. CDP-diacylglycerol, a critical intermediate in lipid metabolism. Chem. Phys. Lipids 2020, 230, 104914. [Google Scholar] [CrossRef]
- McMaster, C.R.; Bell, R.M. Phosphatidylcholine biosynthesis via the CDP-choline pathway in Saccharomyces cerevisiae. Multiple mechanisms of regulation. J. Biol. Chem. 1994, 269, 14776–14783. [Google Scholar] [CrossRef]
- Kannan, M.; Sivaprakasam, C.; Prinz, W.A.; Nachiappan, V. Endoplasmic reticulum stress affects the transport of phosphatidylethanolamine from mitochondria to the endoplasmic reticulum in S. cerevisiae. Biochim. Biophys. Acta 2016, 1861, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Fouillen, L.; Maneta-Peyret, L.; Moreau, P. ER membrane lipid composition and metabolism: Lipidomic analysis. Methods Mol. Biol. 2018, 1691, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Wardhan, R.; Mudgal, P. Introduction to Biomembranes. In Textbook of Membrane Biology; Wardhan, R., Mudgal, P., Eds.; Springer: Singapore, 2017; pp. 1–28. [Google Scholar]
- Sanchez-Lopez, E.; Zimmerman, T.; Gomez del Pulgar, T.; Moyer, M.P.; Lacal Sanjuan, J.C.; Cebrian, A. Choline kinase inhibition induces exacerbated endoplasmic reticulum stress and triggers apoptosis via CHOP in cancer cells. Cell Death Dis. 2013, 4, e933. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Kanehara, K.; Nakamura, Y. Arabidopsis CHOLINE/ETHANOLAMINE KINASE 1 (CEK1) is a primary choline kinase localized at the endoplasmic reticulum (ER) and involved in ER stress tolerance. New Phytol. 2019, 223, 1904–1917. [Google Scholar] [CrossRef] [PubMed]
- Kanehara, K.; Cho, Y.; Yu, C.Y. A lipid viewpoint on the plant endoplasmic reticulum stress response. J. Exp. Bot. 2022, 73, 2835–2847. [Google Scholar] [CrossRef]
- Al-Whaibi, M.H. Plant heat-shock proteins: A mini review. J. King Saud. Univ. Sci. 2011, 23, 139–150. [Google Scholar] [CrossRef]
- Mishra, D.; Shekhar, S.; Singh, D.; Chakraborty, S.; Chakraborty, N. Heat Shock Proteins and Abiotic Stress Tolerance in Plants. In Regulation of Heat Shock Protein Responses; Asea, A., Kaur, P., Eds.; Springer: Cham, Switzerland, 2018; Volume 13, pp. 41–69. [Google Scholar]
- Sun, L.; Liu, Y.; Kong, X.; Zhang, D.; Pan, J.; Zhou, Y.; Wang, L.; Li, D.; Yang, X. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep. 2012, 31, 1473–1484. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, H.; Shi, J.; Wu, Y.; Jiang, J. Functional characterization of class I SlHSP17.7 gene responsible for tomato cold-stress tolerance. Plant Sci. 2020, 298, 110568. [Google Scholar] [CrossRef]
- Hovav, R.; Udall, J.A.; Chaudhary, B.; Hovav, E.; Flagel, L.; Hu, G.; Wendel, J.F. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet. 2008, 4, e25. [Google Scholar] [CrossRef]
- Tuttle, J.R.; Nah, G.; Duke, M.V.; Alexander, D.C.; Guan, X.; Song, Q.; Chen, Z.J.; Scheffler, B.E.; Haigler, C.H. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genom. 2015, 16, 477. [Google Scholar] [CrossRef]
- Luo, M.; Xiao, Y.; Li, X.; Lu, X.; Deng, W.; Li, D.; Hou, L.; Hu, M.; Li, Y.; Pei, Y. GhDET2, a steroid 5alpha-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J. 2007, 51, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, X.; Zhu, X.; Ding, B.; Jiang, L.; Zhang, H.; Li, S.; Cao, S.; Zhang, M.; Pei, Y.; et al. GhMYB52 like: A key factor that enhances lint yield by negatively regulating the lignin biosynthesis pathway in fibers of upland cotton (Gossypium hirsutum L.). Int. J. Mol. Sci. 2024, 25, 4921. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gross, R.W. Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass. Spectrom. Rev. 2005, 24, 367–412. [Google Scholar] [CrossRef] [PubMed]
- Han, L.B.; Li, Y.B.; Wang, H.Y.; Wu, X.M.; Li, C.L.; Luo, M.; Wu, S.J.; Kong, Z.S.; Pei, Y.; Jiao, G.L.; et al. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 2013, 25, 4421–4438. [Google Scholar] [CrossRef]
- Beasley, C.A.; Ting, I.P. The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am. J. Bot. 1973, 60, 130–139. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one“ bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
Length (mm) | Strength (cN/tex) | Micronaire | Elongation Ratio (%) | Uniformity | ||
---|---|---|---|---|---|---|
Line No. T3 generation | WT | 30.2 ± 0.4 b | 28.8 ± 0.7 b | 5.3 ± 0.0 a | 6.8 ± 0.0 a | 86.1 ± 0.7 a |
Ri3 | 31.3 ± 0.6 a | 30.0 ± 0.7 ab | 4.5 ± 0.1 c | 6.8 ± 0.0 a | 85.3 ± 0.7 ab | |
Ri4 | 29.7 ± 0.6 ab | 29.7 ± 0.4 ab | 5.0 ± 0.0 b | 6.8 ± 0.0 a | 85.8 ± 0.7 a | |
OE17 | 28.8 ± 0.6 c | 29.4 ± 1.4 b | 5.3 ± 0.1 a | 6.8 ± 0.0 a | 85.0 ± 0.9 b | |
OE25 | 29.1 ± 0.5 c | 31.1 ± 0.8 a | 5.4 ± 0.1 a | 6.8 ± 0.0 a | 86.4 ± 0.6 a | |
Line No. T4 generation | WT | 30.1 ± 0.4 bc | 31.8 ± 1.2 b | 5.3 ± 0.1 b | 6.8 ± 0.0 a | 84.5 ± 0.6 b |
Ri3 | 32.0 ± 0.5 a | 35.8 ± 1.2 a | 4.6 ± 0.1 d | 6.8 ± 0.0 a | 85.1 ± 0.4 b | |
Ri4 | 30.0 ± 0.4 bc | 32.4 ± 0.7 b | 5.0 ± 0.1 c | 6.8 ± 0.0 a | 84.8 ± 0.7 b | |
OE17 | 30.6 ± 0.7 b | 31.5 ± 0.5 b | 5.3 ± 0.1 ab | 6.9 ± 0.1 a | 85.4 ± 0.4 a | |
OE25 | 29.2 ± 0.9 c | 32.0 ± 0.6 b | 5.4 ± 0.1 a | 6.8 ± 0.0 a | 85.5 ± 0.5 a | |
Line No. T5 generation | WT | 29.3 ± 0.4 ab | 31.7 ± 1.7 a | 5.3 ± 0.1 b | 6.9 ± 0.0 a | 86.1 ± 0.8 a |
Ri3 | 30.8 ± 0.3 a | 33.9 ± 0.6 a | 4.6 ± 0.1 d | 6.9 ± 0.0 a | 84.6 ± 0.6 a | |
Ri4 | 29.8± 0.4 ab | 32.7 ± 1.1 a | 4.8 ± 0.0 c | 6.8 ± 0.0 a | 84.1 ± 0.8 a | |
OE17 | 29.4 ± 0.8 ab | 31.7 ± 1.2 a | 5.2 ± 0.1 b | 6.9 ± 0.0 a | 86.2 ± 0.3 a | |
OE25 | 28.7 ± 0.7 b | 31.7 ± 0.9 a | 5.6 ± 0.1 a | 6.8 ± 0.1 a | 86.1 ± 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, B.; Liu, B.; Zhu, X.; Zhang, H.; Hu, R.; Li, S.; Zhang, L.; Jiang, L.; Yang, Y.; Zhang, M.; et al. Downregulation of the GhROD1 Gene Improves Cotton Fiber Fineness by Decreasing Acyl Pool Saturation, Stimulating Small Heat Shock Proteins (sHSPs), and Reducing H2O2 Production. Int. J. Mol. Sci. 2024, 25, 11242. https://doi.org/10.3390/ijms252011242
Ding B, Liu B, Zhu X, Zhang H, Hu R, Li S, Zhang L, Jiang L, Yang Y, Zhang M, et al. Downregulation of the GhROD1 Gene Improves Cotton Fiber Fineness by Decreasing Acyl Pool Saturation, Stimulating Small Heat Shock Proteins (sHSPs), and Reducing H2O2 Production. International Journal of Molecular Sciences. 2024; 25(20):11242. https://doi.org/10.3390/ijms252011242
Chicago/Turabian StyleDing, Bo, Bi Liu, Xi Zhu, Huiming Zhang, Rongyu Hu, Silu Li, Liuqin Zhang, Linzhu Jiang, Yang Yang, Mi Zhang, and et al. 2024. "Downregulation of the GhROD1 Gene Improves Cotton Fiber Fineness by Decreasing Acyl Pool Saturation, Stimulating Small Heat Shock Proteins (sHSPs), and Reducing H2O2 Production" International Journal of Molecular Sciences 25, no. 20: 11242. https://doi.org/10.3390/ijms252011242
APA StyleDing, B., Liu, B., Zhu, X., Zhang, H., Hu, R., Li, S., Zhang, L., Jiang, L., Yang, Y., Zhang, M., Zhao, J., Pei, Y., & Hou, L. (2024). Downregulation of the GhROD1 Gene Improves Cotton Fiber Fineness by Decreasing Acyl Pool Saturation, Stimulating Small Heat Shock Proteins (sHSPs), and Reducing H2O2 Production. International Journal of Molecular Sciences, 25(20), 11242. https://doi.org/10.3390/ijms252011242