Waste-Derived Caffeine for Green Synthesis of Rhenium Nanoparticles with Enhanced Catalytic Activity in the Hydrogenation of 4-Nitrophenol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Hydrogenation of 4-NP over CAF-Stabilized ReNPs
2.2. The Role of CAF in Synthesis and Capping of ReNPs
2.3. CAF-Stabilized ReNP Phase Identification
2.4. CAF-Stabilized ReNP Morphology
2.5. CAF-Stabilized ReNPs Versus Other Catalysts for NAC Hydrogenations
3. Materials and Methods
3.1. Materials, Methods of Analyses, and Instrumentation
3.2. Caffeine Extraction
3.3. Synthesis of CAF-Stabilized Re Catalysts
3.4. Catalytic Hydrogenation of 4-NP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scully, D.S.; Jaiswal, A.K.; Abu-Ghannam, N. An investigation into spent coffee waste as a renewable source of bioactive compounds and industrially important sugars. Bioengineering 2016, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Mirón-Mérida, V.A.; Barragán-Huerta, B.E.; Gutiérrez-Macías, P. Coffee waste: A source of valuable technologies for sustainable development. In Valorization of Agri-Food Wastes and By-Products; Elsevier: Amsterdam, The Netherlands, 2021; pp. 173–198. [Google Scholar]
- Blinová, L.; Sirotiak, M.; Bartošová, A.; Soldán, M. Utilization of waste from coffee production. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 2017, 25, 91–101. [Google Scholar]
- DiCiccio, A.M.; Lee, Y.-A.L.; Glettig, D.L.; Walton, E.S.; de la Serna, E.L.; Montgomery, V.A.; Grant, T.M.; Langer, R.; Traverso, G. Caffeine-catalyzed gels. Biomaterials 2018, 170, 127–135. [Google Scholar] [PubMed]
- Mohamadpour, F. Caffeine: A green, natural and biodegradable catalyst for convenient and expedient eco-safe synthesis of 1H-pyrazolo [1,2-b] phthalazine-5,10-dione derivatives under solvent-free conditions. Indian J. Chem. 2019, 58B, 1398–1406. [Google Scholar]
- Chaudhary, A.; Mathur, D.; Gaba, R.; Pasricha, R.; Sharma, K. Greening up organic reactions with caffeine: Applications, recent developments, and future directions. RSC Adv. 2024, 14, 8932–8962. [Google Scholar] [CrossRef]
- Gholinejad, M.; Afrasi, M.; Najera, C. Caffeine gold complex supported on magnetic nanoparticles as a green and high turnover frequency catalyst for room temperature A3 coupling reaction in water. Appl. Organomet. Chem. 2019, 33, e4760. [Google Scholar] [CrossRef]
- Salamatmanesh, A.; Kazemi Miraki, M.; Yazdani, E.; Heydari, A. Copper (I)–caffeine complex immobilized on silica-coated magnetite nanoparticles: A recyclable and eco-friendly catalyst for click chemistry from organic halides and epoxides. Catal. Lett. 2018, 148, 3257–3268. [Google Scholar] [CrossRef]
- Hasan, I.; Alharthi, F.A. Caffeine-alginate immobilized CeTiO4 bionanocomposite for efficient photocatalytic degradation of methylene blue. J. Photochem. Photobiol. A Chem. 2022, 433, 114126. [Google Scholar] [CrossRef]
- Ju, K.-S.; Parales, R.E. Nitroaromatic compounds, from synthesis to biodegradation. Microbiol. Mol. Biol. Rev. 2010, 74, 250–272. [Google Scholar]
- Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2019, 120, 683–733. [Google Scholar] [CrossRef]
- Cyganowski, P. Fully recyclable gold-based nanocomposite catalysts with enhanced reusability for catalytic hydrogenation of p-nitrophenol. Colloids Surf. A 2021, 612, 125995. [Google Scholar] [CrossRef]
- Pandey, S.; Mishra, S.B. Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr. Polym. 2014, 113, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tao, J.; Wang, Y.; Huang, L.; Ding, X. Remarkable reduction ability towards p-nitrophenol by a synergistic effect against the aggregation and leaching of palladium nanoparticles in dendritic supported catalysts. Appl. Surf. Sci. 2022, 574, 151702. [Google Scholar] [CrossRef]
- Kästner, C.; Thünemann, A.F. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 2016, 32, 7383–7391. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Silver nanoparticles: Mechanism of action and probable bio-application. J. Funct. Biomater. 2020, 11, 84. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, T.; Nadhman, A. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv. Colloid Interface Sci. 2016, 234, 132–141. [Google Scholar]
- Mukherjee, S.; Chowdhury, D.; Kotcherlakota, R.; Patra, S.; Vinothkumar, B.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 2014, 4, 316. [Google Scholar] [CrossRef]
- Elavazhagan, T.; Arunachalam, K.D. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int. J. Nanomed. 2011, 6, 1265–1278. [Google Scholar] [CrossRef]
- Jin, H.; Liu, X.; An, P.; Tang, C.; Yu, H.; Zhang, Q.; Peng, H.-J.; Gu, L.; Zheng, Y.; Song, T. Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution. Nat. Commun. 2023, 14, 354. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.; He, Y.; Wang, J.; Xue, T.; Wu, H.; Guan, Y.; Wu, P. Synthesis of etheric ester based biofuel additive over bifunctional metal/zeolite catalysts comprising NiRe nanoparticles and Beta zeolite. Fuel 2023, 344, 128028. [Google Scholar] [CrossRef]
- Adamska, K.; Smykała, S.; Zieliński, S.; Szymański, D.; Stelmachowski, P.; Kotarba, A.; Okal, J.; Kępiński, L. TiO2 supported rure nanocatalysts for soot oxidation: Effect of re and the support nature. Catal. Lett. 2023, 153, 1372–1389. [Google Scholar]
- Strategic Metal Invests. Available online: https://strategicmetalsinvest.com/rhenium-prices (accessed on 20 March 2024).
- Neal, R.D.; Inoue, Y.; Hughes, R.A.; Neretina, S. Catalytic reduction of 4-nitrophenol by gold catalysts: The influence of borohydride concentration on the induction time. J. Phys. Chem. C 2019, 123, 12894–12901. [Google Scholar] [CrossRef]
- Menumerov, E.; Hughes, R.A.; Neretina, S. Catalytic reduction of 4-nitrophenol: A quantitative assessment of the role of dissolved oxygen in determining the induction time. Nano Lett. 2016, 16, 7791–7797. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Lahoz, C.; Garcia-Herruzo, F.; Rodriguez-Maroto, J.; Rodriguez, J. Cobalt (II) removal from water by chemical reduction with sodium borohydride. Water Res. 1993, 27, 985–992. [Google Scholar] [CrossRef]
- Monje, A.F.B.; Parrado, L.X.; Gutiérrez-Guzmán, N. ATR-FTIR for Discrimination of Espresso and Americano Coffee Pods. 2018. Available online: http://www.sbicafe.ufv.br/handle/123456789/11126 (accessed on 20 March 2024).
- Cyganowski, P.; Caban, M.; Khan, M.A.; Marzec, M.M.; Zak, A.; Pohl, P.; Jamroz, P.; Bernasik, A.; Dzimitrowicz, A. The Use of Cold Atmospheric Pressure Plasma for the Synthesis of Saccharide-Stabilized Re Nanostructures Enabling Effective Deactivation of Nitro-Based Antimicrobial Agents. Plasma Chem. Plasma Process. 2023, 43, 199–224. [Google Scholar] [CrossRef]
- Dzimitrowicz, A.; Bielawska-Pohl, A.; Pohl, P.; Jermakowicz-Bartkowiak, D.; Jamroz, P.; Malik-Gajewska, M.; Klimczak, A.; Cyganowski, P. Application of Oil-in-Water Nanoemulsion Carrying Size-Defined Gold Nanoparticles Synthesized by Non-Thermal Plasma for the Human Breast Cancer Cell Lines Migration and Apoptosis. Plasma Chem. Plasma Process. 2020, 40, 1037–1106. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X. Metal–ion interactions with sugars. The crystal structure and FTIR study of an SrCl2–fructose complex. Carbohydr. Res. 2004, 339, 1421–1426. [Google Scholar] [CrossRef]
- Eid, M.M. Characterization of Nanoparticles by FTIR and FTIR-Microscopy. In Handbook of Consumer Nanoproducts; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–30. [Google Scholar]
- Dheyab, M.A.; Aziz, A.A.; Jameel, M.S.; Noqta, O.A.; Khaniabadi, P.M.; Mehrdel, B. Simple rapid stabilization method through citric acid modification for magnetite nanoparticles. Sci. Rep. 2020, 10, 10793. [Google Scholar]
- Cyganowski, P.; Lesniewicz, A.; Dzimitrowicz, A.; Wolska, J.; Pohl, P.; Jermakowicz-Bartkowiak, D. Molecular reactors for synthesis of polymeric nanocomposites with noble metal nanoparticles for catalytic decomposition of 4-nitrophenol. J. Colloid Interface Sci. 2019, 541, 226–233. [Google Scholar]
- Kolaylı, S.; Ocak, M.; Küçük, M.; Abbasoǧlu, R. Does caffeine bind to metal ions? Food Chem. 2004, 84, 383–388. [Google Scholar] [CrossRef]
- Nafisi, S.; Shamloo, D.S.; Mohajerani, N.; Omidi, A. A comparative study of caffeine and theophylline binding to Mg (II) and Ca (II) ions: Studied by FTIR and UV spectroscopic methods. J. Mol. Struct. 2002, 608, 1–7. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Khan, M.A.; Cyganowski, P.; Pohl, P.; Jamroz, P.; Tylus, W.; Motyka-Pomagruk, A.; Dzimitrowicz, A. Multiparameter optimization of non-thermal plasma-driven synthesis of carbohydrate-stabilized rhenium nanoparticles towards enhancement of their catalytical activity for reduction of nitroaromatic compounds. Colloids Surf. A Physicochem. Eng. Asp. 2024, 695, 134190. [Google Scholar] [CrossRef]
- Cyganowski, P.; Dzimitrowicz, A.; Jamroz, P.; Jermakowicz-Bartkowiak, D.; Pohl, P. Rhenium Nanostructures Loaded into Amino-Functionalized Resin as a Nanocomposite Catalyst for Hydrogenation of 4-Nitrophenol and 4-Nitroaniline. Polymers 2021, 13, 3796. [Google Scholar] [CrossRef] [PubMed]
- Cyganowski, P.; Dzimitrowicz, A.; Marzec, M.M.; Arabasz, S.; Sokołowski, K.; Lesniewicz, A.; Nowak, S.; Pohl, P.; Bernasik, A.; Jermakowicz-Bartkowiak, D. Catalytic reductions of nitroaromatic compounds over heterogeneous catalysts with rhenium sub-nanostructures. Sci. Rep. 2023, 13, 12789. [Google Scholar] [CrossRef]
- Wu, S.; Yan, S.; Qi, W.; Huang, R.; Cui, J.; Su, R.; He, Z. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Res. Lett. 2015, 10, 213. [Google Scholar] [CrossRef]
- Gangula, A.; Podila, R.; Karanam, L.; Janardhana, C.; Rao, A.M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 2011, 27, 15268–15274. [Google Scholar] [CrossRef]
- Bogireddy, N.; Pal, U.; Kumar, M.; Domínguez, J.; Gomez, L.M.; Agarwal, V. Green fabrication of 2D platinum superstructures and their high catalytic activity for mitigation of organic pollutants. Catal. Today 2021, 360, 185–193. [Google Scholar] [CrossRef]
- Reddy Bogireddy, N.K.; Anand, K.K.H.; Mandal, B.K. Catalytic efficiency of green synthesized palladium nanoparticles by Sterculia acuminata extract towards abatement of organic pollutants. Biointerface Res. Appl. Chem. 2018, 8, 3319–3323. [Google Scholar]
4-NP Hydrogenation k1 (min−1) | NP Synthesis Methodology | Ref. | |
---|---|---|---|
AuNPs | 0.0001 | Aspartame (reducing agent) mixed with a HAuCl4 solution | [40] |
AgNPs | 0.0002 | Breynia rhamnoides steam extract (as reducing agent) mixed with a AgNO3 solution | [41] |
PtNPs | 0.001 | Coffea Arabica seed extract (as reducer) mixed with a H2PtCl6 solution | [42] |
PdNPs | 0.179 | Sterculia acuminata seed extract (as reducer/stabilizer) mixed with a PdCl2 solution | [43] |
ReNPs | 0.255 | CAF solutions extracted from coffee and coffee grounds mixed with a NH4ReO4 solution | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuś, A.; Leśniewicz, A.; Dzimitrowicz, A.; Pohl, P.; Cyganowski, P. Waste-Derived Caffeine for Green Synthesis of Rhenium Nanoparticles with Enhanced Catalytic Activity in the Hydrogenation of 4-Nitrophenol. Int. J. Mol. Sci. 2024, 25, 11319. https://doi.org/10.3390/ijms252011319
Kuś A, Leśniewicz A, Dzimitrowicz A, Pohl P, Cyganowski P. Waste-Derived Caffeine for Green Synthesis of Rhenium Nanoparticles with Enhanced Catalytic Activity in the Hydrogenation of 4-Nitrophenol. International Journal of Molecular Sciences. 2024; 25(20):11319. https://doi.org/10.3390/ijms252011319
Chicago/Turabian StyleKuś, Alicja, Anna Leśniewicz, Anna Dzimitrowicz, Pawel Pohl, and Piotr Cyganowski. 2024. "Waste-Derived Caffeine for Green Synthesis of Rhenium Nanoparticles with Enhanced Catalytic Activity in the Hydrogenation of 4-Nitrophenol" International Journal of Molecular Sciences 25, no. 20: 11319. https://doi.org/10.3390/ijms252011319
APA StyleKuś, A., Leśniewicz, A., Dzimitrowicz, A., Pohl, P., & Cyganowski, P. (2024). Waste-Derived Caffeine for Green Synthesis of Rhenium Nanoparticles with Enhanced Catalytic Activity in the Hydrogenation of 4-Nitrophenol. International Journal of Molecular Sciences, 25(20), 11319. https://doi.org/10.3390/ijms252011319