The Influence of Physical Training on Breast Cancer: The Role of Exercise-Induced Myokines in Regulating Breast Cancer Cell Growth and Survival
Abstract
:1. Introduction
2. Results
2.1. Study Design and Patient Data
2.2. Exercise-Based Stimuli Affect BC Cell Proliferation and Apoptosis
2.3. Exercise-Induced Myokines Mix (CXCL1, IL10, and CCL4) Control BC Cell Growth and Apoptosis
2.4. Casp 3/7 mRNA Expression and Casp3/7 Activity as a Measure for Increased Apoptosis
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Clinical Study Design, Patient Recruitment, and Resistance Training as an Intervention
4.3. Patient Physical and Functional Characteristics, Patient Blood Collection, and Measurements
4.4. Cell Culture
4.5. Electrical Pulse Stimulation (EPS)
4.6. Preparation of Myokine Mix and Counteracting Antibody Mix for Exercise-Induced Myokine-Based Assays
4.7. Human Cancer Cell Proliferation and Apoptosis Assays
4.8. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)
4.9. Primer Sequences
4.10. Statistical Analysis
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Jee, H.; Park, E.; Hur, K.; Kang, M.; Kim, Y. High-Intensity Aerobic Exercise Suppresses Cancer Growth by Regulating Skeletal Muscle-Derived Oncogenes and Tumor Suppressors. Front. Mol. Biosci. 2022, 9, 818470. [Google Scholar] [CrossRef] [PubMed]
- Jurdana, M. Physical activity and cancer risk. Actual knowledge and possible biological mechanisms. Radiol. Oncol. 2021, 55, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Hwang, B.O.; Song, N.Y. The role of myokines in cancer: Crosstalk between skeletal muscle and tumor. BMB Rep. 2023, 56, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Schwappacher, R.; Dieterich, W.; Reljic, D.; Pilarsky, C.; Mukhopadhyay, D.; Chang, D.K.; Biankin, A.V.; Siebler, J.; Herrmann, H.J.; Neurath, M.F.; et al. Muscle-Derived Cytokines Reduce Growth, Viability and Migratory Activity of Pancreatic Cancer Cells. Cancers 2021, 13, 3820. [Google Scholar] [CrossRef]
- Schwappacher, R.; Schink, K.; Sologub, S.; Dieterich, W.; Reljic, D.; Friedrich, O.; Herrmann, H.J.; Neurath, M.F.; Zopf, Y. Physical activity and advanced cancer: Evidence of exercise-sensitive genes regulating prostate cancer cell proliferation and apoptosis. J. Physiol. 2020, 598, 3871–3889. [Google Scholar] [CrossRef]
- Davis, A.R.; Goodenough, C.G.; Westerlind, K.C.; Strange, R.; Deaver, J.W.; Ryan, P.J.; Riechman, S.E.; Fluckey, J.D. Myokines derived from contracting skeletal muscle suppress anabolism in MCF7 breast cancer cells by inhibiting mTOR. Front. Physiol. 2022, 13, 1033585. [Google Scholar] [CrossRef]
- Schink, K.; Herrmann, H.J.; Schwappacher, R.; Meyer, J.; Orlemann, T.; Waldmann, E.; Wullich, B.; Kahlmeyer, A.; Fietkau, R.; Lubgan, D.; et al. Effects of whole-body electromyostimulation combined with individualized nutritional support on body composition in patients with advanced cancer: A controlled pilot trial. BMC Cancer 2018, 18, 886. [Google Scholar] [CrossRef]
- Hirschey, R.P.; Docherty, S.L.P.; Pan, W.; Lipkus, I. Exploration of Exercise Outcome Expectations Among Breast Cancer Survivors. Cancer Nurs. 2017, 40, E39–E46. [Google Scholar] [CrossRef]
- Brown, J.C.; Zhang, S.; Ligibel, J.A.; Irwin, M.L.; Jones, L.W.; Campbell, N.; Pollak, M.N.; Sorrentino, A.; Cartmel, B.; Harrigan, M.; et al. Effect of Exercise or Metformin on Biomarkers of Inflammation in Breast and Colorectal Cancer: A Randomized Trial. Cancer Prev. Res. 2020, 13, 1055–1062. [Google Scholar] [CrossRef]
- Hojman, P.; Dethlefsen, C.; Brandt, C.; Hansen, J.; Pedersen, L.; Pedersen, B.K. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am. J. Physiol.-Endocrinol. Metab. 2011, 301, E504–E510. [Google Scholar] [CrossRef]
- Mathur, N.; Pedersen, B.K. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008, 2008, 109502. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Li, Y.; Huang, Y.; Hong, X.; Li, J.; Jin, R. Molecular Mechanisms of Exercise on Cancer: A Bibliometrics Study and Visualization Analysis via CiteSpace. Front. Mol. Biosci. 2021, 8, 797902. [Google Scholar] [CrossRef] [PubMed]
- Sanft, T.; Harrigan, M.; McGowan, C.; Cartmel, B.; Zupa, M.; Li, F.-Y.; Ferrucci, L.M.; Puklin, L.; Cao, A.; Nguyen, T.H.; et al. Randomized Trial of Exercise and Nutrition on Chemotherapy Completion and Pathologic Complete Response in Women With Breast Cancer: The Lifestyle, Exercise, and Nutrition Early After Diagnosis Study. J. Clin. Oncol. 2023, 41, 5285–5295. [Google Scholar] [CrossRef] [PubMed]
- Schmid, D.; Leitzmann, M.F. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: A systematic review and meta-analysis. Ann. Oncol. 2014, 25, 1293–1311. [Google Scholar] [CrossRef]
- Irwin, M.L.; Smith, A.W.; McTiernan, A.; Ballard-Barbash, R.; Cronin, K.; Gilliland, F.D.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L. Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: The health, eating, activity, and lifestyle study. J. Clin. Oncol. 2008, 26, 3958–3964. [Google Scholar] [CrossRef]
- Navarro-Ledesma, S.; Hamed-Hamed, D.; González-Muñoz, A.; Pruimboom, L. Physical Activity, Insulin Resistance and Cancer: A Systematic Review. Cancers 2024, 16, 656. [Google Scholar] [CrossRef]
- Fairman, C.; Focht, B.; Lucas, A.; Lustberg, M. Effects of exercise interventions during different treatments in breast cancer. J. Community Support. Oncol. 2016, 14, 200–209. [Google Scholar] [CrossRef]
- Ficarra, S.; Thomas, E.; Bianco, A.; Gentile, A.; Thaller, P.; Grassadonio, F.; Papakonstantinou, S.; Schulz, T.; Olson, N.; Martin, A.; et al. Impact of exercise interventions on physical fitness in breast cancer patients and survivors: A systematic review. Breast Cancer 2022, 29, 402–418. [Google Scholar] [CrossRef]
- Juvet, L.; Thune, I.; Elvsaas, I.; Fors, E.; Lundgren, S.; Bertheussen, G.; Leivseth, G.; Oldervoll, L. The effect of exercise on fatigue and physical functioning in breast cancer patients during and after treatment and at 6 months follow-up: A meta-analysis. Breast 2017, 33, 166–177. [Google Scholar] [CrossRef]
- Aydin, M.; Kose, E.; Odabas, I.; Meric Bingul, B.; Demirci, D.; Aydin, Z. The Effect of Exercise on Life Quality and Depression Levels of Breast Cancer Patients. Asian Pac. J. Cancer Prev. 2021, 22, 725–732. [Google Scholar] [CrossRef]
- Schmitz, K.H.; Courneya, K.S.; Matthews, C.; Demark-Wahnefried, W.; Galvão, D.A.; Pinto, B.M.; Irwin, M.L.; Wolin, K.Y.; Segal, R.J.; Lucia, A.; et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med. Sci. Sports Exerc. 2010, 42, 1409–1426. [Google Scholar] [CrossRef] [PubMed]
- Judge, L.; Bellar, D.; Popp, J.; Craig, B.; Schoeff, M.; Hoover, D.; Fox, B.; Kistler, B.; Al-Nawaiseh, A. Hydration to Maximize Performance and Recovery: Knowledge, Attitudes, and Behaviors Among Collegiate Track and Field Throwers. J. Hum. Kinet. 2021, 79, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Baxmann, A.C.A.A.; Ahmed, M.S.; Marques, N.A.A.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin. J. Am. Soc. Nephrol. 2008, 3, 348–354. [Google Scholar] [CrossRef]
- Courneya, K.S.; Segal, R.J.; Mackey, J.R.; Gelmon, K.; Reid, R.D.; Friedenreich, C.M.; Ladha, A.B.; Proulx, C.; Vallance, J.K.; Lane, K.; et al. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: A multicenter randomized controlled trial. J. Clin. Oncol. 2007, 25, 4396–4404. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, R.; Dieterich, W.; Natarajan, A.; Schwappacher, R.; Reljic, D.; Herrmann, H.J.; Neurath, M.F.; Zopf, Y. Influence of Amino Acids and Exercise on Muscle Protein Turnover, Particularly in Cancer Cachexia. Cancers 2024, 16, 1921. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.A.; Hosseini, E.S.; Kashani, H.H.; Ahmad, E.; Nikzad, H. Effects of the exercise-inducible myokine irisin on proliferation and malignant properties of ovarian cancer cells through the HIF-1 α signaling pathway. Sci. Rep. 2023, 13, 170. [Google Scholar]
- Huang, Q.; Wu, M.; Wu, X.; Zhang, Y.; Xia, Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188761. [Google Scholar] [CrossRef]
- Zeng, Y.; Lin, Q.; Yu, L.; Wang, X.; Lin, Y.; Zhang, Y.; Yan, S.; Lu, X.; Li, Y.; Li, W.; et al. Chemokine CXCL1 as a potential marker of disease activity in systemic lupus erythematosus. BMC Immunol. 2021, 22, 82. [Google Scholar] [CrossRef]
- Yang, B.; Peng, F.; Zhang, Y.; Wang, X.; Wang, S.; Zheng, Y.; Zhang, J.; Zeng, Y.; Wang, N.; Peng, C.; et al. Aiduqing formula suppresses breast cancer metastasis via inhibiting CXCL1-mediated autophagy. Phytomedicine 2021, 90, 153628. [Google Scholar] [CrossRef]
- Sheikhpour, E.; Noorbakhsh, P.; Foroughi, E.; Farahnak, S.; Nasiri, R.; Neamatzadeh, H. A Survey on the Role of Interleukin-10 in Breast Cancer: A Narrative. Rep. Biochem. Mol. Biol. 2018, 7, 30–37. [Google Scholar]
- Gannon, N.P.; Vaughan, R.A.; Garcia-Smith, R.; Bisoffi, M.; Trujillo, K.A. Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int. J. Cancer 2015, 136, E197–E202. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; von Stengel, S. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: Subanalysis of the TEST-III trial. Clin. Interv. Aging 2013, 8, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Nawata, M.; Wakitani, S. Expression profiles and functional analyses of Wnt-related genes in human joint disorders. Am. J. Pathol. 2005, 167, 97–105. [Google Scholar] [CrossRef] [PubMed]
Breast Cancer (BC) | |||
---|---|---|---|
Control (n = 33) | Resistance Training (n = 66) | p-Value | |
Age (y) | 54.6 ± 12.1 | 53.2 ± 12.5 | 0.602 1 |
Tumor Stage (UICC), n (%) | - | ||
I | 12 (36.4%) | 26 (39.3%) | |
II | 9 (27.3%) | 19 (28.8%) | |
III | 5 (15.2%) | 9 (13.6%) | |
IV | 7 (21.2%) | 12 (18.1%) | |
Oncological Therapy, n (%) | - | ||
Chemotherapy | 24 (72.7%) | 29 (43.9%) | |
Other therapies | 9 (27.3%) | 37 (56.1%) | |
Karnofsky Index (%) | 80.3 ± 11.6 (n = 33) | 79.2 ± 10.9 (n = 66) | 0.655 2 |
Six-minute Walking Distance (m) | 561.7 ± 109.7 (n = 32) | 560.2 ± 90.5 (n = 61) | 0.943 2 |
Body Parameters | |||
Body Weight (kg) | 69.5 ± 15.4 (n = 33) | 70.6 ± 12.9 (n = 66) | 0.553 1 |
Weight Loss in the last 3–6 months (%) | 2.6 ± 4.3 (n = 33) | 2.8 ± 4.8 (n = 66) | 0.962 2 |
Body Mass Index (kg/m2) | 25.1 ± 5.3 (n = 33) | 25.4 ± 4.5 (n = 66) | 0.719 1 |
Skeletal Muscle Mass (kg) | 19.7 ± 3.9 (n = 33) | 20.1 ± 3.4 (n = 66) | 0.574 1 |
Phase Angle (°) | 4.4 ± 0.8 (n = 33) | 4.6 ± 0.5 (n = 66) | 0.302 1 |
Blood Parameters | |||
Albumin (g/L) | 41.91 ± 2.81 (n = 28) | 42.30 ± 3.11 (n = 54) | 0.491 1 |
C-reactive Protein (mg/L) | 3.01 ± 2.58 (n = 30) | 5.01 ± 8.25 (n = 58) | 0.622 1 |
Creatinine (mg/dl) | 0.69 ± 0.10 (n = 31) | 0.73 ± 0.13 (n = 60) | 0.129 1 |
Hematocrit (%) | 36.65 ± 4.69 (n = 30) | 35.74 ± 6.3 (n = 57) | 0.487 1 |
Hemoglobin (g/dl) | 15.68 ± 18.83 (n = 30) | 12.27 ± 1.54 (n = 57) | 0.330 1 |
Leucocytes (×103/µL) | 7.15 ± 4.12 (n = 30) | 6.85 ± 7.42 (n = 57) | 0.836 2 |
Erythrocytes (×106/µL) | 4.12 ± 0.60 (n = 30) | 4.07 ± 0.55 (n = 57) | 0.666 2 |
Thrombocytes (×103/µL) | 268.17 ± 77.71 (n =30) | 239.11 ± 79.72 (n = 57) | 0.107 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natarajan, A.; Pradhan, R.; Dieterich, W.; Schwappacher, R.; Reljic, D.; Herrmann, H.J.; Neurath, M.F.; Hack, C.C.; Beckmann, M.W.; Zopf, Y. The Influence of Physical Training on Breast Cancer: The Role of Exercise-Induced Myokines in Regulating Breast Cancer Cell Growth and Survival. Int. J. Mol. Sci. 2024, 25, 11379. https://doi.org/10.3390/ijms252111379
Natarajan A, Pradhan R, Dieterich W, Schwappacher R, Reljic D, Herrmann HJ, Neurath MF, Hack CC, Beckmann MW, Zopf Y. The Influence of Physical Training on Breast Cancer: The Role of Exercise-Induced Myokines in Regulating Breast Cancer Cell Growth and Survival. International Journal of Molecular Sciences. 2024; 25(21):11379. https://doi.org/10.3390/ijms252111379
Chicago/Turabian StyleNatarajan, Anirudh, Rashmita Pradhan, Walburga Dieterich, Raphaela Schwappacher, Dejan Reljic, Hans J. Herrmann, Markus F. Neurath, Carolin C. Hack, Matthias W. Beckmann, and Yurdagül Zopf. 2024. "The Influence of Physical Training on Breast Cancer: The Role of Exercise-Induced Myokines in Regulating Breast Cancer Cell Growth and Survival" International Journal of Molecular Sciences 25, no. 21: 11379. https://doi.org/10.3390/ijms252111379
APA StyleNatarajan, A., Pradhan, R., Dieterich, W., Schwappacher, R., Reljic, D., Herrmann, H. J., Neurath, M. F., Hack, C. C., Beckmann, M. W., & Zopf, Y. (2024). The Influence of Physical Training on Breast Cancer: The Role of Exercise-Induced Myokines in Regulating Breast Cancer Cell Growth and Survival. International Journal of Molecular Sciences, 25(21), 11379. https://doi.org/10.3390/ijms252111379