Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Artificial Synthesis and Quantification of Calciprotein Particles
4.3. Sample Collection
4.4. Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry
4.5. Bioinformatic Analysis
4.6. Dot Blotting Profiling
4.7. Enzyme-Linked Immunosorbent Assay (ELISA)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cahill, P.A.; Redmond, E.M. Vascular endothelium–Gatekeeper of vessel health. Atherosclerosis 2016, 248, 97–109. [Google Scholar] [CrossRef]
- Trimm, E.; Red-Horse, K. Vascular endothelial cell development and diversity. Nat. Rev. Cardiol. 2023, 20, 197–210. [Google Scholar] [CrossRef]
- Alexander, Y.; Osto, E.; Schmidt-Trucksäss, A.; Shechter, M.; Trifunovic, D.; Duncker, D.J.; Aboyans, V.; Bäck, M.; Badimon, L.; Cosentino, F.; et al. Endothelial function in cardiovascular medicine: A consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 2021, 117, 29–42. [Google Scholar] [CrossRef]
- Segers, V.F.M.; Bringmans, T.; De Keulenaer, G.W. Endothelial dysfunction at the cellular level in three dimensions: Severity, acuteness, and distribution. Am. J. Physiol. Heart Circ. Physiol. 2023, 325, H398–H413. [Google Scholar] [CrossRef]
- Baaten, C.C.F.M.J.; Vondenhoff, S.; Noels, H. Endothelial cell dysfunction and increased cardiovascular risk in patients with chronic kidney disease. Circ. Res. 2023, 132, 970–992. [Google Scholar] [CrossRef]
- Kutikhin, A.G.; Shishkova, D.K.; Velikanova, E.A.; Sinitsky, M.Y.; Sinitskaya, A.V.; Markova, V.E. Endothelial dysfunction in the context of blood-brain barrier modeling. J. Evol. Biochem. Physiol. 2022, 58, 781–806. [Google Scholar] [CrossRef]
- Öörni, K.; Rajamäki, K.; Nguyen, S.D.; Lähdesmäki, K.; Plihtari, R.; Lee-Rueckert, M.; Kovanen, P.T. Acidification of the intimal fluid: The perfect storm for atherogenesis. J. Lipid Res. 2015, 56, 203–214. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammaging: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef]
- Walker, K.A.; Basisty, N.; Wilson, D.M., III; Ferrucci, L. Connecting aging biology and inflammation in the omics era. J. Clin. Investig. 2022, 132, e158448. [Google Scholar] [CrossRef]
- Pacinella, G.; Ciaccio, A.M.; Tuttolomondo, A. Endothelial dysfunction and chronic inflammation: The cornerstones of vascular alterations in age-related diseases. Int. J. Mol. Sci. 2022, 23, 15722. [Google Scholar] [CrossRef]
- Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020, 116, 2177–2184. [Google Scholar] [CrossRef]
- Chidambaram, V.; Kumar, A.; Sadaf, M.I.; Lu, E.; Al’Aref, S.J.; Tarun, T.; Galiatsatos, P.; Gulati, M.; Blumenthal, R.S.; Leucker, T.M.; et al. COVID-19 in the initiation and progression of atherosclerosis: Pathophysiology during and beyond the acute phase. JACC Adv. 2024, 3, 101107. [Google Scholar] [CrossRef]
- Joffre, J.; Hellman, J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid. Redox Signal. 2021, 35, 1291–1307. [Google Scholar] [CrossRef]
- McMullan, R.R.; McAuley, D.F.; O’Kane, C.M.; Silversides, J.A. Vascular leak in sepsis: Physiological basis and potential therapeutic advances. Crit. Care 2024, 28, 97. [Google Scholar] [CrossRef]
- Maneta, E.; Aivalioti, E.; Tual-Chalot, S.; Emini Veseli, B.; Gatsiou, A.; Stamatelopoulos, K.; Stellos, K. Endothelial dysfunction and immunothrombosis in sepsis. Front. Immunol. 2023, 14, 1144229. [Google Scholar] [CrossRef]
- De Backer, D.; Ricottilli, F.; Ospina-Tascón, G.A. Septic shock: A microcirculation disease. Curr. Opin. Anaesthesiol. 2021, 34, 85–91. [Google Scholar] [CrossRef]
- Tang, F.; Zhao, X.L.; Xu, L.Y.; Zhang, J.N.; Ao, H.; Peng, C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed. Pharmacother. 2024, 178, 117180. [Google Scholar] [CrossRef]
- Jahnen-Dechent, W.; Büscher, A.; Köppert, S.; Heiss, A.; Kuro-O, M.; Smith, E.R. Mud in the blood: The role of protein-mineral complexes and extracellular vesicles in biomineralisation and calcification. J. Struct. Biol. 2020, 212, 107577. [Google Scholar] [CrossRef]
- Smith, E.R.; Hewitson, T.D.; Jahnen-Dechent, W. Calciprotein particles: Mineral behaving badly? Curr. Opin. Nephrol. Hypertens. 2020, 29, 378–386. [Google Scholar] [CrossRef]
- Kutikhin, A.G.; Feenstra, L.; Kostyunin, A.E.; Yuzhalin, A.E.; Hillebrands, J.L.; Krenning, G. Calciprotein particles: Balancing mineral homeostasis and vascular pathology. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1607–1624. [Google Scholar] [CrossRef]
- Jahnen-Dechent, W.; Pasch, A. Solving the insoluble: Calciprotein particles mediate bulk mineral transport. Kidney Int. 2023, 103, 663–665. [Google Scholar] [CrossRef]
- Kutikhin, A.G.; Velikanova, E.A.; Mukhamadiyarov, R.A.; Glushkova, T.V.; Borisov, V.V.; Matveeva, V.G.; Antonova, L.V.; Filip’ev, D.E.; Golovkin, A.S.; Shishkova, D.K.; et al. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Sci. Rep. 2016, 6, 27255. [Google Scholar] [CrossRef]
- Shishkova, D.; Velikanova, E.; Sinitsky, M.; Tsepokina, A.; Gruzdeva, O.; Bogdanov, L.; Kutikhin, A. Calcium phosphate bions cause intimal hyperplasia in intact aortas of normolipidemic rats through endothelial injury. Int. J. Mol. Sci. 2019, 20, 5728. [Google Scholar] [CrossRef]
- Shishkova, D.; Markova, V.; Sinitsky, M.; Tsepokina, A.; Velikanova, E.; Bogdanov, L.; Glushkova, T.; Kutikhin, A. Calciprotein particles cause endothelial dysfunction under flow. Int. J. Mol. Sci. 2020, 21, 8802. [Google Scholar] [CrossRef]
- Shishkova, D.K.; Velikanova, E.A.; Bogdanov, L.A.; Sinitsky, M.Y.; Kostyunin, A.E.; Tsepokina, A.V.; Gruzdeva, O.V.; Mironov, A.V.; Mukhamadiyarov, R.A.; Glushkova, T.V.; et al. Calciprotein particles link disturbed mineral homeostasis with cardiovascular disease by causing endothelial dysfunction and vascular inflammation. Int. J. Mol. Sci. 2021, 22, 12458. [Google Scholar] [CrossRef]
- Bogdanov, L.; Shishkova, D.; Mukhamadiyarov, R.; Velikanova, E.; Tsepokina, A.; Terekhov, A.; Koshelev, V.; Kanonykina, A.; Shabaev, A.; Frolov, A.; et al. Excessive adventitial and perivascular vascularisation correlates with vascular inflammation and intimal hyperplasia. Int. J. Mol. Sci. 2022, 23, 12156. [Google Scholar] [CrossRef]
- Feenstra, L.; Kutikhin, A.G.; Shishkova, D.K.; Buikema, H.; Zeper, L.W.; Bourgonje, A.R.; Krenning, G.; Hillebrands, J.L. Calciprotein particles induce endothelial dysfunction by impairing endothelial nitric oxide metabolism. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 443–455. [Google Scholar] [CrossRef]
- Shishkova, D.; Lobov, A.; Repkin, E.; Markova, V.; Markova, Y.; Sinitskaya, A.; Sinitsky, M.; Kondratiev, E.; Torgunakova, E.; Kutikhin, A. Calciprotein particles induce cellular compartment-specific proteome alterations in human arterial endothelial cells. J. Cardiovasc. Dev. Dis. 2023, 11, 5. [Google Scholar] [CrossRef]
- Shishkova, D.; Lobov, A.; Zainullina, B.; Matveeva, V.; Markova, V.; Sinitskaya, A.; Velikanova, E.; Sinitsky, M.; Kanonykina, A.; Dyleva, Y.; et al. Calciprotein particles cause physiologically significant pro-inflammatory response in endothelial cells and systemic circulation. Int. J. Mol. Sci. 2022, 23, 14941. [Google Scholar] [CrossRef]
- Köppert, S.; Büscher, A.; Babler, A.; Ghallab, A.; Buhl, E.M.; Latz, E.; Hengstler, J.G.; Smith, E.R.; Jahnen-Dechent, W. Cellular clearance and biological activity of calciprotein particles depend on their maturation state and crystallinity. Front. Immunol. 2018, 9, 1991. [Google Scholar] [CrossRef]
- Koeppert, S.; Ghallab, A.; Peglow, S.; Winkler, C.F.; Graeber, S.; Büscher, A.; Hengstler, J.G.; Jahnen-Dechent, W. Live imaging of calciprotein particle clearance and receptor mediated uptake: Role of calciprotein monomers. Front. Cell Dev. Biol. 2021, 9, 633925. [Google Scholar] [CrossRef]
- Herrmann, M.; Schäfer, C.; Heiss, A.; Gräber, S.; Kinkeldey, A.; Büscher, A.; Schmitt, M.M.; Bornemann, J.; Nimmerjahn, F.; Herrmann, M.; et al. Clearance of fetuin-A–containing calciprotein particles is mediated by scavenger receptor-A. Circ. Res. 2012, 111, 575–584. [Google Scholar] [CrossRef]
- Zeper, L.W.; Bos, C.; Leermakers, P.A.; Franssen, G.M.; Raavé, R.; Hoenderop, J.G.J.; de Baaij, J.H.F. Liver and spleen predominantly mediate calciprotein particle clearance in a rat model of chronic kidney disease. Am. J. Physiol. Renal Physiol. 2024, 326, F622–F634. [Google Scholar] [CrossRef]
- Kuro-O, M. Klotho and calciprotein particles as therapeutic targets against accelerated ageing. Clin. Sci. 2021, 135, 1915–1927. [Google Scholar] [CrossRef]
- van der Vaart, A.; Eelderink, C.; van Goor, H.; Hillebrands, J.L.; Te Velde-Keyzer, C.A.; Bakker, S.J.L.; Pasch, A.; van Dijk, P.R.; Laverman, G.D.; de Borst, M.H. Serum T(50) predicts cardiovascular mortality in individuals with type 2 diabetes: A prospective cohort study. J. Intern. Med. 2024, 295, 748–758. [Google Scholar] [CrossRef]
- Jäger, E.; Murthy, S.; Schmidt, C.; Hahn, M.; Strobel, S.; Peters, A.; Stäubert, C.; Sungur, P.; Venus, T.; Geisler, M.; et al. Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nat. Commun. 2020, 11, 4243. [Google Scholar] [CrossRef]
- Anzai, F.; Karasawa, T.; Komada, T.; Yamada, N.; Miura, Y.; Sampilvanjil, A.; Baatarjav, C.; Fujimura, K.; Matsumura, T.; Tago, K.; et al. Calciprotein particles induce IL-1β/α-mediated inflammation through NLRP3 inflammasome-dependent and -independent mechanisms. Immunohorizons 2021, 5, 602–614. [Google Scholar] [CrossRef]
- Frolov, A.; Lobov, A.; Kabilov, M.; Zainullina, B.; Tupikin, A.; Shishkova, D.; Markova, V.; Sinitskaya, A.; Grigoriev, E.; Markova, Y.; et al. Multi-omics profiling of human endothelial cells from the coronary artery and internal thoracic artery reveals molecular but not functional heterogeneity. Int. J. Mol. Sci. 2023, 24, 15032. [Google Scholar] [CrossRef]
- Wei, H.; Sundararaman, A.; Dickson, E.; Rennie-Campbell, L.; Cross, E.; Heesom, K.J.; Mellor, H. Characterization of the polarized endothelial secretome. FASEB J. 2019, 33, 12277–12287. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, R.; Zhang, J.; Zhang, Y.; Bechelli, J.; Smalley, C.; Valbuena, G.; Walker, D.H.; Oteo, J.A.; Brasier, A.R. Quantitative proteomics of the endothelial secretome identifies RC0497 as diagnostic of acute rickettsial spotted fever infections. Am. J. Pathol. 2020, 190, 306–322. [Google Scholar] [CrossRef]
- Shishkova, D.; Markova, V.; Sinitsky, M.; Tsepokina, A.; Frolov, A.; Zagorodnikov, N.; Bogdanov, L.; Kutikhin, A. Co-culture of primary human coronary artery and internal thoracic artery endothelial cells results in mutually beneficial paracrine interactions. Int. J. Mol. Sci. 2020, 21, 8032. [Google Scholar] [CrossRef]
- Markova, V.; Bogdanov, L.; Velikanova, E.; Kanonykina, A.; Frolov, A.; Shishkova, D.; Lazebnaya, A.; Kutikhin, A. Endothelial cell markers are inferior to vascular smooth muscle cells markers in staining vasa vasorum and are non-specific for distinct endothelial cell lineages in clinical samples. Int. J. Mol. Sci. 2023, 24, 1959. [Google Scholar] [CrossRef]
- Davis, G.E.; Senger, D.R. Endothelial extracellular matrix: Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 2005, 97, 1093–1107. [Google Scholar] [CrossRef]
- Hahn, C.; Orr, A.W.; Sanders, J.M.; Jhaveri, K.A.; Schwartz, M.A. The subendothelial extracellular matrix modulates JNK activation by flow. Circ. Res. 2009, 104, 995–1003. [Google Scholar] [CrossRef]
- Saemisch, M.; Balcells, M.; Riesinger, L.; Nickmann, M.; Bhaloo, S.I.; Edelman, E.R.; Methe, H. Subendothelial matrix components influence endothelial cell apoptosis in vitro. Am. J. Physiol. Cell Physiol. 2019, 316, C210–C222. [Google Scholar] [CrossRef]
- Lau, S.; Gossen, M.; Lendlein, A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int. J. Mol. Sci. 2021, 22, 13120. [Google Scholar] [CrossRef]
- Kim, D.D.; Song, W.C. Membrane complement regulatory proteins. Clin. Immunol. 2006, 118, 127–136. [Google Scholar] [CrossRef]
- Chighizola, C.B.; Lonati, P.A.; Trespidi, L.; Meroni, P.L.; Tedesco, F. The Complement System in the Pathophysiology of Pregnancy and in Systemic Autoimmune Rheumatic Diseases During Pregnancy. Front. Immunol. 2020, 11, 2084. [Google Scholar] [CrossRef]
- Blom, A.M. The role of complement inhibitors beyond controlling inflammation. J. Intern. Med. 2017, 282, 116–128. [Google Scholar] [CrossRef]
- Davies, A.; Simmons, D.L.; Hale, G.; Harrison, R.A.; Tighe, H.; Lachmann, P.J.; Waldmann, H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J. Exp. Med. 1989, 170, 637–654. [Google Scholar] [CrossRef]
- Meri, S.; Morgan, B.P.; Davies, A.; Daniels, R.H.; Olavesen, M.G.; Waldmann, H.; Lachmann, P.J. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 1990, 71, 1–9. [Google Scholar]
- Rollins, S.A.; Sims, P.J. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J. Immunol. 1990, 144, 3478–3483. [Google Scholar] [CrossRef]
- Rushmere, N.K.; Harrison, R.A.; van den Berg, C.W.; Morgan, B.P. Molecular cloning of the rat analogue of human CD59: Structural comparison with human CD59 and identification of a putative active site. Biochem. J. 1994, 304, 595–601. [Google Scholar] [CrossRef]
- Ninomiya, H.; Sims, P.J. The human complement regulatory protein CD59 binds to the alpha-chain of C8 and to the “b”domain of C9. J. Biol. Chem. 1992, 267, 13675–13680. [Google Scholar] [CrossRef]
- Kooyman, D.L.; Byrne, G.W.; McClellan, S.; Nielsen, D.; Tone, M.; Waldmann, H.; Coffman, T.M.; McCurry, K.R.; Platt, J.L.; Logan, J.S. In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 1995, 269, 89–92. [Google Scholar] [CrossRef]
- Sahoo, R.; Ghosh, P.; Chorev, M.; Halperin, J.A. A distinctive histidine residue is essential for in vivo glycation-inactivation of human CD59 transgenically expressed in mice erythrocytes: Implications for human diabetes complications. Am. J. Hematol. 2017, 92, 1198–1203. [Google Scholar] [CrossRef]
- Qin, X.; Goldfine, A.; Krumrei, N.; Grubissich, L.; Acosta, J.; Chorev, M.; Hays, A.P.; Halperin, J.A. Glycation inactivation of the complement regulatory protein CD59: A possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes 2004, 53, 2653–2661. [Google Scholar] [CrossRef]
- Davies, C.S.; Harris, C.L.; Morgan, B.P. Glycation of CD59 impairs complement regulation on erythrocytes from diabetic subjects. Immunology 2005, 114, 280–286. [Google Scholar] [CrossRef]
- Cheng, Y.; Gao, M. The effect of glycation of CD59 on complement-mediated cytolysis. Cell Mol. Immunol. 2005, 2, 313–317. [Google Scholar]
- Ghosh, P.; Sahoo, R.; Vaidya, A.; Chorev, M.; Halperin, J.A. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr. Rev. 2015, 36, 272–288. [Google Scholar] [CrossRef]
- Nevo, Y.; Ben-Zeev, B.; Tabib, A.; Straussberg, R.; Anikster, Y.; Shorer, Z.; Fattal-Valevski, A.; Ta-Shma, A.; Aharoni, S.; Rabie, M.; et al. CD59 deficiency is associated with chronic hemolysis and childhood relapsing immune-mediated polyneuropathy. Blood 2013, 121, 129–135. [Google Scholar] [CrossRef]
- Yun, S.; Leung, V.W.; Botto, M.; Boyle, J.J.; Haskard, D.O. Brief report: Accelerated atherosclerosis in low-density lipoprotein receptor-deficient mice lacking the membrane-bound complement regulator CD59. Arter. Thromb. Vasc. Biol. 2008, 28, 1714–1716. [Google Scholar] [CrossRef]
- Wu, G.; Hu, W.; Shahsafaei, A.; Song, W.; Dobarro, M.; Sukhova, G.K.; Bronson, R.R.; Shi, G.P.; Rother, R.P.; Halperin, J.A.; et al. Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circ. Res. 2009, 104, 550–558. [Google Scholar] [CrossRef]
- An, G.; Miwa, T.; Song, W.L.; Lawson, J.A.; Rader, D.J.; Zhang, Y.; Song, W.C. CD59 but not DAF deficiency accelerates atherosclerosis in female ApoE knockout mice. Mol. Immunol. 2009, 46, 1702–1709. [Google Scholar] [CrossRef]
- Lewis, R.D.; Jackson, C.L.; Morgan, B.P.; Hughes, T.R. The membrane attack complex of complement drives the progression of atherosclerosis in apolipoprotein E knockout mice. Mol. Immunol. 2010, 47, 1098–1105. [Google Scholar] [CrossRef]
- Liu, F.; Sahoo, R.; Ge, X.; Wu, L.; Ghosh, P.; Qin, X.; Halperin, J.A. Deficiency of the complement regulatory protein CD59 accelerates the development of diabetes-induced atherosclerosis in mice. J. Diabetes Complicat. 2017, 31, 311–317. [Google Scholar] [CrossRef]
- Haskard, D.O.; Boyle, J.J.; Mason, J.C. The role of complement in atherosclerosis. Curr. Opin. Lipidol. 2008, 19, 478–482. [Google Scholar] [CrossRef]
- Li, B.; Chu, X.M.; Xu, Y.J.; Yang, F.; Lv, C.Y.; Nie, S.M. CD59 underlines the antiatherosclerotic effects of C-phycocyanin on mice. Biomed. Res. Int. 2013, 2013, 729413. [Google Scholar] [CrossRef]
- Liu, F.; Wu, L.; Wu, G.; Wang, C.; Zhang, L.; Tomlinson, S.; Qin, X. Targeted mouse complement inhibitor CR2-Crry protects against the development of atherosclerosis in mice. Atherosclerosis 2014, 234, 237–243. [Google Scholar] [CrossRef]
- Li, B.; Xu, Y.J.; Chu, X.M.; Gao, M.H.; Wang, X.H.; Nie, S.M.; Yang, F.; Lv, C.Y. Molecular mechanism of inhibitory effects of CD59 gene on atherosclerosis in ApoE (-/-) mice. Immunol. Lett. 2013, 156, 68–81. [Google Scholar] [CrossRef]
- Ghosh, P.; Sahoo, R.; Vaidya, A.; Cantel, S.; Kavishwar, A.; Goldfine, A.; Herring, N.; Bry, L.; Chorev, M.; Halperin, J.A. A specific and sensitive assay for blood levels of glycated CD59: A novel biomarker for diabetes. Am. J. Hematol. 2013, 88, 670–676. [Google Scholar] [CrossRef]
- Ghosh, P.; Luque-Fernandez, M.A.; Vaidya, A.; Ma, D.; Sahoo, R.; Chorev, M.; Zera, C.; McElrath, T.F.; Williams, M.A.; Seely, E.W.; et al. Plasma Glycated CD59, a Novel Biomarker for Detection of Pregnancy-Induced Glucose Intolerance. Diabetes Care 2017, 40, 981–984. [Google Scholar] [CrossRef]
- Bogdanet, D.; Toth Castillo, M.; Doheny, H.; Dervan, L.; Luque-Fernandez, M.A.; Halperin, J.A.; O’Shea, P.M.; Dunne, F.P. The Diagnostic Accuracy of Second Trimester Plasma Glycated CD59 (pGCD59) to Identify Women with Gestational Diabetes Mellitus Based on the 75 g OGTT Using the WHO Criteria: A Prospective Study of Non-Diabetic Pregnant Women in Ireland. J. Clin. Med. 2022, 11, 3895. [Google Scholar] [CrossRef]
- Wang, W.; Xu, C.; Lu, X.; Cao, W.; Zuo, T.; Zhang, Y.; Zou, H.; Sun, Y. Glycated CD59 is a potential biomarker for gestational diabetes mellitus. Front. Endocrinol. 2024, 15, 1374253. [Google Scholar] [CrossRef]
- Ma, D.; Luque-Fernandez, M.A.; Bogdanet, D.; Desoye, G.; Dunne, F.; Halperin, J.A. DALI Core Investigator Group. Plasma Glycated CD59 Predicts Early Gestational Diabetes and Large for Gestational Age Newborns. J. Clin. Endocrinol. Metab. 2020, 105, e1033–e1040. [Google Scholar] [CrossRef]
- Bogdanet, D.; Toth Castillo, M.; Doheny, H.; Dervan, L.; Angel Luque-Fernandez, M.; Halperin, J.; O’Shea, P.M.; Dunne, F.P. The utility of first trimester plasma glycated CD59 (pGCD59) in predicting gestational diabetes mellitus: A prospective study of non-diabetic pregnant women in Ireland. Diabetes Res. Clin. Pract. 2022, 190, 110023. [Google Scholar] [CrossRef]
- Benhalima, K.; Ma, D.D.; Laenen, A.; Mathieu, C.; Halperin, J.A. Plasma glycated CD59 predicts postpartum glucose intolerance after gestational diabetes. Eur. J. Endocrinol. 2021, 185, 755–763. [Google Scholar] [CrossRef]
- Bogdanet, D.; Castillo, M.T.; Doheny, H.; Dervan, L.; Luque-Fernandez, M.A.; Halperin, J.; O’Shea, P.M.; Dunne, F.P. The utility of plasma glycated CD59 in predicting postpartum glucose intolerance: A prospective study of women diagnosed with GDM during a period of universal GDM screening. Diabet. Med. 2023, 40, e15121. [Google Scholar] [CrossRef]
- Bogdanet, D.; Castillo, M.T.; Doheny, H.; Dervan, L.; Luque-Fernandez, M.A.; Halperin, J.A.; O’Shea, P.M.; Dunne, F.P. The ability of pGCD59 to predict adverse pregnancy outcomes: A prospective study of non-diabetic pregnant women in Ireland. Acta Diabetol. 2023, 60, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Bogdanet, D.; Luque-Fernandez, M.A.; Toth-Castillo, M.; Desoye, G.; O’Shea, P.M.; Dunne, F.P.; Halperin, J.A. The Role of Early Pregnancy Maternal pGCD59 Levels in Predicting Neonatal Hypoglycemia-Subanalysis of the DALI Study. J. Clin. Endocrinol. Metab. 2022, 107, e4311–e4319. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Vaidya, A.; Sahoo, R.; Goldfine, A.; Herring, N.; Bry, L.; Chorev, M.; Halperin, J.A. Glycation of the complement regulatory protein CD59 is a novel biomarker for glucose handling in humans. J. Clin. Endocrinol. Metab. 2014, 99, E999–E1006. [Google Scholar] [CrossRef] [PubMed]
- Golec, E.; Ekström, A.; Noga, M.; Omar-Hmeadi, M.; Lund, P.E.; Villoutreix, B.O.; Krus, U.; Wozniak, K.; Korsgren, O.; Renström, E.; et al. Alternative splicing encodes functional intracellular CD59 isoforms that mediate insulin secretion and are down-regulated in diabetic islets. Proc. Natl. Acad. Sci. USA 2022, 119, e2120083119. [Google Scholar] [CrossRef] [PubMed]
- Claesson-Welsh, L.; Dejana, E.; McDonald, D.M. Permeability of the endothelial barrier: Identifying and reconciling controversies. Trends Mol. Med. 2021, 27, 314–331. [Google Scholar] [CrossRef]
- Lin, P.K.; Davis, G.E. Extracellular matrix remodeling in vascular disease: Defining its regulators and pathological influence. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1599–1616. [Google Scholar] [CrossRef]
- Yang, X.; Scott, H.A.; Ardekani, S.; Williams, M.; Talbot, P.; Ghosh, K. Aberrant cell and basement membrane architecture contribute to sidestream smoke-induced choroidal endothelial dysfunction. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3140–3147. [Google Scholar] [CrossRef]
- Hara, T.; Kumagai, R.; Tanaka, T.; Nakano, T.; Fujie, T.; Fujiwara, Y.; Yamamoto, C.; Kaji, T. Lead suppresses perlecan expression via EGFR-ERK1/2-COX-2-PGI(2) pathway in cultured bovine vascular endothelial cells. J. Toxicol. Sci. 2023, 48, 655–663. [Google Scholar] [CrossRef]
- Han, J.; Zhang, F.; Xie, J.; Linhardt, R.J.; Hiebert, L.M. Changes in cultured endothelial cell glycosaminoglycans under hyperglycemic conditions and the effect of insulin and heparin. Cardiovasc. Diabetol. 2009, 8, 46. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, B.; Chen, S.; Chakrabarti, S. ERK5 regulates glucose-induced increased fibronectin production in the endothelial cells and in the retina in diabetes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 8405–8413. [Google Scholar] [CrossRef]
- Zegeye, M.M.; Matic, L.; Lengquist, M.; Hayderi, A.; Grenegård, M.; Hedin, U.; Sirsjö, A.; Ljungberg, L.U.; Kumawat, A.K. Interleukin-6 trans-signaling induced laminin switch contributes to reduced trans-endothelial migration of granulocytic cells. Atherosclerosis 2023, 371, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Glentis, A.; Gurchenkov, V.; Matic Vignjevic, D. Assembly, heterogeneity, and breaching of the basement membranes. Cell Adh. Migr. 2014, 8, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, A.; Yurchenco, P.D.; Iozzo, R.V. The nature and biology of basement membranes. Matrix Biol. 2017, 57–58, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.M.; Mei, R. Basement membrane type IV collagen and laminin: An overview of their biology and value as fibrosis biomarkers of liver disease. Anat. Rec. 2017, 300, 1371–1390. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.S.; Routhe, L.J.; Moos, T. The vascular basement membrane in the healthy and pathological brain. J. Cereb. Blood Flow. Metab. 2017, 37, 3300–3317. [Google Scholar] [CrossRef]
- Randles, M.J.; Humphries, M.J.; Lennon, R. Proteomic definitions of basement membrane composition in health and disease. Matrix Biol. 2017, 57–58, 12–28. [Google Scholar] [CrossRef]
- Di Russo, J.; Hannocks, M.J.; Luik, A.L.; Song, J.; Zhang, X.; Yousif, L.; Aspite, G.; Hallmann, R.; Sorokin, L. Vascular laminins in physiology and pathology. Matrix Biol. 2017, 57–58, 140–148. [Google Scholar] [CrossRef]
- Gubbiotti, M.A.; Neill, T.; Iozzo, R.V. A current view of perlecan in physiology and pathology: A mosaic of functions. Matrix Biol. 2017, 57–58, 285–298. [Google Scholar] [CrossRef]
- Xu, L.; Nirwane, A.; Yao, Y. Basement membrane and blood-brain barrier. Stroke Vasc. Neurol. 2018, 4, 78–82. [Google Scholar] [CrossRef]
- Hallmann, R.; Hannocks, M.J.; Song, J.; Zhang, X.; Di Russo, J.; Luik, A.L.; Burmeister, M.; Gerwien, H.; Sorokin, L. The role of basement membrane laminins in vascular function. Int. J. Biochem. Cell Biol. 2020, 127, 105823. [Google Scholar] [CrossRef]
- Mongiat, M.; Pascal, G.; Poletto, E.; Williams, D.M.; Iozzo, R.V. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. Proteoglycan Res. 2024, 2, e22. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, R.; Iesaki, T.; de Vega, S.; Daida, H.; Okada, T.; Sasaki, T.; Arikawa-Hirasawa, E. Perlecan deficiency causes endothelial dysfunction by reducing the expression of endothelial nitric oxide synthase. Physiol. Rep. 2015, 3, e12272. [Google Scholar] [CrossRef] [PubMed]
- Lord, M.S.; Ellis, A.L.; Farrugia, B.L.; Whitelock, J.M.; Grenett, H.; Li, C.; O’Grady, R.L.; DeCarlo, A.A. Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing. J. Control Release 2017, 250, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Mukhamadiyarov, R.A.; Frolov, A.V.; Kutikhin, A.G. Age-dependent remodeling of the internal thoracic artery extracellular matrix in patients with a combination of two or more cardiovascular risk factors. Compl. Iss. Cardiovasc. Dis. 2022, 10, 33–45. [Google Scholar] [CrossRef]
- Aitken, C.; Mehta, V.; Schwartz, M.A.; Tzima, E. Mechanisms of endothelial flow sensing. Nat. Cardiovasc. Res. 2023, 2, 517–529. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Shang, M.; Liu, X.; Munn, L.L. Endothelial mechanobiology in atherosclerosis. Cardiovasc. Res. 2023, 119, 1656–1675. [Google Scholar] [CrossRef]
- Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T.J.; Ridger, V.; Roddie, H.; Evans, P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63. [Google Scholar] [CrossRef]
- Mutgan, A.C.; Jandl, K.; Kwapiszewska, G. Endothelial basement membrane components and their products, matrikines: Active drivers of pulmonary hypertension? Cells 2020, 9, 2029. [Google Scholar] [CrossRef]
- Gao, Y.; Galis, Z.S. Exploring the role of endothelial cell resilience in cardiovascular health and disease. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 179–185. [Google Scholar] [CrossRef]
- Tombor, L.S.; Dimmeler, S. Why is endothelial resilience key to maintain cardiac health? Basic. Res. Cardiol. 2022, 117, 35. [Google Scholar] [CrossRef]
- Accardo-Palumbo, A.; Triolo, G.; Colonna-Romano, G.; Potestio, M.; Carbone, M.; Ferrante, A.; Giardina, E.; Caimi, G.; Triolo, G. Glucose-induced loss of glycosyl-phosphatidylinositol-anchored membrane regulators of complement activation (CD59, CD55) by in vitro cultured human umbilical vein endothelial cells. Diabetologia 2000, 43, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.C.; Tang, X.; Tesfamariam, B. Paclitaxel potentiates inflammatory cytokine-induced prothrombotic molecules in endothelial cells. J. Cardiovasc. Pharmacol. 2010, 55, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Teoh, C.W.; Riedl Khursigara, M.; Ortiz-Sandoval, C.G.; Park, J.W.; Li, J.; Bohorquez-Hernandez, A.; Bruno, V.; Bowen, E.E.; Freeman, S.A.; Robinson, L.A.; et al. The loss of glycocalyx integrity impairs complement factor H binding and contributes to cyclosporine-induced endothelial cell injury. Front. Med. 2023, 10, 891513. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.; Hettinga, J.; Flückiger, R.; Krumrei, N.; Goldfine, A.; Angarita, L.; Halperin, J. Molecular basis for a link between complement and the vascular complications of diabetes. Proc. Natl. Acad. Sci. USA 2000, 97, 5450–5455. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, S.; Leng, S.X. Chronic low-grade inflammatory phenotype (CLIP) and senescent immune dysregulation. Clin. Ther. 2019, 41, 400–409. [Google Scholar] [CrossRef]
- Shintouo, C.M.; Mets, T.; Beckwee, D.; Bautmans, I.; Ghogomu, S.M.; Souopgui, J.; Leemans, L.; Meriki, H.D.; Njemini, R. Is inflammageing influenced by the microbiota in the aged gut? A systematic review. Exp. Gerontol. 2020, 141, 111079. [Google Scholar] [CrossRef]
- Pan, L.; Xie, W.; Fu, X.; Lu, W.; Jin, H.; Lai, J.; Zhang, A.; Yu, Y.; Li, Y.; Xiao, W. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp. Gerontol. 2021, 154, 111544. [Google Scholar] [CrossRef]
- Tylutka, A.; Walas, Ł.; Zembron-Lacny, A. Level of IL-6, TNF, and IL-1beta and age-related diseases: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1330386. [Google Scholar] [CrossRef]
- Dyer, A.H.; McNulty, H.; Caffrey, A.; Gordon, S.; Laird, E.; Hoey, L.; Hughes, C.F.; Ward, M.; Strain, J.J.; O’Kane, M.; et al. Low-grade systemic inflammation is associated with domain-specific cognitive performance and cognitive decline in older adults: Data from the TUDA study. Neurobiol. Aging 2024, 134, 94–105. [Google Scholar] [CrossRef]
- Noh, S.G.; Kim, H.W.; Kim, S.; Chung, K.W.; Jung, Y.S.; Yoon, J.H.; Yu, B.P.; Lee, J.; Chung, H.Y. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res. Rev. 2024, 101, 102503. [Google Scholar] [CrossRef]
- Di Micco, R.; Krizhanovsky, V.; Baker, D.; d’Adda di Fagagna, F. Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 2021, 22, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S.; Farr, J.N.; Tchkonia, T.; Kirkland, J.L. The role of cellular senescence in ageing and endocrine disease. Nat. Rev. Endocrinol. 2020, 16, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Sabbatinelli, J.; Prattichizzo, F.; Olivieri, F.; Procopio, A.D.; Rippo, M.R.; Giuliani, A. Where metabolism meets senescence: Focus on endothelial cells. Front. Physiol. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, A.; Giudetti, A.M.; Vergara, D.; Del Coco, L.; Ramini, D.; Caccese, S.; Sbriscia, M.; Graciotti, L.; Fulgenzi, G.; Tiano, L.; et al. Senescent endothelial cells sustain their senescence-associated secretory phenotype (SASP) through enhanced fatty acid oxidation. Antioxidants 2023, 12, 1956. [Google Scholar] [CrossRef] [PubMed]
- Clayton, Z.S.; Rossman, M.J.; Mahoney, S.A.; Venkatasubramanian, R.; Maurer, G.S.; Hutton, D.A.; VanDongen, N.S.; Greenberg, N.T.; Longtine, A.G.; Ludwig, K.R.; et al. Cellular senescence contributes to large elastic artery stiffening and endothelial dysfunction with aging: Amelioration with senolytic treatment. Hypertension 2023, 80, 2072–2087. [Google Scholar] [CrossRef]
- Rossman, M.J.; Kaplon, R.E.; Hill, S.D.; McNamara, M.N.; Santos-Parker, J.R.; Pierce, G.L.; Seals, D.R.; Donato, A.J. Endothelial cell senescence with aging in healthy humans: Prevention by habitual exercise and relation to vascular endothelial function. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H890–H895. [Google Scholar] [CrossRef]
- Schafer, M.J.; Zhang, X.; Kumar, A.; Atkinson, E.J.; Zhu, Y.; Jachim, S.; Mazula, D.L.; Brown, A.K.; Berning, M.; Aversa, Z.; et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 2020, 5, e133668. [Google Scholar] [CrossRef]
- Wang, B.; Han, J.; Elisseeff, J.H.; Demaria, M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat. Rev. Mol. Cell Biol. 2024. [Google Scholar] [CrossRef]
- Hall, S.A.; Lesniewski, L.A. Targeting vascular senescence in cardiovascular disease with aging. J. Cardiovasc. Aging 2024, 4, 16. [Google Scholar] [CrossRef]
- Suda, M.; Paul, K.H.; Minamino, T.; Miller, J.D.; Lerman, A.; Ellison-Hughes, G.M.; Tchkonia, T.; Kirkland, J.L. Senescent cells: A therapeutic target in cardiovascular diseases. Cells 2023, 12, 1296. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Aguilar, M.; Thorin, E.; Ferbeyre, G.; Nattel, S. The role of cellular senescence in cardiac disease: Basic biology and clinical relevance. Nat. Rev. Cardiol. 2022, 19, 250–264. [Google Scholar] [CrossRef] [PubMed]
- King, B.C.; Blom, A.M. Complement in metabolic disease: Metaflammation and a two-edged sword. Semin. Immunopathol. 2021, 43, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Ellsworth, C.R.; Chen, Z.; Xiao, M.T.; Qian, C.; Wang, C.; Khatun, M.S.; Liu, S.; Islamuddin, M.; Maness, N.J.; Halperin, J.A.; et al. Enhanced complement activation and MAC formation accelerates severe COVID-19. Cell. Mol. Life Sci. 2024, 81, 405. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.R.; Hewitson, T.D.; Cai, M.M.X.; Aghagolzadeh, P.; Bachtler, M.; Pasch, A.; Holt, S.G. A novel fluorescent probe-based flow cytometric assay for mineral-containing nanoparticles in serum. Sci. Rep. 2017, 7, 5686. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
- Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Narasimhan, B.; Chu, G. Impute: Imputation for Microarray Data; R Package Version 1.70.0; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Blighe, K.; Rana, S.; Lewis, M. EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling, R package version 1.14.0; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef]
- Gillespie, M.; Jassal, B.; Stephan, R.; Milacic, M.; Rothfels, K.; Senff-Ribeiro, A.; Griss, J.; Sevilla, C.; Matthews, L.; Gong, C.; et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022, 50, D687–D692. [Google Scholar] [CrossRef] [PubMed]
- Griss, J.; Viteri, G.; Sidiropoulos, K.; Nguyen, V.; Fabregat, A.; Hermjakob, H. ReactomeGSA—Efficient Multi-Omics Comparative Pathway Analysis. Mol. Cell. Proteom. 2020, 19, 2115–2125. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007, 8, R183. [Google Scholar] [CrossRef]
- Hosack, D.A.; Dennis, G., Jr.; Sherman, B.T.; Lane, H.C.; Lempicki, R.A. Identifying biological themes within lists of genes with EASE. Genome Biol. 2003, 4, R70. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
Comparison | Number of Upregulated Proteins | Number of Downregulated Proteins |
---|---|---|
Primary human coronary artery endothelial cells (HCAEC) | ||
CPP-P vs. DPBS | 61 | 104 |
CPP-P vs. MPP | 67 | 87 |
CPP-S vs. DPBS | 76 | 101 |
CPP-S vs. MPP | 74 | 96 |
MPP vs. DPBS | 23 | 31 |
CPP-S vs. CPP-P | 3 | 5 |
Primary human internal thoracic artery endothelial cells (HITAEC) | ||
CPP-P vs. DPBS | 73 | 121 |
CPP-P vs. MPP | 87 | 132 |
CPP-S vs. DPBS | 82 | 109 |
CPP-S vs. MPP | 109 | 138 |
MPP vs. DPBS | 17 | 3 |
CPP-S vs. CPP-P | 55 | 34 |
Protein | UniProt ID | HCAEC (Log2fold Change) | HCAEC (Log2fold Change) | Hits in the Top 10 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CPP-P vs. DPBS | CPP-P vs. MPP | CPP-S vs. DPBS | CPP-S vs. MPP | CPP-P vs. DPBS | CPP-P vs. MPP | CPP-S vs. DPBS | CPP-S vs. MPP | |||
10 most downregulated proteins for each comparison | ||||||||||
PTX3 | P26022 | −3.28 | −3.24 | −3.28 | −3.24 | −3.48 | −4.35 | N/A | −2.52 | 7/8 |
BGN | P21810 | −2.68 | −2.34 | −3.05 | −2.71 | −4.35 | −5.10 | N/A | −2.41 | 7/8 |
SPARC | P09486 | −3.52 | −3.42 | −3.36 | −3.26 | −2.93 | −3.26 | N/A | N/A | 6/8 |
HSPG2 | P98160 | −3.18 | −2.96 | −3.08 | −2.87 | −2.72 | −3.35 | N/A | N/A | 6/8 |
THBS1 | P07996 | −2.53 | −3.37 | −2.49 | −3.33 | −2.61 | −3.33 | N/A | N/A | 6/8 |
DKK3 | Q9UBP4 | −2.83 | −3.16 | −2.54 | −2.87 | N/A | N/A | N/A | N/A | 4/8 |
MDK | P21741 | N/A | N/A | N/A | N/A | −2.92 | −3.47 | −2.92 | −3.47 | 4/8 |
FN1 | P02751 | −2.24 | −3.37 | N/A | −3.03 | N/A | N/A | N/A | N/A | 3/8 |
ACTA1 | P68133 | −2.57 | N/A | −2.88 | N/A | N/A | N/A | N/A | N/A | 2/8 |
SET | Q01105 | −2.40 | N/A | −2.68 | N/A | N/A | N/A | N/A | N/A | 2/8 |
CCN2 | P29279 | N/A | −2.46 | N/A | N/A | N/A | N/A | N/A | −2.46 | 2/8 |
SRGN | P10124 | N/A | N/A | N/A | N/A | −3.28 | −4.25 | N/A | N/A | 2/8 |
CLU | P10909 | N/A | N/A | N/A | N/A | −3.13 | N/A | −2.00 | N/A | 2/8 |
LOXL2 | Q9Y4K0 | N/A | N/A | N/A | N/A | −3.04 | −3.29 | N/A | N/A | 2/8 |
MFAP2 | P55001 | N/A | N/A | N/A | N/A | −2.98 | N/A | −1.81 | N/A | 2/8 |
APOB | P04114 | N/A | N/A | N/A | N/A | N/A | −3.37 | N/A | −3.52 | 2/8 |
EIF1AX | P47813 | N/A | N/A | N/A | N/A | N/A | N/A | −2.67 | −3.15 | 2/8 |
SDF4 | Q9BRK5 | N/A | N/A | N/A | N/A | N/A | N/A | −2.01 | −2.26 | 2/8 |
APP | P05067 | N/A | N/A | N/A | N/A | N/A | N/A | −1.81 | −2.67 | 2/8 |
TPP1 | O14773 | −2.34 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
FSTL1 | Q12841 | N/A | −2.62 | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
CLSTN1 | O94985 | N/A | −2.43 | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
CALR | P27797 | N/A | N/A | −2.74 | N/A | N/A | N/A | N/A | N/A | 1/8 |
RPL10A | P62906 | N/A | N/A | −2.68 | N/A | N/A | N/A | N/A | N/A | 1/8 |
LTBP2 | Q14767 | N/A | N/A | N/A | −2.35 | N/A | N/A | N/A | N/A | 1/8 |
EHD2 | Q9NZN4 | N/A | N/A | N/A | −2.29 | N/A | N/A | N/A | N/A | 1/8 |
ANP32A | P39687 | N/A | N/A | N/A | −2.14 | N/A | N/A | −1.93 | N/A | 1/8 |
ESM1 | Q9NQ30 | N/A | N/A | N/A | N/A | N/A | −2.98 | N/A | N/A | 1/8 |
HMGB2 | P26583 | N/A | N/A | N/A | N/A | N/A | N/A | −2.02 | N/A | 1/8 |
RBM8A | Q9Y5S9 | N/A | N/A | N/A | N/A | N/A | N/A | −1.78 | N/A | 1/8 |
MATR3 | P43243 | N/A | N/A | N/A | N/A | N/A | N/A | −1.74 | N/A | 1/8 |
ST13 | P50502 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | −2.33 | 1/8 |
SPOCK1 | Q08629 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | −2.26 | 1/8 |
10 most upregulated proteins for each comparison | ||||||||||
CD59 | P13987 | 2.29 | 2.41 | 2.74 | 2.85 | 2.44 | 2.23 | 2.56 | 2.35 | 8/8 |
MT1E | P04732 | N/A | N/A | N/A | N/A | 2.18 | 2.26 | 2.64 | 2.72 | 4/8 |
TMSB10 | P63313 | 1.87 | N/A | 1.91 | 1.89 | N/A | N/A | N/A | N/A | 3/8 |
IGKC | P01834 | N/A | 2.42 | N/A | 2.59 | N/A | 2.64 | N/A | N/A | 3/8 |
IGHG1 | P01857 | N/A | 2.31 | N/A | 2.14 | N/A | 1.83 | N/A | N/A | 3/8 |
ACTB | P60709 | 2.64 | N/A | 2.69 | N/A | N/A | N/A | N/A | N/A | 2/8 |
PSAT1 | Q9Y617 | 1.99 | N/A | 2.43 | N/A | N/A | N/A | N/A | N/A | 2/8 |
ALCAM | Q13740 | 1.75 | N/A | 1.63 | N/A | N/A | N/A | N/A | N/A | 2/8 |
CAV1 | Q03135 | 1.65 | 2.35 | N/A | N/A | N/A | N/A | N/A | N/A | 2/8 |
IGLL5 | B9A064 | N/A | 2.09 | N/A | N/A | N/A | 1.70 | N/A | N/A | 2/8 |
SHPK | Q9UHJ6 | N/A | 2.07 | N/A | 2.01 | N/A | N/A | N/A | N/A | 2/8 |
TFRC | P02786 | N/A | N/A | 2.02 | 2.42 | N/A | N/A | N/A | N/A | 2/8 |
AFP | P02771 | N/A | N/A | 1.67 | 2.30 | N/A | N/A | N/A | N/A | 2/8 |
HNRNPH2 | P55795 | N/A | N/A | N/A | N/A | 1.90 | 1.90 | N/A | N/A | 2/8 |
FLOT1 | O75955 | N/A | N/A | N/A | N/A | 1.82 | 1.72 | N/A | N/A | 2/8 |
DYNLL2 | Q96FJ2 | N/A | N/A | N/A | N/A | 1.73 | 1.99 | N/A | N/A | 2/8 |
FTL | P02792 | N/A | N/A | N/A | N/A | N/A | N/A | 2.82 | 2.96 | 2/8 |
STC1 | P52823 | N/A | N/A | N/A | N/A | N/A | N/A | 2.52 | 2.45 | 2/8 |
REEP5 | Q00765 | N/A | N/A | N/A | N/A | N/A | N/A | 2.33 | 2.35 | 2/8 |
METAP1 | P53582 | N/A | N/A | N/A | N/A | N/A | N/A | 2.20 | 2.38 | 2/8 |
FTH1 | P02794 | N/A | N/A | N/A | N/A | N/A | N/A | 2.19 | 2.17 | 2/8 |
BAX | Q07812 | N/A | N/A | N/A | N/A | N/A | N/A | 2.83 | 2.76 | 2/8 |
MIF | P14174 | 1.75 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
DYNC1I2 | Q13409 | 1.69 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
DNASE2 | O00115 | 1.58 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
CHORDC1 | Q9UHD1 | 1.55 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
H1-2 | P16403 | N/A | 2.14 | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
KRT14 | P02533 | N/A | 2.05 | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
KRT5 | P13647 | N/A | 1.95 | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
KPRP | Q5T749 | N/A | 1.93 | N/A | N/A | N/A | N/A | N/A | N/A | 1/8 |
RPS28 | P62857 | N/A | N/A | 1.89 | N/A | N/A | N/A | N/A | N/A | 1/8 |
SH3BGRL | O75368 | N/A | N/A | 1.71 | N/A | N/A | N/A | N/A | N/A | 1/8 |
TXNDC17 | Q9BRA2 | N/A | N/A | 1.63 | N/A | N/A | N/A | N/A | N/A | 1/8 |
IGLL5 | B9A064 | N/A | N/A | N/A | 2.39 | N/A | N/A | N/A | N/A | 1/8 |
DDT | P30046 | N/A | N/A | N/A | 1.76 | N/A | 1.77 | N/A | 2.21 | 1/8 |
MEMO1 | Q9Y316 | N/A | N/A | N/A | 1.75 | N/A | N/A | N/A | N/A | 1/8 |
GORASP2 | Q9H8Y8 | N/A | N/A | N/A | N/A | 2.45 | N/A | N/A | N/A | 1/8 |
CD55 | P08174 | N/A | N/A | N/A | N/A | 1.99 | N/A | N/A | N/A | 1/8 |
P01834 | P01834 | N/A | N/A | N/A | N/A | 1.90 | N/A | N/A | N/A | 1/8 |
CD63 | P08962 | N/A | N/A | N/A | N/A | 1.90 | N/A | N/A | N/A | 1/8 |
LGALS9 | O00182 | N/A | N/A | N/A | N/A | 1.68 | N/A | N/A | N/A | 1/8 |
EMD | P50402 | N/A | N/A | N/A | N/A | N/A | 1.79 | N/A | N/A | 1/8 |
NCSTN | Q92542 | N/A | N/A | N/A | N/A | N/A | N/A | 2.18 | N/A | 1/8 |
TRIAP1 | O43715 | N/A | N/A | N/A | N/A | N/A | N/A | 1.99 | N/A | 1/8 |
S100A10 | P60903 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 2.42 | 1/8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanov, A.; Shishkova, D.; Markova, V.; Markova, Y.; Frolov, A.; Lazebnaya, A.; Oshchepkova, K.; Perepletchikova, D.; Smirnova, D.; Basovich, L.; et al. Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59. Int. J. Mol. Sci. 2024, 25, 11382. https://doi.org/10.3390/ijms252111382
Stepanov A, Shishkova D, Markova V, Markova Y, Frolov A, Lazebnaya A, Oshchepkova K, Perepletchikova D, Smirnova D, Basovich L, et al. Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59. International Journal of Molecular Sciences. 2024; 25(21):11382. https://doi.org/10.3390/ijms252111382
Chicago/Turabian StyleStepanov, Alexander, Daria Shishkova, Victoria Markova, Yulia Markova, Alexey Frolov, Anastasia Lazebnaya, Karina Oshchepkova, Daria Perepletchikova, Daria Smirnova, Liubov Basovich, and et al. 2024. "Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59" International Journal of Molecular Sciences 25, no. 21: 11382. https://doi.org/10.3390/ijms252111382
APA StyleStepanov, A., Shishkova, D., Markova, V., Markova, Y., Frolov, A., Lazebnaya, A., Oshchepkova, K., Perepletchikova, D., Smirnova, D., Basovich, L., Repkin, E., & Kutikhin, A. (2024). Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59. International Journal of Molecular Sciences, 25(21), 11382. https://doi.org/10.3390/ijms252111382