A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites
Abstract
:1. Introduction
2. Results
2.1. CYP3A4
2.2. CYP1A2 and CYP2A6
2.3. Detailed Binding Site Properties for Human CYPs
Enzyme | Volume (Å3) ± SD | Volume Range (Å3) ± SD | Shape Factor ± SD | Hydrophobicity ± SD | Accessibility (%) |
---|---|---|---|---|---|
CYP3A4 (4I3Q) b | 1412 ± 128 | 1766 ± 93 | 1.10 ± 0.04 | 0.67 ± 0.01 | 64 |
CYP3A4 (5VC0) c | 1381 ± 103 | 1961 ± 103 | 1.12 ± 0.03 | 0.64 ± 0.02 | 59 |
CYP3A4 (5TE8) d | 1305 ± 63 | 1891 ± 282 | 1.05 ± 0.04 | 0.63 ± 0.03 | 63 |
CYP1A2 | 690 ± 96 | 957 ± 65 | 0.88 ± 0.08 | 0.65 ± 0.02 | 36 |
CYP2A6 | 800 ± 108 | 996 ± 38 | 0.94 ± 0.06 | 0.71 ± 0.03 | 38 |
2.4. Plant CYPs
2.4.1. Binding Site Volume and Volume Range
2.4.2. Binding Site Shape
2.4.3. Binding Site Hydrophobicity
2.4.4. Binding Site Accessibility
3. Discussion
3.1. Rice (Oryza sativa) CYPs
3.2. Corn (Zea mays) CYPs
3.3. Additional CYPs
4. Materials and Methods
4.1. CYP Selection and Starting Structures
4.2. MD Simulation
4.3. Binding Pocket Detection
4.4. Binding Site Properties
- The binding site volume is determined for each snapshot from the fpocket/mdpocket output, as described above. For every replicate simulation, the median value of the binding site volume was calculated. The resulting value used to describe this property is the average of the median value of each replicate, together with the standard deviation over all replicates.
- The binding site volume range is described as the difference between the maximum and the minimum of the observed binding site volume. Again, we took the average of the binding site volume range of each replicate together with their standard deviation as a resulting value.
- The binding site shape is calculated as a ratio between the solvent accessible surface area (SASA, A) according to the fpocket/mdpocket output and the binding site volume (V). The values were normalized to the ratio for a perfect sphere, leading to:
- 4.
- Binding site hydrophobicity is calculated as a ratio between the apolar and total SASA of the pocket, the values given by the pocket tracking programs. A certain surface element is considered apolar if it is in contact with at least three atoms of electronegativity lower than 2.8. The resulting value was, once again, obtained as the average of the median values for each of the replicates, with the standard deviation.
- 5.
- The binding site accessibility is tracked using the first mdpocket output frequency file. The VMD program [61] allows us to select the frequency of occurrence of a cavity by changing the isovalues. This feature reveals the exact percentage of snapshots for which a specific channel is opened. We tracked and recorded the opening of the three most occurring channels for each CYP. Afterwards, the channels were described (or named in the case of human CYPs) based on the secondary structural elements they pass through. SecStrAnnotator was used for assigning these secondary structural regions [10].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bren, U.; Oostenbrink, C. Cytochrome P450 3A4 Inhibition by Ketoconazole: Tackling the Problem of Ligand Cooperativity Using Molecular Dynamics Simulations and Free-Energy Calculations. J. Chem. Inf. Model. 2012, 52, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Parvez, M.; Qhanya, L.B.; Mthakathi, N.T.; Kgosiemang, I.K.R.; Bamal, H.D.; Pagadala, N.S.; Xie, T.; Yang, H.; Chen, H.; Theron, C.W.; et al. Molecular Evolutionary Dynamics of Cytochrome P450 Monooxygenases across Kingdoms: Special Focus on Mycobacterial P450s. Sci. Rep. 2016, 6, 33099. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.C.; Nelson, D.R.; Møller, B.L.; Werck-Reichhart, D. Plant Cytochrome P450 Plasticity and Evolution. Mol. Plant 2021, 14, 1244–1265. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Q.; Liu, Y.; Liao, X.; Chu, H.; Chang, H.; Cao, Y.; Li, Z.; Zhang, T.; Cheng, J.; et al. PCPD: Plant Cytochrome P450 Database and Web-Based Tools for Structural Construction and Ligand Docking. Synth. Syst. Biotechnol. 2021, 6, 102–109. [Google Scholar] [CrossRef]
- Hartmann, R.W.; Frotscher, M.; Grün, G.L.; Hector, M.; Ledergerber, D.; Mitrenga, M.; Sergejew, T.; Wächter, G.A. Metabolism of Endobiotics and Therapeutic Aspects of P450 Inhibitors; Elsevier: Amsterdam, The Netherlands, 1997; pp. 109–116. [Google Scholar]
- Rendic, S.; Guengerich, F.P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem. Res. Toxicol. 2015, 28, 38–42. [Google Scholar] [CrossRef]
- Chakraborty, P.; Biswas, A.; Dey, S.; Bhattacharjee, T.; Chakrabarty, S. Cytochrome P450 Gene Families: Role in Plant Secondary Metabolites Production and Plant Defense. J. Xenobiot. 2023, 13, 402–423. [Google Scholar] [CrossRef]
- Esteves, F.; Rueff, J.; Kranendonk, M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism—A Brief Review on a Fascinating Enzyme Family. J. Xenobiot. 2021, 11, 94–114. [Google Scholar] [CrossRef]
- Khan, M.F.; Murphy, C.D. Nitroreduction of Flutamide by Cunninghamella Elegans NADPH: Cytochrome P450 Reductase. Biochem. Biophys. Rep. 2022, 29, 101209. [Google Scholar] [CrossRef]
- Midlik, A.; Navrátilová, V.; Moturu, T.R.; Koča, J.; Svobodová, R.; Berka, K. Uncovering of Cytochrome P450 Anatomy by SecStrAnnotator. Sci. Rep. 2021, 11, 12345. [Google Scholar] [CrossRef]
- Sündermann, A.; Oostenbrink, C. Molecular Dynamics Simulations Give Insight into the Conformational Change, Complex Formation, and Electron Transfer Pathway for Cytochrome P450 Reductase. Protein Sci. 2013, 22, 1183–1195. [Google Scholar] [CrossRef]
- Khan, M.F.; Hof, C.; Niemcová, P.; Murphy, C.D. Recent Advances in Fungal Xenobiotic Metabolism: Enzymes and Applications. World J. Microbiol. Biotechnol. 2023, 39, 296. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Nakajima, M.; Yokoi, T. Cytochrome P450-Mediated Metabolism of Estrogens and Its Regulation in Human. Cancer Lett. 2005, 227, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Stjernschantz, E.; van Vugt-Lussenburg, B.M.A.; Bonifacio, A.; de Beer, S.B.A.; van der Zwan, G.; Gooijer, C.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Oostenbrink, C. Structural Rationalization of Novel Drug Metabolizing Mutants of Cytochrome P450 BM3. Proteins Struct. Funct. Bioinform. 2008, 71, 336–352. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.L.; Kelly, D.E. Microbial Cytochromes P450: Biodiversity and Biotechnology. Where Do Cytochromes P450 Come from, What Do They Do and What Can They Do for Us? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120476. [Google Scholar] [CrossRef]
- Khan, M.F.; Murphy, C.D. Cytochrome P450 5208A3 Is a Promiscuous Xenobiotic Biotransforming Enzyme in Cunninghamella Elegans. Enzym. Microb. Technol. 2022, 161, 110102. [Google Scholar] [CrossRef]
- Rendic, S. Summary of Information on Human CYP Enzymes: Human P450 Metabolism Data. Drug Metab. Rev. 2002, 34, 83–448. [Google Scholar] [CrossRef]
- Gay, S.C.; Roberts, A.G.; Halpert, J.R. Structural Features of Cytochromes P450 and Ligands That Affect Drug Metabolism as Revealed by X-Ray Crystallography and NMR. Future Med. Chem. 2010, 2, 1451–1468. [Google Scholar] [CrossRef]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and Induction of CYP Enzymes in Humans: An Update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Wilkey, C.J.; Phan, T.T.N. Human Cytochrome P450 Enzymes Bind Drugs and Other Substrates Mainly through Conformational-Selection Modes. J. Biol. Chem. 2019, 294, 10928–10941. [Google Scholar] [CrossRef]
- Guengerich, F.P. A Malleable Catalyst Dominates the Metabolism of Drugs. Proc. Natl. Acad. Sci. USA 2006, 103, 13565–13566. [Google Scholar] [CrossRef]
- Hritz, J.; de Ruiter, A.; Oostenbrink, C. Impact of Plasticity and Flexibility on Docking Results for Cytochrome P450 2D6: A Combined Approach of Molecular Dynamics and Ligand Docking. J. Med. Chem. 2008, 51, 7469–7477. [Google Scholar] [CrossRef] [PubMed]
- Moors, S.L.C.; Vos, A.M.; Cummings, M.D.; Van Vlijmen, H.; Ceulemans, A. Structure-Based Site of Metabolism Prediction for Cytochrome P450 2D6. J. Med. Chem. 2011, 54, 6098–6105. [Google Scholar] [CrossRef] [PubMed]
- Saika, H.; Horita, J.; Taguchi-Shiobara, F.; Nonaka, S.; Nishizawa-Yokoi, A.; Iwakami, S.; Hori, K.; Matsumoto, T.; Tanaka, T.; Itoh, T.; et al. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis. Plant Physiol. 2014, 166, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Matsumura, K.; Iwakami, S.; Sunohara, Y.; Matsumoto, H. Heterologous Expression of CYP81A6 from Rice (Oryza Sativa) in Escherichia Coli and Structural Analyses of Bensulfuron-methyl Metabolites. Weed Biol. Manag. 2021, 21, 164–171. [Google Scholar] [CrossRef]
- Brazier-Hicks, M.; Franco-Ortega, S.; Watson, P.; Rougemont, B.; Cohn, J.; Dale, R.; Hawkes, T.R.; Goldberg-Cavalleri, A.; Onkokesung, N.; Edwards, R. Characterization of Cytochrome P450s with Key Roles in Determining Herbicide Selectivity in Maize. ACS Omega 2022, 7, 17416–17431. [Google Scholar] [CrossRef]
- Cook, D.J.; Finnigan, J.D.; Cook, K.; Black, G.W.; Charnock, S.J. Cytochromes P450; Elsevier: Amsterdam, The Netherlands, 2016; pp. 105–126. [Google Scholar]
- Sevrioukova, I.F.; Poulos, T.L. Understanding the Mechanism of Cytochrome P450 3A4: Recent Advances and Remaining Problems. Dalton Trans. 2013, 42, 3116–3126. [Google Scholar] [CrossRef]
- Schrödinger, L.; DeLano, W. PyMOL. Available online: http://www.pymol.org/pymol (accessed on 1 July 2022).
- Zhou, S.-F.; Yang, L.-P.; Zhou, Z.-W.; Liu, Y.-H.; Chan, E. Insights into the Substrate Specificity, Inhibitors, Regulation, and Polymorphisms and the Clinical Impact of Human Cytochrome P450 1A2. AAPS J. 2009, 11, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Tani, N.; Juvonen, R.O.; Raunio, H.; Fashe, M.; Leppänen, J.; Zhao, B.; Tyndale, R.F.; Rahnasto-Rilla, M. Rational Design of Novel CYP2A6 Inhibitors. Bioorg. Med. Chem. 2014, 22, 6655–6664. [Google Scholar] [CrossRef]
- Wolber, G.; Kosara, R. Pharmacophores from Macromolecular Complexes with LigandScout; Wiley Online Library: Hoboken, NJ, USA, 2006; pp. 131–150. [Google Scholar]
- Cojocaru, V.; Winn, P.J.; Wade, R.C. The Ins and Outs of Cytochrome P450s. Biochim. Biophys. Acta 2007, 1770, 390–401. [Google Scholar] [CrossRef]
- Yu, X.; Cojocaru, V.; Wade, R.C. Conformational Diversity and Ligand Tunnels of Mammalian Cytochrome P450s. Biotechnol. Appl. Biochem. 2013, 60, 134–145. [Google Scholar] [CrossRef]
- Sevrioukova, I.F.; Poulos, T.L. Pyridine-Substituted Desoxyritonavir Is a More Potent Inhibitor of Cytochrome P450 3A4 than Ritonavir. J. Med. Chem. 2013, 56, 3733–3741. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L. Structural Basis for Regiospecific Midazolam Oxidation by Human Cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA 2017, 114, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F. High-Level Production and Properties of the Cysteine-Depleted Cytochrome P450 3A4. Biochemistry 2017, 56, 3058–3067. [Google Scholar] [CrossRef]
- Sansen, S.; Yano, J.K.; Reynald, R.L.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. Adaptations for the Oxidation of Polycyclic Aromatic Hydrocarbons Exhibited by the Structure of Human P450 1A2. J. Biol. Chem. 2007, 282, 14348–14355. [Google Scholar] [CrossRef]
- Yano, J.K.; Denton, T.T.; Cerny, M.A.; Zhang, X.; Johnson, E.F.; Cashman, J.R. Synthetic Inhibitors of Cytochrome P-450 2A6: Inhibitory Activity, Difference Spectra, Mechanism of Inhibition, and Protein Cocrystallization. J. Med. Chem. 2006, 49, 6987–7001. [Google Scholar] [CrossRef] [PubMed]
- Fiser, A.; Sali, A. ModLoop: Automated Modeling of Loops in Protein Structures. Bioinformatics 2003, 19, 2500–2501. [Google Scholar] [CrossRef]
- Fiser, A.; Do, R.K.; Sali, A. Modeling of Loops in Protein Structures. Protein Sci. 2000, 9, 1753–1773. [Google Scholar] [CrossRef]
- Ekroos, M.; Sjögren, T. Structural Basis for Ligand Promiscuity in Cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA 2006, 103, 13682–13687. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Niu, G.; Guo, Q.; Wang, J.; Zhao, S.; He, Y.; Liu, L. Structural Basis for Plant Lutein Biosynthesis from α-Carotene. Proc. Natl. Acad. Sci. USA 2020, 117, 14150–14157. [Google Scholar] [CrossRef] [PubMed]
- Guvench, O. Effect of Lipid Bilayer Anchoring on the Conformational Properties of the Cytochrome P450 2D6 Binding Site. J. Phys. Chem. B 2024, 128, 7188–7198. [Google Scholar] [CrossRef] [PubMed]
- Schmid, N.; Christ, C.D.; Christen, M.; Eichenberger, A.P.; van Gunsteren, W.F. Architecture, Implementation and Parallelisation of the GROMOS Software for Biomolecular Simulation. Comput. Phys. Commun. 2012, 183, 890–903. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Reif, M.M.; Hünenberger, P.H.; Oostenbrink, C. New Interaction Parameters for Charged Amino Acid Side Chains in the GROMOS Force Field. J. Chem. Theory Comput. 2012, 8, 3705–3723. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration; Springer: Berlin/Heidelberg, Germany, 1981; pp. 331–342. [Google Scholar]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Páll, S.; Hess, B. A Flexible Algorithm for Calculating Pair Interactions on SIMD Architectures. Comput. Phys. Commun. 2013, 184, 2641–2650. [Google Scholar] [CrossRef]
- Tironi, I.G.; Sperb, R.; Smith, P.E.; van Gunsteren, W.F. A Generalized Reaction Field Method for Molecular Dynamics Simulations. J. Chem. Phys. 1995, 102, 5451–5459. [Google Scholar] [CrossRef]
- Heinz, T.N.; van Gunsteren, W.F.; Hünenberger, P.H. Comparison of Four Methods to Compute the Dielectric Permittivity of Liquids from Molecular Dynamics Simulations. J. Chem. Phys. 2001, 115, 1125–1136. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An Open Source Platform for Ligand Pocket Detection. BMC Bioinform. 2009, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Schmidtke, P.; Bidon-Chanal, A.; Luque, F.J.; Barril, X. MDpocket: Open-Source Cavity Detection and Characterization on Molecular Dynamics Trajectories. Bioinformatics 2011, 27, 3276–3285. [Google Scholar] [CrossRef]
- Schmidtke, P.; Le Guilloux, V.; Shorkar, M. Discngine/Fpocket. Available online: https://github.com/Discngine/fpocket/blob/master/doc/MANUAL.md (accessed on 21 October 2024).
- Schuetz, D.A.; Seidel, T.; Garon, A.; Martini, R.; Körbel, M.; Ecker, G.F.; Langer, T. GRAIL: GRids of PhArmacophore Interaction FieLds. J. Chem. Theory Comput. 2018, 14, 4958–4970. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- de Graaf, C.; Oostenbrink, C.; Keizers, P.H.J.; van Vugt-Lussenburg, B.M.A.; van Waterschoot, R.A.B.; Tschirret-Guth, R.A.; Commandeur, J.N.M.; Vermeulen, N.P.E. Molecular Modeling-Guided Site-Directed Mutagenesis of Cytochrome P450 2D6. Curr. Drug Metab. 2007, 8, 59–77. [Google Scholar] [CrossRef]
- de Beer, S.B.A.; Venkataraman, H.; Geerke, D.P.; Oostenbrink, C.; Vermeulen, N.P.E. Free Energy Calculations Give Insight into the Stereoselective Hydroxylation of α-Ionones by Engineered Cytochrome P450 BM3 Mutants. J. Chem. Inf. Model. 2012, 52, 2139–2148. [Google Scholar] [CrossRef]
Enzyme | Volume b | Volume Range c | Shape Factor d | Hydrophobicity e | Accessibility f |
---|---|---|---|---|---|
Rice CYPs | |||||
CYP72A31 | L | ●●● | ○○○ | +++ | H |
CYP81A6 | S | ● | ○ | +++ | M |
Corn CYPs | |||||
CYP81A1 | M | ●● | ○○○ | + | L |
CYP81A2 | M | ●● | ○○○ | ++ | M |
CYP81A4 | M | ●● | ○○ | +++ | M |
CYP81A9 | M | ●● | ○○ | ++ | H |
CYP81A16 | M | ● | ○○ | +++ | M |
Additional CYPs | |||||
CYP72A208 | S | ● | ○○ | ++ | M |
CYP72A188 | L | ●●● | ○○○ | + | L |
CYP79A1 | S | ● | ○ | + | M |
CYP79E1 | S | ● | ○○ | + | L |
CYP90C1 | S | ● | ○ | +++ | L |
CYP90D1 | M | ●●● | ○ | +++ | L |
CYP81F2 | L | ●●● | ○○○ | ++ | M |
CYP81F4 | S | ● | ○ | +++ | L |
Human CYPs | |||||
CYP3A4 | L | ●●● | ○○○ | ++ | H |
CYP1A2 | S | ● | ○ | ++ | L |
CYP2A6 | S | ●● | ○○ | +++ | L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuvek, T.; Marcher, C.; Berteotti, A.; Lopez Carrillo, V.; Schleifer, K.-J.; Oostenbrink, C. A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites. Int. J. Mol. Sci. 2024, 25, 11381. https://doi.org/10.3390/ijms252111381
Kuvek T, Marcher C, Berteotti A, Lopez Carrillo V, Schleifer K-J, Oostenbrink C. A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites. International Journal of Molecular Sciences. 2024; 25(21):11381. https://doi.org/10.3390/ijms252111381
Chicago/Turabian StyleKuvek, Tea, Claudia Marcher, Anna Berteotti, Veronica Lopez Carrillo, Klaus-Jürgen Schleifer, and Chris Oostenbrink. 2024. "A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites" International Journal of Molecular Sciences 25, no. 21: 11381. https://doi.org/10.3390/ijms252111381
APA StyleKuvek, T., Marcher, C., Berteotti, A., Lopez Carrillo, V., Schleifer, K. -J., & Oostenbrink, C. (2024). A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites. International Journal of Molecular Sciences, 25(21), 11381. https://doi.org/10.3390/ijms252111381