Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review
Abstract
:1. Introduction
2. Current Classification Schemes of Large B-Cell Lymphomas
Diffuse Large B-Cell Lymphoma, Not Otherwise Specified
3. Diffuse Large B-Cell Lymphoma Biology, B-Cell Receptor
4. The Cell-of-Origin Distinction of DLBCL Subtypes
5. Biological Heterogeneity and Subtyping of DLBCL
Basis of Classification | Classification | # of Samples & Subtypes Proportions | Subtypes/Subgroups/Clusters | Distinctive Features in Subtypes/Clusters | Classifying Algorithm | Technology/Method of Molecular Profiling | Specimen Type | Gene Expression Signatures/Study Features | |
---|---|---|---|---|---|---|---|---|---|
cell-of-origin (COO) | COO subtyping; Alizadeh et al., 2000. [51] | GCB | markers of GC differentiation (CD10, CD38), NF A-myb, OGG1, higher BCL-6 mRNA expression | hierarchical clustering | GEP by cDNA microarray (Lymphochip) | Lymph-node DLBCL biopsies | Proliferation signature, GC B-cell signature genes, lymph node genes, T-cell signature genes | ||
ABC | constitutive expression of IRF-4 and FLIP, BCL-2 mRNA levels 4x higher than in GCB subtype | ||||||||
COO subtyping; Rosenwald et al., 2002. [52] | GCB | BCL-2 t(14;18) translocation, c-rel amplification exclusively in GCB; BCL-6, CD10, LMO2, Jnk3, A-myb | hierarchical clustering | GEP by cDNA microarray (Lymphochip) | Lymph-node DLBCL biopsies | 16 genes selected from GCB cell signature, MHC II complex signature, stromal & immune cells in lymph-node signature, proliferating cells signature | |||
ABC | IRF-4, FLIP, CD44, Cyclin D2 | ||||||||
Type 3 | BCL-2 t(14;18), or c-rel amplification not present; do not express either BCG or ABC set of genes at a high level | ||||||||
Wright et al., 2003. [84] | (I) (II) | GCB | c-rel amplification, SHM of Ig genes, higher expression of BCL-6, LMO2, MYBL1/A-myb, CD21, CD10, HDAC1, FAK, lck… | linear predictor score for each sample computed and used to estimate the likelihood of a tumor belonging to GCB or ABC | GEP by Lymphochip array or by oligonucleotide microarray Affymetrics HU6500 | Data from reference [52] and lymph-node biopsies | GC B-cell signature, MHC II signature (27 genes after selection) [84] | ||
ABC | IRF-4; higher expression of PKCβ1, XBP-1; lower expression of BCL-6 | ||||||||
Type 3 | samples with <90% likelihood of being in ABC or GCB | ||||||||
genetic subtyping based on genetic alterations & affected signalling pathway(s) | Schmitz’s/NCI institute classification [56] | MCD | co-occurrence of MYD88L265P & CD79B mutations | automated method starts with a set of seed classes and iteratively moves cases into and out of the classes to optimize a genetic distinctiveness metric | multiplatform genomic analysis using: WES (n = 556), targeted amplicon re-sequencing of 372 genes (n = 530), RNA seq (n = 562), array-based DNA copy number analysis (n = 560) | DLBCL biopsies (574) | 79 genes identified whose aberrations characterized each genetic subtype including gene expression signatures were: B-cell differentiation, oncogenic signaling, proliferation & TME | ||
BN2 | based on BCL-6 fusions or NOTCH2 mutations | ||||||||
N1 | based on NOTCH1 mutations | ||||||||
EZB | based on EZH2 mutations or BCL-2 translocations | ||||||||
Chapuy-Shipp’s classifier/Harward algorithm [88] | C0 | DLBCLs lacking defining genetic drivers; increased numbers of T-cell/histocyte-rich LBCLs | non-negative matrix factorization consensus clustering | hybrid approach: WES expanded to capture known structural variants, DNA copy number analysis, somatic SNVs, Indels | DLBCL biopsies | 98 CCGs: TP53, KMT2D, CREBBP, EP300, BCR components, TLR, NF-κB pathway, CD79B, MYD88, CARD11, TNFAIP3, RAS pathway components, KRAS, BRAF, NOTCH2, SPEN, B2M, CD58, CD70, CIITA; +40 previously undescribed CCGs in DLBCL | |||
C1 | ABC-DLBCLs with genetic features of an extrafollicular, possibly marginal zone origin; enriched with BCL6 SVs and frequent mutations affecting the NF-κB pathway & FAS | ||||||||
C2 | clonal loss of 17p; TP53 mutations; 18q21.33 copy gain, loss of CDKN2A and RB1; MYC SVs | ||||||||
C3 | GCB-DLBCLs with BCL2 mutations with structural variants (juxtaposition of BCL2 to IgH enhancer); mutations in KMT2D, CREBBP and EZH2; and alterations of PTEN epigenetic enzymes | ||||||||
C4 | GCB-DLBCLs with mutations in 4 linker and 4 core histone genes; also in CD83, CD58, CD70, BCR/PI3K signaling intermediates, NF-κB modifiers (CARD11, NFKBIE, NFKBIA and RAS/JAK/STAT pathway members (BRAF and STAT3) | ||||||||
C5 | defining mutations of CD79B MYD88 & TBL1XR1; 18q copy gains; mutations of ETV6, PIM1, & BTG1; highest aberrant SHM | ||||||||
Wright’s probabilistic classification (2020)/LymphGen algorithm developed [83] | MCD | including MYD88L265P and CD79B mutations | GenClass algorithm first used to pre-defined genetic classes; LymphGen, a Bayesian predictor model was built that determines the probability (P) that a patient’s tumor belongs to the subtype; tumors with p > 90% are “core” members of subtypes, 50–90% are “extended” members, core members of more than one subtype are “genetically composite” | training data taken from NCI cohort, ref. [56]; LymphGen validation data taken from Harward cohort, ref. [88] and from BCC cohort, ref. [66] | The subtypes showed distinct malignant attributes; MCD & EZB-MYC+ highly expressing signatures of proliferation and MYC activity; N1 expressed a signature of quiescence; EZB-MYC+ tumors highly expressed a ribosomal protein signature; metabolic distinctions between the subtypes included high expression of glycolytic pathway enzymes in ST2 (Warburg effect) and high expression of lipid synthetic enzymes in EZB-MYC+ | ||||
BN2 | including BCL6 translocations and NOTCH2 mutations; resembles MZLs | ||||||||
N1 | including NOTCH1 mutations (gain-of-function) | ||||||||
EZB | -MYC+ | EZH2 mutations and BCL2 translocations; with DHIT signature | |||||||
-MYC- | EZH2 mutations and BCL2 translocations; without DHIT signature | ||||||||
ST2 | recurrent truncating SGK1 and TET2 mutations; inactivating mutations targeting P2RY8 and GNA13; resembles both NLPHL and THRLBCL | ||||||||
A53 | characterized by TP53 mutations and deletions; frequent mutations or deletions of B2M | ||||||||
Lacy’s/HMRN classifier [91] | NEC | not elsewhere classified DLBCL tumors (27% of patients) | Bernoulli mixtured-model clustering | DNA sequencing, DNA copy number analysis, FISH | DNA extracted from DLBCL tumors diagnosed in patients residing in a catchment population of ~4 million (14 centers) were sequenced with a targeted 293-gene hematological-malignancy panel (n = 928), the HMRN cohort | study confirmed the existence of molecular subtypes of DLBCL; evidence that genomic tests have prognostic significance in non-selected DLBCL given; novelty was the division of the previously identified SGK1 cluster into SOCS1/SGK1 and TET2/SGK1 subgroups; the biological validity supported by the enrichment of JAK/STAT and ERK gene expression signatures; limitation: the lack of BCL6 fusion data | |||
SOCS1/SGK1 | mutations of SOCS1, CD83, SGK1, NFKBIA, HIST1H1E, STAT3. Several of these targets of aberrant SHM; mutations present common to PMBCL; represents a subdivision of the C4 cluster described by [88] | ||||||||
TET2/SGK1 | largely GCB-DLBCLs with characteristic mutations including TET2, SGK1 & KRAS, representing another subdivision of the C4 cluster [88]; mutation of multiple components of the ERK pathway | ||||||||
MYD88 | MYD88 (66.2%), CD79B (50.0%), PIM1 (92.5%), HLA-B (73.8%), BTG1 (70.0%), CDKN2A (62.0%), ETV6 (55.0%), SPIB (51.9%), OSBPL10 (51.2%), TOX (48.1%), BCL2 (48.1%), BTG2 (43.8%), MPEG1 (43.8%), HLA-A (43.0%), HLA-C (42.5%), SETD1B (41.8%), KLHL14 (41.2%), TBL1XR1 (35.0%), GRHPR (33.8%), PRDM1 (32.5%), CD58 (31.6%), TAP1 (26.6%), PIM2 (25.0%), FOXC1 (21.2%), IRF4 (20.0%); encompasses the majority of observed primary CNS lymphomas and primary testicular lymphomas | ||||||||
BCL2 | predominantly had characteristic t(14;18) and other mutations in BCL2 pathways; BCL2 (68.4%), EZH2 (44.7%), TNFRSF14 (66.2%), KMT2D (53.9%), CREBBP (52.7%), REL (34.3%), FAS (30.1%), IRF8 (28.9%), EP300 (27.8%), MEF2B (26.3%), CIITA (25.0%), ARID1A (22.9%), GNA13 (22.5%), STAT6 (21.1%), PTEN (20.0%) | ||||||||
NOTCH2 | BCL6 (72.8%), NOTCH2 (41.8%), TNFAIP3 (51.6%), DTX1 (50.0%), CD70 (41.3%), BCL10 (39.6%), UBE2A (30.4%), TMEM30A (26.7%), KLF2 (21.7%), SPEN (21.7%) * | ||||||||
Shen’s classifier/ LymphPlex [92] | TP53Mut | p53 signaling dysregulation, altered PI3K signaling (activation) and lipid synthesis; deficiency of anti-tumor immunity due to low expression of immune signatures including T-cells, NK cells, macrophages, and dendritic cells | a given DLBCL sample was assigned into one of the defined genetic subtypes (TP53Mut, MCD-like, BN2-like, N1-like, EZB-like with or without MYC rearrangements, & ST2-like) by PAM clustering using mutation data of 35 genes and rearrangement data of three genes: BCL2, BCL6. | WES (n = 337), WGS (n = 337), DNA copy number analysis, targeted sequencing of the lymphoma-related genes (n = 664); RNA-sequencing (n = 268), FISH | training data (n = 337) taken from Ruijin cohort; LymphPlex-validation data taken from: (i) Ruijin cohort, n = 1001; (ii) BCC cohort [66], n = 320; (iii) HMRN cohort [91], n = 928. | affected were cell proliferation signature, B-cell differentiation genes, B-cell TFs, oncogenic signaling pathways (NF-κB, p53, Notch, PI3K, JAK), TME signature (CD4+, CD8+, Treg, NK, M1, M2, DC, stromal-1). TP53Mut and MCD-like subtypes highly expressing signatures of cell proliferation and MYC oncoprotein; TP53Mut and EZB-like-MYC+ subtypes expressing low level signatures of quiescence; metabolic also observed with highly expressing signatures of glycolytic pathway in the TP53Mut, MCD-like & BN2-like subtypes; high expressing signatures of lipid synthesis in the TP53Mut; classification based on mutations of 35 genes and rearrangements of three genes (BCL2, BCL6, MYC) | |||
MCD-like | co-occurrence of MYD88 & CD79B mutations, BCL2/MYC double expression, strong enrichment in ABC-DLBCL signatures, NF-κB activation, IRF4 & MYC upregulation; | ||||||||
BN2-like | FBCL6 & NOTCH2 mutations, signatures of BCR-dependent NF-κB activation | ||||||||
N1-like | dominated by NOTCH1 mutations | ||||||||
EZB-like | characteristic FBCL2 & EZH2 mutations, EZB-like-MYC+ characterized by an immunosuppressive TME; EZB-like-MYC- by NOTCH activation; | ||||||||
ST2-like | featured with stromal-1 modulation; mutations in SGK1, TET2 & SOCS1; favorable outcome within GCB-DLBCLs | ||||||||
NOS | 166/337 patients with known WES/WGS data (49.3%) not categorized into six subtypes were grouped under NOS | ||||||||
genetic signature of metabolic heterogeneity | Hou et al., 2023. [101] | A | 43 genes downregulated and one gene upregulated in A; 21 genes downregulated and one gene upregulated in B; functional analyses of those DEGs via KEGG pathway and GO analyses were not able to provide any results for clusters A and B (due to the small sizes of DEGs sets) | PAM clustering (unsupervised consensus algorithm) of metabolic genes using the training cohort | microarray GEP, i.e., transcriptomic data of one training dataset (GSE31312) and four validation datasets from DLBCL cohorts GSE10846, GSE53786, GSE87371, GSE23501 were retrieved from the NCBI GEO database | three subtypes of DLBCL identified based on expression levels of 1916 genes engaged in seven metabolic pathways: lipid metabolic pathway (766), carbohydrate metabolism (286), amino acid metabolism (348), the integration of energy pathway (110), nucleotide metabolism (90), vitamin cofactor metabolism (168), TCA cycle (148) | |||
B | |||||||||
C | 102 genes downregulated; 1743 upregulated genes; DEGs in cluster C were more related to neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, and calcium signaling pathway | ||||||||
Monti et al., 2005. [85] | OxPhos | cluster signatures: NADH dehydrogenase complex, COX complex, ATP synthase (mitochondrial), ATP binding protein, ATP binding cassette subfamily, ATPase H+ transporter, TIMM, BFL-1/A1, MIHC, TNFA1P8, FAS, apoptosis-related protein 3, proteasome subunits, PTEN, etc. | three unsupervised clustering algorithms were used and compared: hierarchical clustering, self-organizing maps & model-based probabilistic clustering | GEPs by oligonucleotide microarrays (Affymetrix U133A & U133B) containing probe sets from 33,000 genes, FISH, morphologic analysis of TILs, IHC | DLBCL specimen from 176 patients | increased incidence of t(14;18) in OxPhos tumors; BCR/proliferation cluster had more abundant expression of cell-cycle regulatory genes, increased expression of DNA repair genes and p53, higher levels of many components of the BCR signaling cascade (CD19, Ig, CD79a, BLK, SYK, PLCγ2, MAP4K), additional B-cell–specific or essential TFs; the HR cluster was extensively studied: increased expression of T/NK cell receptor and activation pathway components, complement cascade members, macrophage/DC markers & inflammatory mediators; shared features of histologically defined T-cell/histiocyte-rich B-cell lymphoma, including fewer genetic abnormalities | |||
BCR/Proliferation | cluster signatures: CD22, CD19, Igμ, CD79α, BLK, SYK, PLCγ2, IP3 R type 3, IP3 kinase B, MAP4K1, CD74; TFS: PAX5, FOXO1A, BCL6, STAT6, NFAT, TCF3, Ikaros, MYC, CD37, BC11A, Ki67, CDK2, p53, H2AX, PTIP, HDAC1, etc. | ||||||||
Host response (HR) | cluster signatures: TCR, CD2, CD3 δ, ε, γ; CD6, Cd28, GATA3, cMAF, CXCR6, NKp30, LAT, FYN, SLAP, LAG3, CD100, perforin, TIRC7, LAIR-1, complement 1qB, 1S, 4A; complement 3α receptor, C1 inhibitor, CD14, CD163, FGR, BIT/SIRPα, granulin, LAMP1, cathepsins B, D; GILT, IFN-induced transmembrane proteins 1, 2; STAT1, HLA A, C, E, F; TNFRS 1A, 1B; IL2R, IL6R, IL15R, Cd31, caspase 4, Notch2, etc. |
6. Genomic Landscape of Diffuse Large B-Cell Lymphoma
7. Epigenetics and Diffuse Large B-Cell Lymphoma
8. Hitting Epigenetic Targets in Diffuse Large B-Cell Lymphoma
9. Targeting Major Pathways in Diffuse Large B-Cell Lymphoma
9.1. B-Cell Receptor Signaling
9.2. Targeting Bruton’s Tyrosine Kinase
9.3. Targeting NF-κB Signaling
9.4. Targeting Spleen Tyrosine Kinase and Protein Kinase C
9.5. Notch Signaling in Diffuse Large B-Cell Lymphoma
9.6. Targeting BCL2, BCL6, and MYC Proteins in Diffuse Large B-Cell Lymphoma
9.7. BET Degraders and PROTACs in Diffuse Large B-Cell Lymphoma
9.8. Targeting Mammalian/Mechanistic Target of Rapamycin (mTOR) in DLBCL
9.9. Targeting Phosphatidylinositol-3-Kinase in DLBCL
9.10. Targeting p53 Tumor Suppressor in DLBCL
9.11. JAK/STAT (Signal Transducer and Activator of Transcription) Signaling in DLBCL
Major Pathway Affected | Drug Name/Designation | Drug Features | Modus Operandi | Refs. | |
---|---|---|---|---|---|
BCR signaling | BTKi (1st gen.) | Ibrutinib * | high response rate in ABC; excellent RTT in ABC subsets with tandem CD79B & MYD88L265P mutations; drug not selective | covalent attachment to Cys481 in ATP-binding pocket of BTK | [191] |
BTKi (2nd gen.) | tirabrutinib | targets only B-cells; targets off-target kinases: TEC, BMX, HUNK, RIPK2 | [197] | ||
acalabrutinib | 33% ORR in R/R ABC vs. 16.7% in R/R GCB/UC | [191,198] | |||
TL-895 (formerly M7583) | interferes with the growth of a subset of ABC cell lines & 5/21 xenograft models | potent, highly selective, ATP-competitive, irreversible BTKi | [200] | ||
orelabrutinib | approved for MCL, CLL/SLL | irreversible highly selective BTKi | Ref. in [203] | ||
SYKi | fostamatinib | poor efficacy in phase II trial on 68 R/R DLBCL patients | binds to the ATP binding pocket of SYK and inhibits its kinase activity as an ATP-competitive inhibitor; blocks BCR-mediated activation of B-lymphocytes | [221,222] | |
entospletinib (GS-9973) | poor results in phase II trial on 43 R/R DLBCL patients | selective, reversible, ATP-competitive SYKi, blocks BCR signaling & proliferation in B-lymphocytes | [223] | ||
PKCβi | enzastaurin | desirable pre-clinical results but not so effective in phase I trials | isozyme-specific PKCβi involved in AKT & MAPK pathways | [225,226] | |
Notch signaling | potential Notch2i | not known | NOTCH2 activation is rare, even in NOTCH2-mutated DLBCLs | NOTCH2-mutated DLBCLs unlikely to be responsive to Notch-directed therapeutics | [233] |
Potential Notch1i | under investigation | Notch target gene expression is elevated in NOTCH1-mutated DLBCLs | Notch1i combined with other agents may be effective in NOTCH-1 mutated DLBCLs | [233] | |
NF-κB signaling | lenalidomide (Revlimid) | downregulation of IRF4 protein downstream of Cereblon; downregulation of BCR-induced NF-κB signaling; the most significant effect in non-GCB DLBCLs | targets Cereblon-substrate recognition protein in E3 ligase ubiquitin complex | [209,210] | |
PI3K | PI3Kδi | idelalisib | did not produce desirable response in R/R DLBCL patients | isoenzyme-specific inhibitor of PI3 kinase δ | [276] |
Dual PI3Kδi & PI3Kγi | duvelisib | dual inhibitor shows clinical activity in advanced cases of indolent NHL | [277] | ||
PI3Kβ/δi | AZD8186 | PI3Kβ/δ inhibition decreased the pro-survival NF-κB activity or led to downregulation of the oncogenic MYC | [273] | ||
pan-PI3Ki | copanlisib | approved for recurrent FL after two lines of therapy; limited but encouraging data in clinical trials | inhibits all four PI3K isoforms (P110α, P110β, P110δ, and P110γ), but the highest selectivity for the PI3Kα and PI3Kδ | [278] | |
BCL2 | BCL2i | venetoclax | utilized for treating AML & CLL | Venetoclax is a BH3-mimetic that helps restore the process of apoptosis by binding directly to the BCL2 protein | [236,237] |
Glutaminase (GLS)1 | GLS1i | CB-839 | cytotoxicity of CB-839 largely mediated by ROS induction, and not by a decreased energy metabolism or restricted supply of amino acids and nucleotides | [239] | |
MYC | MYC protein inhibitors MYC proteins investigated for decades, but seem ‘undruggable’ | [242,243,244] | |||
BCL6 | BCL6i | 9 novel structures of SMIs revealed by multiple biophysical techniques & X-ray crystallography | SMIs able to disrupt protein-protein interactions between BCL6 and its co-repressor proteins (BCOR, NCOR, SMRT) | [240] | |
WK500B | a synthetic small-molecule compound, directly binds to BCL6 BTB domain, significantly inhibiting the BCL6/SMRT interaction, reactivating BCL6 target genes & killing DLBCL cell lines via cell cycle arrest and apoptosis | [241] | |||
p53 tumor suppressor | MDM2 antagonist | idasanutlin | MDM2 is negative regulator of p53; entered Phase III clinical trials | blocks the MDM2 protein-XIAP RNA interaction, led to both MDM2 and XIAP degradation, and induced apoptotic death in DLBCL | [283] |
transcription inhibitor | CDK9i | enitociclib | clinical activity in a small cohort of patients with high grade DH/TH BCL inducing complete responses in 2 of 7 subjects | Inhibits transcription of anti-apoptotic and pro-survival proteins MYC and MCL1 | [288] |
PI3K/Akt/mTOR | HDACi + BTKi | chidamide + orelabrutinib | Synergistically inhibited the expression of PI3K (p85), AKT, and mTOR proteins; regulate BCL2 & caspase 3, inducing apoptosis of DLBCL cells | [203] | |
combinatorial therapy | BCL2i + standard-of-care anti-DLBCL regimen | venetoclax + R-CHOP | In DLBCLs overexpressing MYC and BCL2 (double expressors) the combination did not improve PFS, but resulted in higher toxicity | [238] | |
GLS1i + BCL2i | CB-839 + ABT922 | deep and durable responses in phase I trial on 89 R/R DLBCL patients | the first evidence that DLBCL cells are dependent on glutaminolysis; the combination promotes ROS formation and cytotoxicity in DLBCL cells | [239] |
9.12. Targeting Immune Evasion Mechanisms and N-Glycosylation in DLBCL
10. Programmed or Regulated Cell Death in B-Cell NHL and DLBCL
10.1. Autophagy
10.2. Cuproptosis
10.3. Ferroptosis
10.4. Mitophagy
11. Metabolic Changes Relevant to B-Cell NHL and DLBCL
11.1. Altered Glucose and Glutamine Utilization in DLBCL
11.2. Lipid Metabolic Reprogramming in DLBCL
12. Gut Microbiota in DLBCL
13. Molecular Modus Operandi of Drugs Used to Treat B-Cell NHL and DLBCL
13.1. Targeted Therapy of B-Cell NHL and DLBCL
13.2. B-Cell Markers as Targets of Anti-Neoplastic Strategy
14. Naked Monoclonal Antibodies in DLBCL Therapy
15. Antibody–Drug Conjugates in DLBCL Therapy
16. Bispecific Antibodies and T-Cell Engagers in DLBCL Therapy
17. Adoptive Cell Therapy for DLBCL
18. Chimeric Antigen Receptor T-Cells in Therapy of B-Cell NHL and DLBCL
19. Immune Checkpoint Inhibitors as Therapeutic Avenue for B-Cell NHL and DLBCL
20. Exploring CD47 as a Novel Target in Treatment of DLBCL
21. Therapeutic Paradigms Approved for Treating DLBCL
22. Bibliometric and Knowledge-Map Analysis of Scientific Articles on DLBCL
23. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Sehn, L.H.; Salles, G. Diffuse large b-cell lymphoma. N. Engl. J. Med. 2021, 384, 842–858. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Mao, T.; Qin, X.; Zhang, W.; Watanabe, N.; Li, J. Role of estrogen receptor signaling pathway-related genes in diffuse large B-cell lymphoma and identification of key targets via integrated bioinformatics analysis and experimental validation. Front. Oncol. 2022, 12, 1029998. [Google Scholar] [CrossRef] [PubMed]
- Hasselblom, S.; Ridell, B.; Nilsson-Ehle, H.; Andersson, P.O. The impact of gender, age and patient selection on prognosis and outcome in diffuse large B-cell lymphoma—A population-based study. Leuk. Lymphoma 2007, 48, 736–745. [Google Scholar] [CrossRef]
- Yıldırım, M.; Kaya, V.; Demirpençe, Ö.; Paydaş, S. The role of gender in patients with diffuse large B cell lymphoma treated with rituximab-containing regimens: A meta-analysis. Arch. Med. Sci. 2015, 11, 708–714. [Google Scholar] [CrossRef]
- Gall, E.A.; Mallory, T.B. Malignant lymphoma: A clinico-pathologic survey of 618 cases. Am. J. Pathol. 1942, 18, 381–429. [Google Scholar] [PubMed]
- Rappaport, H. Tumors of the Hematopoietic System; Armed Forces Institute of Pathology: Washington, DC, USA, 1966. [Google Scholar]
- Garvin, A.J.; Simon, R.; Young, R.C.; DeVita, V.T.; Berard, C.W. The Rappaport classification of non-Hodgkin’s lymphomas: A closer look using other proposed classifications. Semin. Oncol. 1980, 7, 234–243. [Google Scholar] [PubMed]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M. The 5th edition of the World Health Organization classification of haematolymphoid tumours: Lymphoid neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Kurz, K.S.; Ott, M.; Kalmbach, S.; Steinlein, S.; Kalla, C.; Horn, H.; Ott, G.; Staiger, A.M. Large B-cell lymphomas in the 5th edition of the WHO-classification of haematolymphoid neoplasms-updated classification and new concepts. Cancers 2023, 15, 2285. [Google Scholar] [CrossRef]
- Falini, B.; Martino, G.; Lazzi, S. A comparison of the International Consensus and 5th World Health Organization classifications of mature B-cell lymphomas. Leukemia 2023, 37, 18–34. [Google Scholar] [CrossRef]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef]
- Karube, K.; Satou, A.; Kato, S. New classifications of B-cell neoplasms: A comparison of 5th WHO and International Consensus classifications. Int. J. Hematol. 2024. [Google Scholar] [CrossRef]
- Grimm, K.E.; O’Malley, D.P. Aggressive B cell lymphomas in the 2017 revised WHO classification of tumors of hematopoietic and lymphoid tissues. Ann. Diagn. Pathol. 2019, 38, 6–10. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef]
- Hans, C.P.; Weisenburger, D.D.; Greiner, T.C.; Gascoyne, R.D.; Delabie, J.; Ott, G.; Müller-Hermelink, H.K.; Campo, E.; Braziel, R.M.; Jaffe, E.S.; et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004, 103, 275–282. [Google Scholar] [CrossRef]
- Nowakowski, G.S.; Czuczman, M.S. ABC, GCB, and double-hit diffuse large B-cell lymphoma: Does subtype make a difference in therapy selection? Am. Soc. Clin. Oncol. Educ. Book 2015, 35, e449–e457. [Google Scholar] [CrossRef]
- Ma, Z.; Niu, J.; Cao, Y.; Pang, X.; Cui, W.; Zhang, W.; Li, X. Clinical significance of ‘double-hit’ and ‘double-expression’ lymphomas. J. Clin. Pathol. 2020, 73, 126–138. [Google Scholar] [CrossRef]
- Warnnissorn, N.; Kanitsap, N.; Niparuck, P.; Boonsakan, P.; Kulalert, P.; Limvorapitak, W.; Bhoopat, L.; Saengboon, S.; Suriyonplengsaeng, C.; Chantrathammachart, P.; et al. Adding MYC/BCL2 double expression to NCCN-IPI may not improve prognostic value to an acceptable level. Blood Res. 2024, 59, 2. [Google Scholar] [CrossRef]
- Cerhan, J.R.; Kricker, A.; Paltiel, O.; Flowers, C.R.; Wang, S.S.; Monnereau, A.; Blair, A.; Dal Maso, L.; Kane, E.V.; Nieters, A.; et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: The InterLymph Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014, 2014, 15–25. [Google Scholar] [CrossRef]
- Yenamandra, A.K.; Smith, R.B.; Senaratne, T.N.; Kang, S.L.; Fink, J.M.; Corboy, G.; Hodge, C.A.; Lu, X.; Mathew, S.; Crocker, S.; et al. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet. 2022, 268–269, 1–21. [Google Scholar] [CrossRef]
- Frontzek, F.; Staiger, A.M.; Wullenkord, R.; Grau, M.; Zapukhlyak, M.; Kurz, K.S.; Horn, H.; Erdmann, T.; Fend, F.; Richter, J.; et al. Molecular profiling of EBV associated diffuse large B-cell lymphoma. Leukemia 2023, 37, 670–679. [Google Scholar] [CrossRef]
- Ross, A.M.; Leahy, C.I.; Neylon, F.; Steigerova, J.; Flodr, P.; Navratilova, M.; Urbankova, H.; Vrzalikova, K.; Mundo, L.; Lazzi, S.; et al. Epstein-Barr virus and the pathogenesis of diffuse large B-cell lymphoma. Life 2023, 13, 521. [Google Scholar] [CrossRef]
- Dargent, J.L.; Toffoli, S.; De Rop, C.; Hérin, M. Fibrin-associated EBV-positive large B-cell lymphoma incidentally found within a multinodular goiter. Int. J. Surg. Pathol. 2022, 30, 658–661. [Google Scholar] [CrossRef]
- Bilajac, E.; Mahmutović, L.; Lundstrom, K.; Glamočlija, U.; Šutković, J.; Sezer, A.; Hromić-Jahjefendić, A. Viral agents as potential drivers of diffuse large B-cell lymphoma tumorigenesis. Viruses 2022, 14, 2105. [Google Scholar] [CrossRef]
- Huguet, M.; Navarro, J.T.; Moltó, J.; Ribera, J.M.; Tapia, G. Diffuse large B-cell lymphoma in the HIV setting. Cancers 2023, 15, 3191. [Google Scholar] [CrossRef]
- Gergely, L.; Udvardy, M.; Illes, A. The possible role of pathogens and chronic immune stimulation in the development of diffuse large B-cell lymphoma. Biomedicines 2024, 12, 648. [Google Scholar] [CrossRef]
- Dada, R. Redefining precision management of r/r large B-cell lymphoma: Novel antibodies take on CART and BMT in the quest for future treatment strategies. Cells 2023, 12, 1858. [Google Scholar] [CrossRef]
- Kanas, G.; Ge, W.; Quek, R.G.W.; Keeven, K.; Nersesyan, K.; Arnason, J.E. Epidemiology of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) in the United States and Western Europe: Population-level projections for 2020–2025. Leuk. Lymphoma 2022, 63, 54–63. [Google Scholar] [CrossRef]
- Xu, H.; Yan, R.; Ye, C.; Li, J.; Ji, G. Specific mortality in patients with diffuse large B-cell lymphoma: A retrospective analysis based on the surveillance, epidemiology, and end results database. Eur. J. Med. Res. 2024, 29, 241. [Google Scholar] [CrossRef]
- Barrington, S.F.; Mikhaeel, N.G.; Kostakoglu, L.; Meignan, M.; Hutchings, M.; Müeller, S.P.; Schwartz, L.H.; Zucca, E.; Fisher, R.I.; Trotman, J.; et al. Role of imaging in the staging and response assessment of lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 2014, 32, 3048–3058. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef] [PubMed]
- Van Heertum, R.L.; Scarimbolo, R.; Wolodzko, J.G.; Klencke, B.; Messmann, R.; Tunc, F.; Sokol, L.; Agarwal, R.; Strafaci, J.A.; O’Neal, M.; et al. Lugano 2014 criteria for assessing FDG-PET/CT in lymphoma: An operational approach for clinical trials. Drug Des. Dev. Ther. 2017, 11, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.J.; Ghesquières, H.; Jais, J.P.; Witzig, T.E.; Haioun, C.; Thompson, C.A.; Delarue, R.; Micallef, I.N.; Peyrade, F.; Macon, W.R.; et al. Event-free survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunochemotherapy. J. Clin. Oncol. 2014, 32, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, A.S.; Dixon, J.G.; Salles, G.; Wall, A.; Cunningham, D.; Poeschel, V.; Haioun, C.; Tilly, H.; Ghesquieres, H.; Ziepert, M.; et al. International prognostic indices in diffuse large B-cell lymphoma: A comparison of IPI, R-IPI, and NCCN-IPI. Blood 2020, 135, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Li, H.; Zhang, D.; Liu, S.; Song, Y.; Zhang, F.; Li, Z.; Zhuang, J. Myc rearrangement redefines the stratification of high-risk multiple myeloma. Cancer Med. 2024, 13, e7194. [Google Scholar] [CrossRef] [PubMed]
- Turdo, A.; Gaggianesi, M.; D’Accardo, C.; Porcelli, G.; Bella, S.D.; Cricchio, D.; Pillitteri, I.; Porcasi, R.; Lo Iacono, M.; Verona, F.; et al. EBF1, MYO6 and CALR expression levels predict therapeutic response in diffuse large B-cell lymphomas. Front. Immunol. 2023, 14, 1266265. [Google Scholar] [CrossRef]
- Cho, S.F.; Yeh, T.J.; Wang, H.C.; Du, J.S.; Gau, Y.C.; Lin, Y.Y.; Chuang, T.M.; Liu, Y.C.; Hsiao, H.H.; Moi, S.H.; et al. Prognostic mutation signature would serve as a potential prognostic predictor in patients with diffuse large B-cell lymphoma. Sci. Rep. 2024, 14, 6161. [Google Scholar] [CrossRef]
- Lavacchi, D.; Landini, I.; Perrone, G.; Roviello, G.; Mini, E.; Nobili, S. Pharmacogenetics in diffuse large B-cell lymphoma treated with R-CHOP: Still an unmet challenge. Pharmacol. Ther. 2022, 229, 107924. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, A.; Crossland, R.E.; Dressel, R.; Kube, D.; Wolff, D.; Wulf, G.; Bickeböller, H.; Dickinson, A.; Holler, E. A genome-wide association study on hematopoietic stem cell transplantation reveals novel genomic loci associated with transplant outcomes. Front. Immunol. 2024, 15, 1280876. [Google Scholar] [CrossRef]
- Chapman, J.; Zhang, Y. Histology, Hematopoiesis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Zheng, B.; Yang, Y.; Chen, L.; Wu, M.; Zhou, S. B-cell receptor repertoire sequencing: Deeper digging into the mechanisms and clinical aspects of immune-mediated diseases. iScience 2022, 25, 105002. [Google Scholar] [CrossRef]
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody structure and function: The basis for engineering therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef]
- Imkeller, K.; Wardemann, H. Assessing human B cell repertoire diversity and convergence. Immunol. Rev. 2018, 284, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.H. Immunoglobulin gene construction: Human. eLS 2003. [Google Scholar] [CrossRef]
- Stebegg, M.; Kumar, S.D.; Silva-Cayetano, A.; Fonseca, V.R.; Linterman, M.A.; Graca, L. Regulation of the germinal center response. Front. Immunol. 2018, 9, 2469. [Google Scholar] [CrossRef] [PubMed]
- Mlynarczyk, C.; Fontán, L.; Melnick, A. Germinal center-derived lymphomas: The darkest side of humoral immunity. Immunol. Rev. 2019, 288, 214–239. [Google Scholar] [CrossRef] [PubMed]
- Basso, K.; Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol. 2015, 15, 172–184. [Google Scholar] [CrossRef]
- Papa, I.; Vinuesa, C.G. Synaptic interactions in germinal centers. Front. Immunol. 2018, 9, 1858. [Google Scholar] [CrossRef]
- Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 2018, 173, 291–304.e6. [Google Scholar] [CrossRef]
- Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403, 503–511. [Google Scholar] [CrossRef]
- Rosenwald, A.; Wright, G.; Chan, W.C.; Connors, J.M.; Campo, E.; Fisher, R.I.; Gascoyne, R.D.; Muller-Hermelink, H.K.; Smeland, E.B.; Giltnane, J.M.; et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002, 346, 1937–1947. [Google Scholar] [CrossRef]
- Venturutti, L.; Melnick, A.M. The dangers of déjà vu: Memory B cells as the cells of origin of ABC-DLBCLs. Blood 2020, 136, 2263–2274. [Google Scholar] [CrossRef] [PubMed]
- Shimkus, G.; Nonaka, T. Molecular classification and therapeutics in diffuse large B-cell lymphoma. Front. Mol. Biosci. 2023, 10, 1124360. [Google Scholar] [CrossRef] [PubMed]
- Nutt, S.L.; Fairfax, K.A.; Kallies, A. BLIMP1 guides the fate of effector B and T cells. Nat. Rev. Immunol. 2007, 7, 923–927. [Google Scholar] [CrossRef]
- Schmitz, R.; Wright, G.W.; Huang, D.W.; Johnson, C.A.; Phelan, J.D.; Wang, J.Q.; Roulland, S.; Kasbekar, M.; Young, R.M.; Shaffer, A.L.; et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N. Engl. J. Med. 2018, 378, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Wenzl, K.; Manske, M.K.; Sarangi, V.; Asmann, Y.W.; Greipp, P.T.; Schoon, H.R.; Braggio, E.; Maurer, M.J.; Feldman, A.L.; Witzig, T.E.; et al. Loss of TNFAIP3 enhances MYD88L265P-driven signaling in non-Hodgkin lymphoma. Blood Cancer J. 2018, 8, 97. [Google Scholar] [CrossRef]
- Maffei, R.; Fiorcari, S.; Atene, C.G.; Martinelli, S.; Mesini, N.; Pilato, F.; Lagreca, I.; Barozzi, P.; Riva, G.; Nasillo, V.; et al. The dynamic functions of IRF4 in B cell malignancies. Clin. Exp. Med. 2023, 23, 1171–1180. [Google Scholar] [CrossRef]
- Lam, L.T.; Wright, G.; Davis, R.E.; Lenz, G.; Farinha, P.; Dang, L.; Chan, J.W.; Rosenwald, A.; Gascoyne, R.D.; Staudt, L.M. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-κB pathways in subtypes of diffuse large B-cell lymphoma. Blood 2008, 111, 3701–3713. [Google Scholar] [CrossRef]
- Béguelin, W.; Sawh, S.; Chambwe, N.; Chan, F.C.; Jiang, Y.; Choo, J.W.; Scott, D.W.; Chalmers, A.; Geng, H.; Tsikitas, L.; et al. IL10 receptor is a novel therapeutic target in DLBCLs. Leukemia 2015, 29, 1684–1694. [Google Scholar] [CrossRef]
- Davis, R.E.; Ngo, V.N.; Lenz, G.; Tolar, P.; Young, R.M.; Romesser, P.B.; Kohlhammer, H.; Lamy, L.; Zhao, H.; Yang, Y.; et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010, 463, 88–92. [Google Scholar] [CrossRef]
- Naoi, Y.; Ennishi, D. Understanding the intrinsic biology of diffuse large B-cell lymphoma: Recent advances and future prospects. Int. J. Hematol. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Kerckaert, J.P.; Deweindt, C.; Tilly, H.; Quief, S.; Lecocq, G.; Bastard, C. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat. Genet. 1993, 5, 66–70. [Google Scholar] [CrossRef]
- McLachlan, T.; Matthews, W.C.; Jackson, E.R.; Staudt, D.E.; Douglas, A.M.; Findlay, I.J.; Persson, M.L.; Duchatel, R.J.; Mannan, A.; Germon, Z.P.; et al. B-cell lymphoma 6 (BCL6): From master regulator of humoral immunity to oncogenic driver in pediatric cancers. Mol. Cancer Res. 2022, 20, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, A.L.; Yu, X.; He, Y.; Boldrick, J.; Chan, E.P.; Staudt, L.M. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000, 13, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Ennishi, D.; Mottok, A.; Ben-Neriah, S.; Shulha, H.P.; Farinha, P.; Chan, F.C.; Meissner, B.; Boyle, M.; Hother, C.; Kridel, R.; et al. Genetic profiling of MYC and BCL2 in diffuse large B-cell lymphoma determines cell-of-origin-specific clinical impact. Blood 2017, 129, 2760–2770. [Google Scholar] [CrossRef]
- Flori, M.; Schmid, C.A.; Sumrall, E.T.; Tzankov, A.; Law, C.W.; Robinson, M.D.; Müller, A. The hematopoietic oncoprotein FOXP1 promotes tumor cell survival in diffuse large B-cell lymphoma by repressing S1PR2 signaling. Blood 2016, 127, 1438–1448. [Google Scholar] [CrossRef]
- Young, R.M.; Phelan, J.D.; Wilson, W.H.; Staudt, L.M. Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunol. Rev. 2019, 291, 190–213. [Google Scholar] [CrossRef] [PubMed]
- Young, R.M.; Shaffer, A.L., 3rd; Phelan, J.D.; Staudt, L.M. B-cell receptor signaling in diffuse large B-cell lymphoma. Semin. Hematol. 2015, 52, 77–85. [Google Scholar] [CrossRef]
- Young, R.M.; Wu, T.; Schmitz, R.; Dawood, M.; Xiao, W.; Phelan, J.D.; Xu, W.; Menard, L.; Meffre, E.; Chan, W.C.; et al. Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc. Natl. Acad. Sci. USA 2015, 112, 13447–13454. [Google Scholar] [CrossRef] [PubMed]
- Wasik, M.A.; Kim, P.M.; Nejati, R. Diverse and reprogrammable mechanisms of malignant cell transformation in lymphocytes: Pathogenetic insights and translational implications. Front. Oncol. 2024, 14, 1383741. [Google Scholar] [CrossRef]
- Ghaderi, A.; Daneshmanesh, A.H.; Moshfegh, A.; Kokhaei, P.; Vågberg, J.; Schultz, J.; Olin, T.; Harrysson, S.; Smedby, K.E.; Drakos, E.; et al. ROR1 is expressed in diffuse large B-cell lymphoma (DLBCL) and a small molecule inhibitor of ROR1 (KAN0441571C) induced apoptosis of lymphoma cells. Biomedicines 2020, 8, 170. [Google Scholar] [CrossRef]
- Pasqualucci, L.; Dalla-Favera, R. Genetics of diffuse large B-cell lymphoma. Blood 2018, 131, 2307–2319. [Google Scholar] [CrossRef]
- Vega, F.; Medeiros, L.J. Chromosomal translocations involved in non-Hodgkin lymphomas. Arch. Pathol. Lab. Med. 2003, 127, 1148–1160. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Roy, U.; Srivastava, S.; Kariya, K.M.; Sharma, S.; Javedakar, S.M.; Choudhary, B.; Raghavan, S.C. Delineating the mechanism of fragility at BCL6 breakpoint region associated with translocations in diffuse large B cell lymphoma. Cell. Mol. Life. Sci. 2024, 81, 21. [Google Scholar] [CrossRef]
- Li, M.Y.; Chong, L.C.; Duns, G.; Lytle, A.; Woolcock, B.; Jiang, A.; Telenius, A.; Ben-Neriah, S.; Nawaz, W.; Slack, G.W.; et al. TRAF3 loss-of-function reveals the noncanonical NF-kappaB pathway as a therapeutic target in diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 2024, 121, e2320421121. [Google Scholar] [CrossRef]
- Eken, J.A.; Koning, M.T.; Kupcova, K.; Sepúlveda Yáñez, J.H.; de Groen, R.A.L.; Quinten, E.; Janssen, J.; van Bergen, C.A.M.; Vermaat, J.S.P.; Cleven, A.; et al. Antigen-independent, autonomous B cell receptor signaling drives activated B cell DLBCL. J. Exp. Med. 2024, 221, e20230941. [Google Scholar] [CrossRef] [PubMed]
- Hilton, L.K.; Scott, D.W.; Morin, R.D. Biological heterogeneity in diffuse large B-cell lymphoma. Semin. Hematol. 2023, 60, 267–276. [Google Scholar] [CrossRef]
- Almasmoum, H.A. Molecular complexity of diffuse large B-cell lymphoma: A molecular perspective and therapeutic implications. J. Appl. Genet. 2024, 65, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Steen, C.B.; Luca, B.A.; Esfahani, M.S.; Azizi, A.; Sworder, B.J.; Nabet, B.Y.; Kurtz, D.M.; Liu, C.L.; Khameneh, F.; Advani, R.H.; et al. The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma. Cancer Cell 2021, 39, 1422–1437.e10. [Google Scholar] [CrossRef]
- Morin, R.D.; Arthur, S.E.; Hodson, D.J. Molecular profiling in diffuse large B-cell lymphoma: Why so many types of subtypes? Br. J. Haematol. 2022, 196, 814–829. [Google Scholar] [CrossRef]
- Wilson, W.H.; Young, R.M.; Schmitz, R.; Yang, Y.; Pittaluga, S.; Wright, G.; Lih, C.J.; Williams, P.M.; Shaffer, A.L.; Gerecitano, J.; et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 2015, 21, 922–926. [Google Scholar] [CrossRef]
- Wright, G.W.; Huang, D.W.; Phelan, J.D.; Coulibaly, Z.A.; Roulland, S.; Young, R.M.; Wang, J.Q.; Schmitz, R.; Morin, R.D.; Tang, J.; et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 2020, 37, 551–568.e14. [Google Scholar] [CrossRef]
- Wright, G.; Tan, B.; Rosenwald, A.; Hurt, E.H.; Wiestner, A.; Staudt, L.M. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 2003, 100, 9991–9996. [Google Scholar] [CrossRef] [PubMed]
- Monti, S.; Savage, K.J.; Kutok, J.L.; Feuerhake, F.; Kurtin, P.; Mihm, M.; Wu, B.; Pasqualucci, L.; Neuberg, D.; Aguiar, R.C.; et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005, 105, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Lohr, J.G.; Stojanov, P.; Lawrence, M.S.; Auclair, D.; Chapuy, B.; Sougnez, C.; Cruz-Gordillo, P.; Knoechel, B.; Asmann, Y.W.; Slager, S.L.; et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. USA 2012, 109, 3879–3884. [Google Scholar] [CrossRef] [PubMed]
- Lenz, G.; Wright, G.; Dave, S.S.; Xiao, W.; Powell, J.; Zhao, H.; Xu, W.; Tan, B.; Goldschmidt, N.; Iqbal, J.; et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 2008, 359, 2313–2323. [Google Scholar] [CrossRef]
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018, 24, 679–690. [Google Scholar] [CrossRef]
- Ennishi, D.; Jiang, A.; Boyle, M.; Collinge, B.; Grande, B.M.; Ben-Neriah, S.; Rushton, C.; Tang, J.; Thomas, N.; Slack, G.W. Double-hit gene expression signature defines a distinct subgroup of germinal center B-cell-like diffuse large B-cell lymphoma. J. Clin. Oncol. 2019, 37, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Sun, C.; Bi, R.; Liu, Z.; Jia, Y.; Cui, W.; Sun, M.; Yu, B.; Li, X.; Zhou, X. Mutation landscape in Chinese nodal diffuse large B-cell lymphoma by targeted next generation sequencing and their relationship with clinicopathological characteristics. BMC Med. Genom. 2024, 17, 84. [Google Scholar] [CrossRef]
- Lacy, S.E.; Barrans, S.L.; Beer, P.A.; Painter, D.; Smith, A.G.; Roman, E.; Cooke, S.L.; Ruiz, C.; Glover, P.; Van Hoppe, S.J.L.; et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: A Haematological Malignancy Research Network report. Blood 2020, 135, 1759–1771. [Google Scholar] [CrossRef]
- Shen, R.; Fu, D.; Dong, L.; Zhang, M.C.; Shi, Q.; Shi, Z.Y.; Cheng, S.; Wang, L.; Xu, P.P.; Zhao, W.L. Simplified algorithm for genetic subtyping in diffuse large B-cell lymphoma. Signal Transduct. Target. Ther. 2023, 8, 145. [Google Scholar] [CrossRef] [PubMed]
- Jović, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, H.; Zhang, M.; Li, L. Single-cell RNA-seq and bulk RNA-seq reveal intratumoral heterogeneity and tumor microenvironment characteristics in diffuse large B-cell lymphoma. Front. Genet. 2022, 13, 881345. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wang, L.; Nie, M.; Wang, Y.; Dong, S.; Ren, W.; Li, G.; Li, Z.M.; Wu, K.; Pan-Hammarström, Q. A single-cell atlas of diffuse large B cell lymphoma. Cell Rep. 2022, 39, 110713. [Google Scholar] [CrossRef] [PubMed]
- Carreras, J.; Hiraiwa, S.; Kikuti, Y.Y.; Miyaoka, M.; Tomita, S.; Ikoma, H.; Ito, A.; Kondo, Y.; Roncador, G.; Garcia, J.F.; et al. Artificial neural networks predicted the overall survival and molecular subtypes of diffuse large B-cell lymphoma using a pancancer immune-oncology panel. Cancers 2021, 13, 6384. [Google Scholar] [CrossRef]
- Carreras, J.; Hamoudi, R. Artificial neural network analysis of gene expression data predicted non-Hodgkin lymphoma subtypes with high accuracy. Mach. Learn. Knowl. Extr. 2021, 3, 720–739. [Google Scholar] [CrossRef]
- Rosario, S.R.; Long, M.D.; Affronti, H.C.; Rowsam, A.M.; Eng, K.H.; Smiraglia, D.J. Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas. Nat. Commun. 2018, 9, 5330. [Google Scholar] [CrossRef]
- Sinkala, M.; Mulder, N.; Patrick Martin, D. Metabolic gene alterations impact the clinical aggressiveness and drug responses of 32 human cancers. Commun. Biol. 2019, 2, 414. [Google Scholar] [CrossRef]
- Caro, P.; Kishan, A.U.; Norberg, E.; Stanley, I.A.; Chapuy, B.; Ficarro, S.B.; Polak, K.; Tondera, D.; Gounarides, J.; Yin, H.; et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 2012, 22, 547–560. [Google Scholar] [CrossRef]
- Hou, J.; Guo, P.; Lu, Y.; Jin, X.; Liang, K.; Zhao, N.; Xue, S.; Zhou, C.; Wang, G.; Zhu, X.; et al. A prognostic 15-gene model based on differentially expressed genes among metabolic subtypes in diffuse large B-cell lymphoma. Pathol. Oncol. Res. 2023, 29, 1610819. [Google Scholar] [CrossRef]
- Carreras, J.; Hamoudi, R.; Nakamura, N. Artificial intelligence and classification of mature lymphoid neoplasms. Explor. Target. Antitumor Ther. 2024, 5, 332–348. [Google Scholar] [CrossRef]
- Carreras, J.; Hamoudi, R.; Nakamura, N. Artificial intelligence analysis of gene expression data predicted the prognosis of patients with diffuse large B-cell lymphoma. Tokai J. Exp. Clin. Med. 2020, 45, 37–48. [Google Scholar] [PubMed]
- Carreras, J.; Kikuti, Y.Y.; Miyaoka, M.; Hiraiwa, S.; Tomita, S.; Ikoma, H.; Kondo, Y.; Ito, A.; Nakamura, N.; Hamoudi, R.A. Combination of multilayer perceptron, radial basis function artificial neural networks and machine learning image segmentation for the dimension reduction and the prognosis assessment of diffuse large B-cell lymphoma. AI 2021, 2, 106–134. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, L.; Pan, E.; Sun, X.; Ding, X. Partial remission with sintilimab monotherapy in a patient carrying a CD274 amplification in refractory diffuse large B-cell lymphoma: A case report. Oncol. Lett. 2024, 27, 289. [Google Scholar] [CrossRef] [PubMed]
- Karube, K.; Enjuanes, A.; Dlouhy, I.; Jares, P.; Martin-Garcia, D.; Nadeu, F.; Ordóñez, G.R.; Rovira, J.; Clot, G.; Royo, C.; et al. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets. Leukemia 2018, 32, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Tesio, M. DLBCL Coast to Coast. HemaSphere 2018, 2, e23. [Google Scholar] [CrossRef]
- Reddy, A.; Zhang, J.; Davis, N.S.; Moffitt, A.B.; Love, C.L.; Waldrop, A.; Leppa, S.; Pasanen, A.; Meriranta, L.; Karjalainen-Lindsberg, M.L.; et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 2017, 171, 481–494.e15. [Google Scholar] [CrossRef]
- Pasqualucci, L.; Dalla-Favera, R. The genetic landscape of diffuse large B-cell lymphoma. Semin. Hematol. 2015, 52, 67–76. [Google Scholar] [CrossRef]
- Lenz, G.; Wright, G.W.; Emre, N.C.; Kohlhammer, H.; Dave, S.S.; Davis, R.E.; Carty, S.; Lam, L.T.; Shaffer, A.L.; Xiao, W.; et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 13520–13525. [Google Scholar] [CrossRef]
- Oh, E.S.; Petronis, A. Origins of human disease: The chrono-epigenetic perspective. Nat. Rev. Genet. 2021, 22, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, H.; Wang, R.; Chen, Y.; Ouyang, X.; Li, W.; Sun, Y.; Peng, A. Cancer epigenetics: From laboratory studies and clinical trials to precision medicine. Cell Death Discov. 2024, 10, 28. [Google Scholar] [CrossRef]
- Duy, C.; Beguelin, W.; Melnick, A. Epigenetic mechanisms in leukemias and lymphomas. Cold Spring Harb. Perspect. Med. 2020, 10, a034959. [Google Scholar] [CrossRef]
- Jiang, Y.; Melnick, A. The epigenetic basis of diffuse large B-cell lymphoma. Semin. Hematol. 2015, 52, 86–96. [Google Scholar] [CrossRef]
- Jiang, Y.; Dominguez, P.M.; Melnick, A.M. The many layers of epigenetic dysfunction in B-cell lymphomas. Curr. Opin. Hematol. 2016, 23, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Zhou, H.; Yang, J.; Li, M.; Niu, T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct. Target. Ther. 2023, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Mesin, L.; Ersching, J.; Victora, G.D. Germinal center B cell dynamics. Immunity 2016, 45, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ye, Y.; Peng, K.; Zeng, Z.; Chen, L.; Zeng, Y. Histones: The critical players in innate immunity. Front. Immunol. 2022, 13, 1030610. [Google Scholar] [CrossRef] [PubMed]
- Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone post-translational modifications—Cause and consequence of genome function. Nat. Rev. Genet. 2022, 23, 563–580. [Google Scholar] [CrossRef]
- Liu, R.; Wu, J.; Guo, H.; Yao, W.; Li, S.; Lu, Y.; Jia, Y.; Liang, X.; Tang, J.; Zhang, H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm 2023, 4, e292. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Li, Y.; Peng, H.; Liu, J.; Zhang, J.; Xiao, X. The role of CREBBP/EP300 and its therapeutic implications in hematological malignancies. Cancer 2023, 15, 1219. [Google Scholar] [CrossRef]
- Huang, Y.H.; Cai, K.; Xu, P.P.; Wang, L.; Huang, C.X.; Fang, Y.; Cheng, S.; Sun, X.J.; Liu, F.; Huang, J.Y.; et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct. Target. Ther. 2021, 6, 10. [Google Scholar] [CrossRef]
- Intlekofer, A.M.; Joffe, E.; Batlevi, C.L.; Hilden, P.; He, J.; Seshan, V.E.; Zelenetz, A.D.; Palomba, M.L.; Moskowitz, C.H.; Portlock, C.; et al. Integrated DNA/RNA targeted genomic profiling of diffuse large B-cell lymphoma using a clinical assay. Blood Cancer J. 2018, 8, 60. [Google Scholar] [CrossRef]
- Jiang, Y.; Ortega-Molina, A.; Geng, H.; Ying, H.Y.; Hatzi, K.; Parsa, S.; McNally, D.; Wang, L.; Doane, A.S.; Agirre, X.; et al. CREBBP inactivation promotes the development of HDAC3-dependent lymphomas. Cancer Discov. 2017, 7, 38–53. [Google Scholar] [CrossRef] [PubMed]
- García-Ramírez, I.; Tadros, S.; González-Herrero, I.; Martín-Lorenzo, A.; Rodríguez-Hernández, G.; Moore, D.; Ruiz-Roca, L.; Blanco, O.; Alonso-López, D.; Rivas, J.L.; et al. Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice. Blood 2017, 129, 2645–2656. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoo, C.; Im, S.; Jung, J.H.; Choi, H.J.; Yoo, J. Expression of histone deacetylases in diffuse large B-cell lymphoma and its clinical significance. Int. J. Med. Sci. 2014, 11, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Van, H.T.; Xie, G.; Dong, P.; Liu, Z.; Ge, K. KMT2 Family of H3K4 methyltransferases: Enzymatic activity-dependent and -independent functions. J. Mol. Biol. 2024, 436, 168453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dominguez-Sola, D.; Hussein, S.; Lee, J.E.; Holmes, A.B.; Bansal, M.; Vlasevska, S.; Mo, T.; Tang, H.; Basso, K.; et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 2015, 21, 1190–1198. [Google Scholar] [CrossRef]
- Ortega-Molina, A.; Boss, I.W.; Canela, A.; Pan, H.; Jiang, Y.; Zhao, C.; Jiang, M.; Hu, D.; Agirre, X.; Niesvizky, I.; et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med. 2015, 21, 1199–1208. [Google Scholar] [CrossRef]
- Wu, C.; Song, Q.; Gao, S.; Wu, S. Targeting HDACs for diffuse large B-cell lymphoma therapy. Sci. Rep. 2024, 14, 289. [Google Scholar] [CrossRef]
- Li, J.; Chin, C.R.; Ying, H.Y.; Meydan, C.; Teater, M.R.; Xia, M.; Farinha, P.; Takata, K.; Chu, C.S.; Jiang, Y.; et al. Loss of CREBBP and KMT2D cooperate to accelerate lymphomagenesis and shape the lymphoma immune microenvironment. Nat. Commun. 2024, 15, 2879. [Google Scholar] [CrossRef]
- Nakagawa, M.; Kitabayashi, I. Oncogenic roles of enhancer of zeste homolog 1/2 in hematological malignancies. Cancer Sci. 2018, 109, 2342–2348. [Google Scholar] [CrossRef]
- Sashida, G.; Iwama, A. Multifaceted role of the polycomb-group gene EZH2 in hematological malignancies. Int. J. Hematol. 2017, 105, 23–30. [Google Scholar] [CrossRef]
- Blecua, P.; Martinez-Verbo, L.; Esteller, M. The DNA methylation landscape of hematological malignancies: An update. Mol. Oncol. 2020, 14, 1616–1639. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ganz, P.A.; Sehl, M.E. DNA methylation, aging, and cancer risk: A mini-review. Front. Bioinform. 2022, 2, 847629. [Google Scholar] [CrossRef] [PubMed]
- Amara, K.; Ziadi, S.; Hachana, M.; Soltani, N.; Korbi, S.; Trimeche, M. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 2010, 101, 1722–1730. [Google Scholar] [CrossRef] [PubMed]
- Cong, B.; Zhang, Q.; Cao, X. The function and regulation of TET2 in innate immunity and inflammation. Protein Cell 2021, 12, 165–173. [Google Scholar] [CrossRef]
- Asmar, F.; Punj, V.; Christensen, J.; Pedersen, M.T.; Pedersen, A.; Nielsen, A.B.; Hother, C.; Ralfkiaer, U.; Brown, P.; Ralfkiaer, E.; et al. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma. Haematologica 2013, 98, 1912–1920. [Google Scholar] [CrossRef]
- Kubuki, Y.; Yamaji, T.; Hidaka, T.; Kameda, T.; Shide, K.; Sekine, M.; Kamiunten, A.; Akizuki, K.; Shimoda, H.; Tahira, Y.; et al. TET2 mutation in diffuse large B-cell lymphoma. J. Clin. Exp. Hematop. 2017, 56, 145–149. [Google Scholar] [CrossRef]
- Dominguez, P.M.; Ghamlouch, H.; Rosikiewicz, W.; Kumar, P.; Béguelin, W.; Fontán, L.; Rivas, M.A.; Pawlikowska, P.; Armand, M.; Mouly, E.; et al. TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell lymphomagenesis. Cancer Discov. 2018, 8, 1632–1653. [Google Scholar] [CrossRef]
- Chambwe, N.; Kormaksson, M.; Geng, H.; De, S.; Michor, F.; Johnson, N.A.; Morin, R.D.; Scott, D.W.; Godley, L.A.; Gascoyne, R.D.; et al. Variability in DNA methylation defines novel epigenetic subgroups of DLBCL associated with different clinical outcomes. Blood 2014, 123, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Carlund, O.; Thörn, E.; Osterman, P.; Fors, M.; Dernstedt, A.; Forsell, M.N.E.; Erlanson, M.; Landfors, M.; Degerman, S.; Hultdin, M. Semimethylation is a feature of diffuse large B-cell lymphoma, and subgroups with poor prognosis are characterized by global hypomethylation and short telomere length. Clin. Epigenet. 2024, 16, 68. [Google Scholar] [CrossRef]
- Nemeth, K.; Bayraktar, R.; Ferracin, M.; Calin, G.A. Non-coding RNAs in disease: From mechanisms to therapeutics. Nat. Rev. Genet. 2024, 25, 211–232. [Google Scholar] [CrossRef]
- Dragomir, M.P.; Manyam, G.C.; Ott, L.F.; Berland, L.; Knutsen, E.; Ivan, C.; Lipovich, L.; Broom, B.M.; Calin, G.A. FuncPEP: A database of functional peptides encoded by non-coding RNAs. Noncoding RNA 2020, 6, 41. [Google Scholar] [CrossRef]
- Abedi Kichi, Z.; Dini, N.; Rojhannezhad, M.; Shirvani Farsani, Z. Noncoding RNAs in B cell non-Hodgkins lymphoma. Gene 2024, 917, 148480. [Google Scholar] [CrossRef]
- Wei, J.W.; Huang, K.; Yang, C.; Kang, C.S. Non-coding RNAs as regulators in epigenetics (Review). Oncol. Rep. 2017, 37, 3–9. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; You, Z.; Guo, B. LncRNAs in immune and stromal cells remodel phenotype of cancer cell and tumor microenvironment. J. Inflamm. Res. 2024, 17, 3173–3185. [Google Scholar] [CrossRef]
- Petri, A.; Dybkær, K.; Bøgsted, M.; Thrue, C.A.; Hagedorn, P.H.; Schmitz, A.; Bødker, J.S.; Johnsen, H.E.; Kauppinen, S. Long noncoding RNA expression during human B-cell development. PLoS ONE 2015, 10, e0138236. [Google Scholar] [CrossRef]
- Verma, A.; Jiang, Y.; Du, W.; Fairchild, L.; Melnick, A.; Elemento, O. Transcriptome sequencing reveals thousands of novel long non-coding RNAs in B cell lymphoma. Genome Med. 2015, 7, 110. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Liu, Z.; Zhang, Y.; He, Y.; Sun, C.; Li, L.; Zhai, Q.; Meng, B.; Ren, X.; et al. A 9-lncRNA signature for predicting prognosis and immune response in diffuse large B-cell lymphoma. Front. Immunol. 2022, 13, 813031. [Google Scholar] [CrossRef]
- Liu, Q.H.; Dai, G.R.; Wu, Y.; Wang, X.N.; Song, M.Y.; Li, X.D.; Wu, Z.; Xia, R.X. LncRNA FIRRE stimulates PTBP1-induced Smurf2 decay, stabilizes B-cell receptor, and promotes the development of diffuse large B-cell lymphoma. Hematol. Oncol. 2022, 40, 554–566. [Google Scholar] [CrossRef]
- Habieb, M.; Gohar, S.; Abd-Elmonem Abd-Elkader, E.T.; El Sayed, I.; Abd-Elfattah, N.Z.A. Biomedical impact of the expression of HOX locus-associated LncRNAs HOTAIR and HOTTIP in diffuse large B cell lymphoma. Human Gene 2022, 34, 201112. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Fallahtafti, P. Long non-coding RNA as a novel biomarker and therapeutic target in aggressive B-cell non-Hodgkin lymphoma: A systematic review. J. Cell. Mol. Med. 2023, 27, 1928–1946. [Google Scholar] [CrossRef]
- Kim, T.; Croce, C.M. MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Exp. Mol. Med. 2023, 55, 1314–1321. [Google Scholar] [CrossRef]
- Alsaadi, M.; Khan, M.Y.; Dalhat, M.H.; Bahashwan, S.; Khan, M.U.; Albar, A.; Almehdar, H.; Qadri, I. Dysregulation of miRNAs in DLBCL: Causative factor for pathogenesis, diagnosis and prognosis. Diagnostics 2021, 11, 1739. [Google Scholar] [CrossRef]
- Lawrie, C.H.; Gal, S.; Dunlop, H.M.; Pushkaran, B.; Liggins, A.P.; Pulford, K.; Banham, A.H.; Pezzella, F.; Boultwood, J.; Wainscoat, J.S.; et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 2008, 141, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Zabeti Touchaei, A.; Vahidi, S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: Targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int. 2024, 24, 102. [Google Scholar] [CrossRef]
- Larrabeiti-Etxebarria, A.; Lopez-Santillan, M.; Santos-Zorrozua, B.; Lopez-Lopez, E.; Garcia-Orad, A. Systematic review of the potential of microRNAs in diffuse large B cell lymphoma. Cancers 2019, 11, 144. [Google Scholar] [CrossRef]
- Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol. 2021, 905, 174178. [Google Scholar] [CrossRef]
- Yu, C.Y.; Kuo, H.C. The emerging roles and functions of circular RNAs and their generation. J. Biomed. Sci. 2019, 26, 29. [Google Scholar] [CrossRef]
- Qu, S.; Yang, X.; Li, X.; Wang, J.; Gao, Y.; Shang, R.; Sun, W.; Dou, K.; Li, H. Circular RNA: A new star of noncoding RNAs. Cancer Lett. 2015, 365, 141–148. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, T.; Zhang, X.; Wang, P.; Long, F. The role of circular RNAs in regulating resistance to cancer immunotherapy: Mechanisms and implications. Cell Death Dis. 2024, 15, 312. [Google Scholar] [CrossRef]
- Dong, L.; Huang, J.; Gao, X.; Du, J.; Wang, Y.; Zhao, L. CircPCBP2 promotes the stemness and chemoresistance of DLBCL via targeting miR-33a/b to disinhibit PD-L1. Cancer Sci. 2022, 113, 2888–2903. [Google Scholar] [CrossRef]
- Han, H.; Fan, G.; Song, S.; Jiang, Y.; Qian, C.; Zhang, W.; Su, Q.; Xue, X.; Zhuang, W.; Li, B. piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood 2021, 137, 1603–1614. [Google Scholar] [CrossRef]
- Rong, D.; Sun, G.; Wu, F.; Cheng, Y.; Sun, G.; Jiang, W.; Li, X.; Zhong, Y.; Wu, L.; Zhang, C.; et al. Epigenetics: Roles and therapeutic implications of non-coding RNA modifications in human cancers. Mol. Ther. Nucleic Acids 2021, 25, 67–82. [Google Scholar] [CrossRef]
- Wiener, D.; Schwartz, S. The epitranscriptome beyond m(6)A. Nat. Rev. Genet. 2021, 22, 119–131. [Google Scholar] [CrossRef]
- An, Y.; Duan, H. The role of m6A RNA methylation in cancer metabolism. Mol. Cancer 2022, 21, 14. [Google Scholar] [CrossRef]
- Wu, C.; Li, L.; Tang, Q.; Liao, Q.; Chen, P.; Guo, C.; Zeng, Z.; Xiong, W. Role of m(6)A modifications in immune evasion and immunotherapy. Med. Oncol. 2024, 41, 159. [Google Scholar] [CrossRef]
- Wang, T.L.; Miao, X.J.; Shuai, Y.R.; Sun, H.P.; Wang, X.; Yang, M.; Zhang, N. FAT1 inhibits the proliferation of DLBCL cells via increasing the m(6)A modification of YAP1 mRNA. Sci. Rep. 2024, 14, 11836. [Google Scholar] [CrossRef]
- Emilius, L.; Bremm, F.; Binder, A.K.; Schaft, N.; Dörrie, J. Tumor antigens beyond the human exome. Int. J. Mol. Sci. 2024, 25, 4673. [Google Scholar] [CrossRef]
- Hoang, N.M.; Rui, L. DNA methyltransferases in hematological malignancies. J. Genet. Genom. 2020, 47, 361–372. [Google Scholar] [CrossRef]
- Zhu, F.; Crombie, J.L.; Ni, W.; Hoang, N.M.; Garg, S.; Hackett, L.; Chong, S.J.F.; Collins, M.C.; Rui, L.; Griffin, J.; et al. Hypomethylating agent decitabine sensitizes diffuse large B-cell lymphoma to venetoclax. Haematologica 2024, 109, 186–199. [Google Scholar] [CrossRef]
- Jacobsen, E. Follicular lymphoma: 2023 update on diagnosis and management. Am. J. Hematol. 2022, 97, 1638–1651. [Google Scholar] [CrossRef] [PubMed]
- Ennishi, D.; Takata, K.; Béguelin, W.; Duns, G.; Mottok, A.; Farinha, P.; Bashashati, A.; Saberi, S.; Boyle, M.; Meissner, B.; et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. 2019, 9, 546–563. [Google Scholar] [CrossRef]
- Scholze, H.; Stephenson, R.E.; Reynolds, R.; Shah, S.; Puri, R.; Butler, S.D.; Trujillo-Alonso, V.; Teater, M.R.; van Besien, H.; Gibbs-Curtis, D.; et al. Combined EZH2 and Bcl-2 inhibitors as precision therapy for genetically defined DLBCL subtypes. Blood Adv. 2020, 4, 5226–5231. [Google Scholar] [CrossRef]
- Izutsu, K.; Ando, K.; Nishikori, M.; Shibayama, H.; Teshima, T.; Kuroda, J.; Kato, K.; Imaizumi, Y.; Nosaka, K.; Sakai, R.; et al. Phase II study of tazemetostat for relapsed or refractory B-cell non-Hodgkin lymphoma with EZH2 mutation in Japan. Cancer Sci. 2021, 112, 3627–3635. [Google Scholar] [CrossRef]
- Sarkozy, C.; Morschhauser, F.; Dubois, S.; Molina, T.; Michot, J.M.; Cullières-Dartigues, P.; Suttle, B.; Karlin, L.; Le Gouill, S.; Picquenot, J.M.; et al. A LYSA phase Ib study of tazemetostat (EPZ-6438) plus R-CHOP in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) with poor prognosis features. Clin. Cancer Res. 2020, 26, 3145–3153. [Google Scholar] [CrossRef]
- Zhang, H.; Chi, F.; Qin, K.; Mu, X.; Wang, L.; Yang, B.; Wang, Y.; Bai, M.; Li, Z.; Su, L.; et al. Chidamide induces apoptosis in DLBCL cells by suppressing the HDACs/STAT3/Bcl-2 pathway. Mol. Med. Rep. 2021, 23, 308. [Google Scholar] [CrossRef]
- Guan, X.W.; Wang, H.Q.; Ban, W.W.; Chang, Z.; Chen, H.Z.; Jia, L.; Liu, F.T. Novel HDAC inhibitor Chidamide synergizes with Rituximab to inhibit diffuse large B-cell lymphoma tumour growth by upregulating CD20. Cell Death Dis. 2020, 11, 20. [Google Scholar] [CrossRef]
- Zhang, M.C.; Fang, Y.; Wang, L.; Cheng, S.; Fu, D.; He, Y.; Zhao, Y.; Wang, C.F.; Jiang, X.F.; Song, Q.; et al. Clinical efficacy and molecular biomarkers in a phase II study of tucidinostat plus R-CHOP in elderly patients with newly diagnosed diffuse large B-cell lymphoma. Clin. Epigenet. 2020, 12, 160. [Google Scholar] [CrossRef]
- Cao, H.Y.; Li, L.; Xue, S.L.; Dai, H.P. Chidamide: Targeting epigenetic regulation in the treatment of hematological malignancy. Hematol. Oncol. 2023, 41, 301–309. [Google Scholar] [CrossRef]
- Singh, A.; Rappolee, D.A.; Ruden, D.M. Epigenetic reprogramming in mice and humans: From fertilization to primordial germ cell development. Cells 2023, 12, 1874. [Google Scholar] [CrossRef]
- Kwak, K.; Akkaya, M.; Pierce, S.K. B cell signaling in context. Nat. Immunol. 2019, 20, 963–969. [Google Scholar] [CrossRef]
- Maity, P.C.; Blount, A.; Jumaa, H.; Ronneberger, O.; Lillemeier, B.F.; Reth, M. B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci. Signal. 2015, 8, ra93. [Google Scholar] [CrossRef]
- Gomes de Castro, M.A.; Wildhagen, H.; Sograte-Idrissi, S.; Hitzing, C.; Binder, M.; Trepel, M.; Engels, N.; Opazo, F. Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane. Nat. Commun. 2019, 10, 820. [Google Scholar] [CrossRef]
- Burger, J.A.; Wiestner, A. Targeting B cell receptor signalling in cancer: Preclinical and clinical advances. Nat. Rev. Cancer 2018, 18, 148–167. [Google Scholar] [CrossRef]
- Havranek, O.; Xu, J.; Köhrer, S.; Wang, Z.; Becker, L.; Comer, J.M.; Henderson, J.; Ma, W.; Man Chun Ma, J.; Westin, J.R.; et al. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood 2017, 130, 995–1006. [Google Scholar] [CrossRef]
- Pal Singh, S.; Dammeijer, F.; Hendriks, R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 2018, 17, 57. [Google Scholar] [CrossRef]
- McDonald, C.; Xanthopoulos, C.; Kostareli, E. The role of Bruton’s tyrosine kinase in the immune system and disease. Immunology 2021, 164, 722–736. [Google Scholar] [CrossRef]
- Liu, J.; Chen, C.; Wang, D.; Zhang, J.; Zhang, T. Emerging small-molecule inhibitors of the Bruton’s tyrosine kinase (BTK): Current development. Eur. J. Med. Chem. 2021, 217, 113329. [Google Scholar] [CrossRef]
- Shirley, M. Bruton tyrosine kinase inhibitors in B-cell malignancies: Their use and differential features. Target. Oncol. 2022, 17, 69–84. [Google Scholar] [CrossRef]
- Goy, A.; Ramchandren, R.; Ghosh, N.; Munoz, J.; Morgan, D.S.; Dang, N.H.; Knapp, M.; Delioukina, M.; Kingsley, E.; Ping, J.; et al. Ibrutinib plus lenalidomide and rituximab has promising activity in relapsed/refractory non-germinal center B-cell-like DLBCL. Blood 2019, 134, 1024–1036. [Google Scholar] [CrossRef]
- Phelan, J.D.; Young, R.M.; Webster, D.E.; Roulland, S.; Wright, G.W.; Kasbekar, M.; Shaffer, A.L., 3rd; Ceribelli, M.; Wang, J.Q.; Schmitz, R.; et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 2018, 560, 387–391. [Google Scholar] [CrossRef]
- Charalambous, A.; Schwarzbich, M.A.; Witzens-Harig, M. Ibrutinib. Recent Results Cancer Res. 2018, 212, 133–168. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Wang, X.; Zhang, L.; Qu, Q.; Zhang, Q.; Jiang, Y. Ibrutinib in B-cell lymphoma: Single fighter might be enough? Cancer Cell Int. 2020, 20, 467. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Furman, R.R.; Liu, T.M.; Ozer, H.G.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Li, D.H.; Steggerda, S.M.; Versele, M.; et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Eng. J. Med. 2014, 370, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
- Kozaki, R.; Yasuhiro, T.; Kato, H.; Murai, J.; Hotta, S.; Ariza, Y.; Sakai, S.; Fujikawa, R.; Yoshida, T. Investigation of the anti-tumor mechanism of tirabrutinib, a highly selective Bruton’s tyrosine kinase inhibitor, by phosphoproteomics and transcriptomics. PLoS ONE 2023, 18, e0282166. [Google Scholar] [CrossRef]
- Strati, P.; De Vos, S.; Ruan, J.; Maddocks, K.J.; Flowers, C.R.; Rule, S.; Patel, P.; Xu, Y.; Wei, H.; Frigault, M.M.; et al. Acalabrutinib for treatment of diffuse large B-cell lymphoma: Results from a phase Ib study. Haematologica 2021, 106, 2774–2778. [Google Scholar] [CrossRef]
- Walter, H.S.; Rule, S.A.; Dyer, M.J.; Karlin, L.; Jones, C.; Cazin, B.; Quittet, P.; Shah, N.; Hutchinson, C.V.; Honda, H.; et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood 2016, 127, 411–419. [Google Scholar] [CrossRef]
- Goodstal, S.M.; Lin, J.; Crandall, T.; Crowley, L.; Bender, A.T.; Pereira, A.; Soloviev, M.; Wesolowski, J.S.; Iadevaia, R.; Schelhorn, S.E.; et al. Preclinical evidence for the effective use of TL-895, a highly selective and potent second-generation BTK inhibitor, for the treatment of B-cell malignancies. Sci. Rep. 2023, 13, 20412. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lee, H.S.; Kang, K.W.; Lee, W.S.; Do, Y.R.; Kwak, J.Y.; Shin, H.J.; Kim, S.Y.; Yi, J.H.; Lim, S.N.; et al. Combination of acalabrutinib with lenalidomide and rituximab in relapsed/refractory aggressive B-cell non-Hodgkin lymphoma: A single-arm phase II trial. Nat. Commun. 2024, 15, 2776. [Google Scholar] [CrossRef]
- Oien, D.B.; Sharma, S.; Hattersley, M.M.; DuPont, M.; Criscione, S.W.; Prickett, L.; Goeppert, A.U.; Drew, L.; Yao, Y.; Zhang, J.; et al. BET inhibition targets ABC-DLBCL constitutive B-cell receptor signaling through PAX5. Blood Adv. 2023, 7, 5108–5121. [Google Scholar] [CrossRef]
- Wu, C.; Chen, S.; Wu, Z.; Xue, J.; Zhang, W.; Wang, S.; Zhao, X.; Wu, S. Chidamide and orelabrutinib synergistically induce cell cycle arrest and apoptosis in diffuse large B-cell lymphoma by regulating the PI3K/AKT/mTOR pathway. J. Cancer Res. Clin. Oncol. 2024, 150, 98. [Google Scholar] [CrossRef]
- Grondona, P.; Bucher, P.; Schulze-Osthoff, K.; Hailfinger, S.; Schmitt, A. NF-κB activation in lymphoid malignancies: Genetics, signaling, and targeted therapy. Biomedicines 2018, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Staudt, L.M. Oncogenic activation of NF-kappaB. Cold Spring Harb. Perspect. Biol. 2010, 2, a000109. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Medeiros, L.J.; Li, Y.; Li, J.; Young, K.H. Genetic alterations and their clinical implications in DLBCL. Nat. Rev. Clin. Oncol. 2019, 16, 634–652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Calado, D.P.; Wang, Z.; Fröhler, S.; Köchert, K.; Qian, Y.; Koralov, S.B.; Schmidt-Supprian, M.; Sasaki, Y.; Unitt, C.; et al. An oncogenic role for alternative NF-κB signaling in DLBCL revealed upon deregulated BCL6 expression. Cell Rep. 2015, 11, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Knittel, G.; Liedgens, P.; Korovkina, D.; Pallasch, C.P.; Reinhardt, H.C. Rewired NFκB signaling as a potentially actionable feature of activated B-cell-like diffuse large B-cell lymphoma. Eur. J. Haematol. 2016, 97, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.; Sperling, A.S.; Ebert, B.L. Cancer therapies based on targeted protein degradation—Lessons learned with lenalidomide. Nat. Rev. Clin. Oncol. 2021, 18, 401–417. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Gribben, J.G.; Fowler, N.; Morschhauser, F. Mechanisms of action of lenalidomide in B-cell non-Hodgkin lymphoma. J. Clin. Oncol. 2015, 33, 2803–2811. [Google Scholar] [CrossRef]
- Czuczman, M.S.; Trněný, M.; Davies, A.; Rule, S.; Linton, K.M.; Wagner-Johnston, N.; Gascoyne, R.D.; Slack, G.W.; Brousset, P.; Eberhard, D.A.; et al. A phase 2/3 multicenter, randomized, open-label study to compare the efficacy and safety of lenalidomide versus investigator’s choice in patients with relapsed or refractory diffuse large B-cell lymphoma. Clin. Cancer Res. 2017, 23, 4127–4137. [Google Scholar] [CrossRef]
- Feldman, T.; Mato, A.R.; Chow, K.F.; Protomastro, E.A.; Yannotti, K.M.; Bhattacharyya, P.; Yang, X.; Donato, M.L.; Rowley, S.D.; Carini, C.; et al. Addition of lenalidomide to rituximab, ifosfamide, carboplatin, etoposide (RICER) in first-relapse/primary refractory diffuse large B-cell lymphoma. Br. J. Haematol. 2014, 166, 77–83. [Google Scholar] [CrossRef]
- Ferreri, A.J.; Sassone, M.; Zaja, F.; Re, A.; Spina, M.; Rocco, A.D.; Fabbri, A.; Stelitano, C.; Frezzato, M.; Rusconi, C.; et al. Lenalidomide maintenance in patients with relapsed diffuse large B-cell lymphoma who are not eligible for autologous stem cell transplantation: An open label, single-arm, multicentre phase 2 trial. Lancet Haematol. 2017, 4, e137–e146. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Ilizaliturri, F.J.; Deeb, G.; Zinzani, P.L.; Pileri, S.A.; Malik, F.; Macon, W.R.; Goy, A.; Witzig, T.E.; Czuczman, M.S. Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminal center B-cell-like than in germinal center B-cell-like phenotype. Cancer 2011, 117, 5058–5066. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Redondo, A.M.; Dlouhy, I.; Salar, A.; González-Barca, E.; Canales, M.; Montes-Moreno, S.; Ocio, E.M.; López-Guillermo, A.; Caballero, D.; et al. Lenalidomide in combination with R-ESHAP in patients with relapsed or refractory diffuse large B-cell lymphoma: A phase 1b study from GELTAMO group. Br. J. Haematol. 2016, 173, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Wiernik, P.H.; Lossos, I.S.; Tuscano, J.M.; Justice, G.; Vose, J.M.; Cole, C.E.; Lam, W.; McBride, K.; Wride, K.; Pietronigro, D.; et al. Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin’s lymphoma. J. Clin. Oncol. 2008, 26, 4952–4957. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Pellegrini, C.; Gandolfi, L.; Stefoni, V.; Quirini, F.; Derenzini, E.; Broccoli, A.; Argnani, L.; Pileri, S.; Baccarani, M. Combination of lenalidomide and rituximab in elderly patients with relapsed or refractory diffuse large B-cell lymphoma: A phase 2 trial. Clin. Lymphoma Myeloma Leuk. 2011, 11, 462–466. [Google Scholar] [CrossRef]
- Jin, Z.; Xiang, R.; Qing, K.; Li, D.; Liu, Z.; Li, X.; Zhu, H.; Zhang, Y.; Wang, L.; Xue, K.; et al. Lenalidomide overcomes the resistance to third-generation CD19-CAR-T cell therapy in preclinical models of diffuse large B-cell lymphoma. Cell Oncol. 2023, 46, 1143–1157. [Google Scholar] [CrossRef]
- Tung, M.C.; Tsai, K.C.; Fung, K.M.; Don, M.J.; Tseng, T.S. Characterizing the structure-activity relationships of natural products, tanshinones, reveals their mode of action in inhibiting spleen tyrosine kinase. RSC Adv. 2021, 11, 2453–2461. [Google Scholar] [CrossRef] [PubMed]
- Cooper, N.; Ghanima, W.; Hill, Q.A.; Nicolson, P.L.; Markovtsov, V.; Kessler, C. Recent advances in understanding spleen tyrosine kinase (SYK) in human biology and disease, with a focus on fostamatinib. Platelets 2023, 34, 2131751. [Google Scholar] [CrossRef]
- Flinn, I.W.; Bartlett, N.L.; Blum, K.A.; Ardeshna, K.M.; LaCasce, A.S.; Flowers, C.R.; Shustov, A.R.; Thress, K.S.; Mitchell, P.; Zheng, F.; et al. A phase II trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL). Eur. J. Cancer 2016, 54, 11–17. [Google Scholar] [CrossRef]
- Burke, J.M.; Shustov, A.; Essell, J.; Patel-Donnelly, D.; Yang, J.; Chen, R.; Ye, W.; Shi, W.; Assouline, S.; Sharman, J. An open-label, phase II trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in diffuse large B-cell lymphoma. Clin. Lymphoma Myeloma Leuk. 2018, 18, e327–e331. [Google Scholar] [CrossRef]
- Gordon, L.I.; Karmali, R.; Kaplan, J.B.; Popat, R.; Burris, H.A., 3rd; Ferrari, S.; Madan, S.; Patel, M.R.; Gritti, G.; El-Sharkawi, D.; et al. Spleen tyrosine kinase/FMS-like tyrosine kinase-3 inhibition in relapsed/refractory B-cell lymphoma, including diffuse large B-cell lymphoma: Updated data with mivavotinib (TAK-659/CB-659). Oncotarget 2023, 14, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Bourhill, T.; Narendran, A.; Johnston, R.N. Enzastaurin: A lesson in drug development. Crit. Rev. Oncol. Hematol. 2017, 112, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Inokuchi, J.; Eto, M.; Murata, M.; Kang, J.H. Activators and inhibitors of protein kinase C (PKC): Their applications in clinical trials. Pharmaceutics 2021, 13, 1748. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Lin, W.; Long, Y.; Yang, Y.; Zhang, H.; Wu, K.; Chu, Q. Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct. Target. Ther. 2022, 7, 95. [Google Scholar] [CrossRef]
- Shi, Q.; Xue, C.; Zeng, Y.; Yuan, X.; Chu, Q.; Jiang, S.; Wang, J.; Zhang, Y.; Zhu, D.; Li, L. Notch signaling pathway in cancer: From mechanistic insights to targeted therapies. Signal Transduct. Target. Ther. 2024, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Kopan, R.; Ilagan, M.X. The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell 2009, 137, 216–233. [Google Scholar] [CrossRef]
- Arruga, F.; Vaisitti, T.; Deaglio, S. The NOTCH pathway and its mutations in mature B cell malignancies. Front. Oncol. 2018, 8, 550. [Google Scholar] [CrossRef]
- Sugimoto, K.; Maekawa, Y.; Kitamura, A.; Nishida, J.; Koyanagi, A.; Yagita, H.; Kojima, H.; Chiba, S.; Shimada, M.; Yasutomo, K. Notch2 signaling is required for potent antitumor immunity in vivo. J. Immunol. 2010, 184, 4673–4678. [Google Scholar] [CrossRef]
- Xiu, M.X.; Liu, Y.M. The role of oncogenic Notch2 signaling in cancer: A novel therapeutic target. Am. J. Cancer Res. 2019, 9, 837–854. [Google Scholar] [PubMed]
- Shanmugam, V.; Craig, J.W.; Hilton, L.K.; Nguyen, M.H.; Rushton, C.K.; Fahimdanesh, K.; Lovitch, S.; Ferland, B.; Scott, D.W.; Aster, J.C. Notch activation is pervasive in SMZL and uncommon in DLBCL: Implications for Notch signaling in B-cell tumors. Blood Adv. 2021, 5, 71–83. [Google Scholar] [CrossRef]
- Li, W.; Wu, L.; Huang, C.; Ma, H.; Wang, L.; Liu, W.; Liu, L. Activation of Notch-1 signaling pathway in macrophages to secrete PD-L1 and regulate cytotoxicity of CAR-T cells in diffuse large B-cell lymphoma. Aging 2024, 16, 1845–1859. [Google Scholar] [CrossRef] [PubMed]
- Deeks, E.D. Venetoclax: First Global Approval. Drugs 2016, 76, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Griffioen, M.S.; de Leeuw, D.C.; Janssen, J.J.W.M.; Smit, L. Targeting acute myeloid leukemia with venetoclax; biomarkers for sensitivity and rationale for venetoclax-based combination therapies. Cancers 2022, 14, 3456. [Google Scholar] [CrossRef]
- Shadman, M. Diagnosis and treatment of chronic lymphocytic leukemia: A review. JAMA 2023, 329, 918–932. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Geyer, S.M.; Pederson, L.D.; Giri, S.; Hsi, E.D.; Little, R.F.; Gore, S.; Landsburg, D.J.; Hua-Jay Jeffery Cherng, H.J.J.; Kahl, B.S.; et al. Randomized phase II/III study of R-CHOP +/− venetoclax in previously untreated MYC/BCL2 double expressor diffuse large B cell lymphoma (DLBCL): Alliance A051701. J. Clin. Oncol. 2024, 42 (Suppl. S16), 7012. [Google Scholar] [CrossRef]
- Gomez Solsona, B.; Horn, H.; Schmitt, A.; Xu, W.; Bucher, P.; Heinrich, A.; Kalmbach, S.; Kreienkamp, N.; Franke, M.; Wimmers, F.; et al. Inhibition of glutaminase-1 in DLBCL potentiates venetoclax-induced antitumor activity by promoting oxidative stress. Blood Adv. 2023, 7, 7433–7444. [Google Scholar] [CrossRef]
- Pierrat, O.A.; Liu, M.; Collie, G.W.; Shetty, K.; Rodrigues, M.J.; Le Bihan, Y.V.; Gunnell, E.A.; McAndrew, P.C.; Stubbs, M.; Rowlands, M.G.; et al. Discovering cell-active BCL6 inhibitors: Effectively combining biochemical HTS with multiple biophysical techniques, X-ray crystallography and cell-based assays. Sci. Rep. 2022, 12, 18633. [Google Scholar] [CrossRef]
- Xing, Y.; Guo, W.; Wu, M.; Xie, J.; Huang, D.; Hu, P.; Zhou, M.; Zhang, L.; Zhang, Q.; Wang, P.; et al. An orally available small molecule BCL6 inhibitor effectively suppresses diffuse large B cell lymphoma cells growth in vitro and in vivo. Cancer Lett. 2022, 529, 100–111. [Google Scholar] [CrossRef]
- Bisso, A.; Sabò, A.; Amati, B. MYC in germinal center-derived lymphomas: Mechanisms and therapeutic opportunities. Immunol. Rev. 2019, 288, 178–197. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, X. The spectrum of MYC alterations in diffuse large B-cell lymphoma. Acta Haematol. 2020, 143, 520–528. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Deng, Q.; Manyam, G.C.; Tzankov, A.; Li, L.; Xia, Y.; Wang, X.X.; Zou, D.; Visco, C.; Dybkær, K.; et al. Clinical and biologic significance of MYC genetic mutations in de novo diffuse large B-cell lymphoma. Clin. Cancer Res. 2016, 22, 3593–3605. [Google Scholar] [CrossRef] [PubMed]
- Spriano, F.; Stathis, A.; Bertoni, F. Targeting BET bromodomain proteins in cancer: The example of lymphomas. Pharmacol. Ther. 2020, 215, 107631. [Google Scholar] [CrossRef] [PubMed]
- Tarantelli, C.; Cannas, E.; Ekeh, H.; Moscatello, C.; Gaudio, E.; Cascione, L.; Napoli, S.; Rech, C.; Testa, A.; Maniaci, C.; et al. The bromodomain and extra-terminal domain degrader MZ1 exhibits preclinical anti-tumoral activity in diffuse large B-cell lymphoma of the activated B cell-like type. Explor. Target. Antitumor Ther. 2021, 2, 586–601. [Google Scholar] [CrossRef] [PubMed]
- Raina, K.; Crews, C.M. Chemical inducers of targeted protein degradation. J. Biol. Chem. 2010, 285, 11057–11060. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.; Cheng, M.; Park, K.S.; Kaniskan, H.Ü.; Xiong, Y.; Jin, J. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 2021, 21, 638–654. [Google Scholar] [CrossRef]
- Belcher, B.P.; Ward, C.C.; Nomura, D.K. Ligandability of E3 ligases for targeted protein degradation applications. Biochemistry 2023, 62, 588–600. [Google Scholar] [CrossRef]
- Kong, N.R.; Jones, L.H. Clinical translation of targeted protein degraders. Clin. Pharmacol. Ther. 2023, 114, 558–568. [Google Scholar] [CrossRef]
- Lv, M.; Hu, W.; Zhang, S.; He, L.; Hu, C.; Yang, S. Proteolysis-targeting chimeras: A promising technique in cancer therapy for gaining insights into tumor development. Cancer Lett. 2022, 539, 215716. [Google Scholar] [CrossRef]
- Rej, R.K.; Allu, S.R.; Roy, J.; Acharyya, R.K.; Kiran, I.N.C.; Addepalli, Y.; Dhamodharan, V. Orally bioavailable proteolysis-targeting chimeras: An innovative approach in the golden era of discovering small-molecule cancer drugs. Pharmaceuticals 2024, 17, 494. [Google Scholar] [CrossRef] [PubMed]
- Shah Zaib Saleem, R.; Schwalm, M.P.; Knapp, S. Expanding the ligand spaces for E3 ligases for the design of protein degraders. Bioorg. Med. Chem. 2024, 105, 117718. [Google Scholar] [CrossRef]
- Kastl, J.M.; Davies, G.; Godsman, E.; Holdgate, G.A. Small-molecule degraders beyond PROTACs-challenges and opportunities. SLAS Discov. 2021, 26, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Ito, T. Protein degraders—From thalidomide to new PROTACs. J. Biochem. 2024, 175, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Y.; Chen, W.; Wu, Y.; Xing, D. New-generation advanced PROTACs as potential therapeutic agents in cancer therapy. Mol. Cancer 2024, 23, 110. [Google Scholar] [CrossRef] [PubMed]
- Chirnomas, D.; Hornberger, K.R.; Crews, C.M. Protein degraders enter the clinic—A new approach to cancer therapy. Nat. Rev. Clin. Oncol. 2023, 20, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Robbins, D.W.; Kelly, A.; Tan, M.; McIntosh, J.; Wu, J.; Konst, Z.; Kato, D.; Peng, G.; Mihalic, J.; Weiss, D.; et al. Nx-2127, a degrader of BTK and IMiD neosubstrates, for the treatment of B-cell malignancies. Blood 2020, 136 (Suppl. S1), 34. [Google Scholar] [CrossRef]
- Robbins, D.W.; Noviski, M.; Rountree, R.; Tan, M.; Brathaban, N.; Ingallinera, T.; Karr, D.E.; Kelly, A.; Konst, Z.; Jun, M. Nx-5948, a selective degrader of BTK with activity in preclinical models of hematologic and brain malignancies. Blood 2021, 138 (Suppl. S1), 2251. [Google Scholar] [CrossRef]
- Walker, D.; Mayo, M.; Klaus, C.; Chen, D.; Bhaduri, S.; Sharma, K.; Rusin, S.; McDonald, A.; Gollob, J.; Mainolfi, N.; et al. Ktx-120, a novel irakimid degrader of IRAK4 and IMiD substrates shows preferential activity and induces regressions in MYD88-mutant DLBCL CDX and PDX models. Blood 2020, 136 (Suppl. S1), 41. [Google Scholar] [CrossRef]
- Casan, J.M.L.; Seymour, J.F. Degraders upgraded: The rise of PROTACs in hematological malignancies. Blood 2024, 143, 1218–1230. [Google Scholar] [CrossRef]
- Zhong, G.; Kong, R.; Feng, S.; Wang, C.; Hao, Q.; Xie, W.; Zhou, X. Targeted protein degradation in hematologic malignancies: Latest updates from the 2023 ASH annual meeting. J. Hematol. Oncol. 2024, 17, 14. [Google Scholar] [CrossRef]
- Seymour, J.F.; Cheah, C.J.; Parrondo, R.; Thompson, M.C.; Stevens, D.A.; Lasica, M.; Wang, M.L.; Kumar, A.; Trotman, J.; Alwan, M.; et al. First results from a phase 1, first-in-human study of the Bruton’s tyrosine kinase (BTK) degrader Bgb-16673 in patients (Pts) with relapsed or refractory (R/R) B-cell malignancies (BGB-16673-101). Blood 2023, 142 (Suppl. S1), 4401. [Google Scholar] [CrossRef]
- Searle, E.; Forconi, F.; Linton, K.; Danilov, A.; McKay, P.; Lewis, D.; El-Sharkawi, D.; Gleeson, M.; Riches, J.; Injac, S.G.; et al. Initial findings from a first-in-human phase 1a/b trial of NX-5948, a selective Bruton’s tyrosine kinase (BTK) degrader, in patients with relapsed/refractory B cell malignancies. Blood 2023, 142 (Suppl. S1), 4473. [Google Scholar] [CrossRef]
- Danilov, A.; Tees, M.T.; Patel, K.; Wierda, W.G.; Patel, M.; Flinn, I.W.; Latif, T.; Ai, W.; Thompson, M.C.; Wang, M.L.; et al. A first-in-human phase 1 trial of NX-2127, a first-in-class Bruton’s tyrosine kinase (BTK) dual-targeted protein degrader with immunomodulatory activity, in patients with relapsed/refractory B cell malignancies. Blood 2023, 142 (Suppl. S1), 4463. [Google Scholar] [CrossRef]
- Kim, J.; Guan, K.L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 2019, 21, 63–71. [Google Scholar] [CrossRef]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef]
- Aleksandrova, K.V.; Vorobev, M.L.; Suvorova, I.I. mTOR pathway occupies a central role in the emergence of latent cancer cells. Cell Death Dis. 2024, 15, 176. [Google Scholar] [CrossRef] [PubMed]
- Karatrasoglou, E.A.; Dimou, M.; Piperidou, A.; Lakiotaki, E.; Korkolopoulou, P.; Vassilakopoulos, T.P. The role of mTOR in B cell lymphoid malignancies: Biologic and therapeutic aspects. Int. J. Mol. Sci. 2023, 24, 14110. [Google Scholar] [CrossRef] [PubMed]
- Werner, M.; Hobeika, E.; Jumaa, H. Role of PI3K in the generation and survival of B cells. Immunol. Rev. 2010, 237, 55–71. [Google Scholar] [CrossRef]
- Wang, X.; Cao, X.; Sun, R.; Tang, C.; Tzankov, A.; Zhang, J.; Manyam, G.C.; Xiao, M.; Miao, Y.; Jabbar, K.; et al. Clinical significance of PTEN deletion, mutation, and loss of PTEN expression in de novo diffuse large B-cell lymphoma. Neoplasia 2018, 20, 574–593. [Google Scholar] [CrossRef]
- Baohua, Y.; Xiaoyan, Z.; Tiecheng, Z.; Tao, Q.; Daren, S. Mutations of the PIK3CA gene in diffuse large B cell lymphoma. Diagn. Mol. Pathol. 2008, 17, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Berning, P.; Erdmann, T.; Grau, M.; Bettazová, N.; Zapukhlyak, M.; Frontzek, F.; Kosnopfel, C.; Lenz, P.; Grondine, M.; et al. mTOR inhibition amplifies the anti-lymphoma effect of PI3Kβ/δ blockage in diffuse large B-cell lymphoma. Leukemia 2023, 37, 178–189. [Google Scholar] [CrossRef]
- Masnikosa, R.; Pirić, D.; Post, J.M.; Cvetković, Z.; Petrović, S.; Paunović, M.; Vučić, V.; Bindila, L. Disturbed plasma lipidomic profiles in females with diffuse large B-cell lymphoma: A pilot study. Cancers 2023, 15, 3653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Duan, Y.T.; Wang, Y.; Zhao, X.D.; Sun, Y.M.; Lin, D.Z.; Chen, Y.; Wang, Y.X.; Zhou, Z.W.; Liu, Y.X.; et al. SAF-248, a novel PI3Kδ-selective inhibitor, potently suppresses the growth of diffuse large B-cell lymphoma. Acta Pharmacol. Sin. 2022, 43, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Lampson, B.L.; Brown, J.R. PI3Kδ-selective and PI3Kα/δ-combinatorial inhibitors in clinical development for B-cell non-Hodgkin lymphoma. Expert Opin. Investig. Drugs 2017, 26, 1267–1279. [Google Scholar] [CrossRef]
- Flinn, I.W.; O’Brien, S.; Kahl, B.; Patel, M.; Oki, Y.; Foss, F.F.; Porcu, P.; Jones, J.; Burger, J.A.; Jain, N.; et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood 2018, 131, 877–887. [Google Scholar] [CrossRef]
- Le, T.; Jerel, D.; Bryan, L.J. Update on the role of copanlisib in hematologic malignancies. Ther. Adv. Hematol. 2021, 12, 20406207211006027. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Wu, L.; Visco, C.; Tai, Y.C.; Tzankov, A.; Liu, W.M.; Montes-Moreno, S.; Dybkaer, K.; Chiu, A.; Orazi, A.; et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: Report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood 2012, 120, 3986–3996. [Google Scholar] [CrossRef]
- Morin, R.D.; Assouline, S.; Alcaide, M.; Mohajeri, A.; Johnston, R.L.; Chong, L.; Grewal, J.; Yu, S.; Fornika, D.; Bushell, K.; et al. Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin. Cancer Res. 2016, 22, 2290–2300. [Google Scholar] [CrossRef] [PubMed]
- Porpaczy, E.; Wohlfarth, P.; Königsbrügge, O.; Rabitsch, W.; Skrabs, C.; Staber, P.; Worel, N.; Müllauer, L.; Simonitsch-Klupp, I.; Kornauth, C.; et al. Influence of TP53 mutation on survival of diffuse large B-cell lymphoma in the CAR T-cell era. Cancers 2021, 13, 5592. [Google Scholar] [CrossRef]
- Wang, W.; Qin, J.J.; Rajaei, M.; Li, X.; Yu, X.; Hunt, C.; Zhang, R. Targeting MDM2 for novel molecular therapy: Beyond oncology. Med. Res. Rev. 2020, 40, 856–880. [Google Scholar] [CrossRef]
- Gu, J.J.; Thompson, S.J.; Mavis, C.; Barth, M.J.; Torka, P.; Hernandez-Ilizaliturri, F.J. Targeting MDM2 and XIAP by idasanutlin in diffuse large B-cell lymphoma. Blood 2019, 134 (Suppl. S1), 5301. [Google Scholar] [CrossRef]
- Kamdar, M.; Augustson, B.; Do, Y.R.; Edwards, J.; Hertzberg, M.; Johnston, A.; Kim, J.S.; Kroschinsky, F.P.; Smith, S.M.; Stevens, D.A.; et al. Combination of idasanutlin, venetoclax and obinutuzumab in patients with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL): Results from a phase I/II study. Blood 2020, 136 (Suppl. S1), 30–31. [Google Scholar] [CrossRef]
- Chevrier, S.; Kratina, T.; Emslie, D.; Tarlinton, D.M.; Corcoran, L.M. IL4 and IL21 cooperate to induce the high Bcl6 protein level required for germinal center formation. Immunol. Cell Biol. 2017, 95, 925–932. [Google Scholar] [CrossRef]
- Shehata, L.; Thouvenel, C.D.; Hondowicz, B.D.; Pew, L.A.; Pritchard, G.H.; Rawlings, D.J.; Choi, J.; Pepper, M. Interleukin-4 downregulates transcription factor BCL6 to promote memory B cell selection in germinal centers. Immunity 2024, 57, 843–858.e5. [Google Scholar] [CrossRef] [PubMed]
- Benoit, A.; Abraham, M.J.; Li, S.; Kim, J.; Estrada-Tejedor, R.; Bakadlag, R.; Subramaniam, N.; Makhani, K.; Guilbert, C.; Tu, R.; et al. STAT6 mutations enriched at diffuse large B-cell lymphoma relapse reshape the tumor microenvironment. Int. J. Hematol. 2024, 119, 275–290. [Google Scholar] [CrossRef]
- Morillo, D.; Vega, G.; Moreno, V. CDK9 INHIBITORS: A promising combination partner in the treatment of hematological malignancies. Oncotarget 2023, 14, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Mergener, S.; Peña-Llopis, S. A new perspective on immune evasion: Escaping immune surveillance by inactivating tumor suppressors. Signal Transduct. Target. Ther. 2022, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Kallingal, A.; Olszewski, M.; Maciejewska, N.; Brankiewicz, W.; Baginski, M. Cancer immune escape: The role of antigen presentation machinery. J. Cancer Res. Clin. Oncol. 2023, 149, 8131–8141. [Google Scholar] [CrossRef]
- Martínez-Jiménez, F.; Priestley, P.; Shale, C.; Baber, J.; Rozemuller, E.; Cuppen, E. Genetic immune escape landscape in primary and metastatic cancer. Nat. Genet. 2023, 55, 820–831. [Google Scholar] [CrossRef]
- Fangazio, M.; Ladewig, E.; Gomez, K.; Garcia-Ibanez, L.; Kumar, R.; Teruya-Feldstein, J.; Rossi, D.; Filip, I.; Pan-Hammarström, Q.; Inghirami, G.; et al. Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 2021, 118, e2104504118. [Google Scholar] [CrossRef]
- Takahara, T.; Nakamura, S.; Tsuzuki, T.; Satou, A. The immunology of DLBCL. Cancers 2023, 15, 835. [Google Scholar] [CrossRef]
- Trzos, S.; Link-Lenczowski, P.; Pocheć, E. The role of N-glycosylation in B-cell biology and IgG activity. The aspects of autoimmunity and anti-inflammatory therapy. Front. Immunol. 2023, 14, 1188838. [Google Scholar] [CrossRef] [PubMed]
- Lester, D.K.; Burton, C.; Gardner, A.; Innamarato, P.; Kodumudi, K.; Liu, Q.; Adhikari, E.; Ming, Q.; Williamson, D.B.; Frederick, D.T.; et al. Fucosylation of HLA-DRB1 regulates CD4+ T cell-mediated anti-melanoma immunity and enhances immunotherapy efficacy. Nat. Cancer 2023, 4, 222–239. [Google Scholar] [CrossRef]
- D’Mello, S. Regulated Cell Death. In Goodman’s Medical Cell Biology, 4th ed.; Goodman, S.R., Ed.; Academic Press: Memphis, TN, USA, 2021; pp. 315–336. ISBN 9780128179277. [Google Scholar] [CrossRef]
- Yuan, J.; Ofengeim, D. A guide to cell death pathways. Nat. Rev. Mol. Cell Biol. 2024, 25, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Liao, M.; Qin, R.; Zhu, S.; Peng, C.; Fu, L.; Chen, Y.; Han, B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022, 7, 286. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhang, X.; Kang, J. Analyzing the involvement of diverse cell death-related genes in diffuse large B-cell lymphoma using bioinformatics techniques. Heliyon 2024, 10, e30831. [Google Scholar] [CrossRef]
- Ianniciello, A.; Zarou, M.M.; Rattigan, K.M.; Scott, M.; Dawson, A.; Dunn, K.; Brabcova, Z.; Kalkman, E.R.; Nixon, C.; Michie, A.M.; et al. ULK1 inhibition promotes oxidative stress-induced differentiation and sensitizes leukemic stem cells to targeted therapy. Sci. Transl. Med. 2021, 13, eabd5016. [Google Scholar] [CrossRef]
- Mandhair, H.K.; Radpour, R.; Westerhuis, M.; Banz, Y.; Humbert, M.; Arambasic, M.; Dengjel, J.; Davies, A.; Tschan, M.P.; Novak, U. Analysis of autophagy in DLBCL reveals subtype-specific differences and the preferential targeting of ULK1 inhibition in GCB-DLBCL provides a rationale as a new therapeutic approach. Leukemia 2024, 38, 424–429. [Google Scholar] [CrossRef]
- Hsu, C.M.; Chang, K.C.; Chuang, T.M.; Chu, M.L.; Lin, P.W.; Liu, H.S.; Kao, S.Y.; Liu, Y.C.; Huang, C.T.; Wang, M.H.; et al. High G9a expression in DLBCL and its inhibition by niclosamide to induce autophagy as a therapeutic approach. Cancers 2023, 15, 4150. [Google Scholar] [CrossRef]
- Chen, W.; Mook, R.A., Jr.; Premont, R.T.; Wang, J. Niclosamide: Beyond an antihelminthic drug. Cell Signal. 2018, 41, 89–96. [Google Scholar] [CrossRef]
- Poulard, C.; Noureddine, L.M.; Pruvost, L.; Le Romancer, M. Structure, activity, and function of the protein lysine methyltransferase G9a. Life 2021, 11, 1082. [Google Scholar] [CrossRef]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef]
- Li, Y.; Du, Y.; Zhou, Y.; Chen, Q.; Luo, Z.; Ren, Y.; Chen, X.; Chen, G. Iron and copper: Critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun. Signal. 2023, 21, 327. [Google Scholar] [CrossRef]
- Chen, C.; Li, T.; Li, Y.; Chen, Z.; Shi, P.; Li, Y.; Qian, S. GPX4 is a potential diagnostic and therapeutic biomarker associated with diffuse large B lymphoma cell proliferation and B cell immune infiltration. Heliyon 2024, 10, e24857. [Google Scholar] [CrossRef]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261. [Google Scholar] [CrossRef]
- Rowland, E.A.; Snowden, C.K.; Cristea, I.M. Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease. Curr. Opin. Chem. Biol. 2018, 42, 76–85. [Google Scholar] [CrossRef]
- Lou, Q.M.; Lai, F.F.; Li, J.W.; Mao, K.J.; Wan, H.T.; He, Y. Mechanisms of cuproptosis and its relevance to distinct diseases. Apoptosis 2024, 29, 981–1006. [Google Scholar] [CrossRef]
- Xie, J.; Yang, Y.; Gao, Y.; He, J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer 2023, 22, 46. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, T.; Zheng, Z.; Lin, Z.; Wang, Q.; Zheng, D.; Chen, Z.; Ma, Y. Development and validation of a cuproptosis-associated prognostic model for diffuse large B-cell lymphoma. Front. Oncol. 2022, 12, 1020566. [Google Scholar] [CrossRef]
- Bai, X.; Lu, F.; Li, S.; Zhao, Z.; Wang, N.; Zhao, Y.; Ma, G.; Zhang, F.; Su, X.; Wang, D.; et al. Cuproptosis-related lncRNA signature as a prognostic tool and therapeutic target in diffuse large B cell lymphoma. Sci. Rep. 2024, 14, 12926. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef]
- Piccolo, M.; Ferraro, M.G.; Iazzetti, F.; Santamaria, R.; Irace, C. Insight into iron, oxidative stress and ferroptosis: Therapy targets for approaching anticancer strategies. Cancers 2024, 16, 1220. [Google Scholar] [CrossRef]
- Nakamura, T.; Naguro, I.; Ichijo, H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 1398–1409. [Google Scholar] [CrossRef]
- Mortensen, M.S.; Ruiz, J.; Watts, J.L. Polyunsaturated fatty acids drive lipid peroxidation during ferroptosis. Cells 2023, 12, 804. [Google Scholar] [CrossRef]
- Chen, X.; Comish, P.B.; Tang, D.; Kang, R. Characteristics and biomarkers of ferroptosis. Front. Cell Dev. Biol. 2021, 9, 637162. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Hanna, V.S.; Hafez, E.A.A. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res. 2018, 11, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Bian, W.; Li, H.; Chen, Y.; Yu, Y.; Lei, G.; Yang, X.; Li, S.; Chen, X.; Li, H.; Yang, J.; et al. Ferroptosis mechanisms and its novel potential therapeutic targets for DLBCL. Biomed. Pharmacother. 2024, 173, 116386. [Google Scholar] [CrossRef]
- Chen, H.; He, Y.; Pan, T.; Zeng, R.; Li, Y.; Chen, S.; Li, Y.; Xiao, L.; Zhou, H. Ferroptosis-related gene signature: A new method for personalized risk assessment in patients with diffuse large B-cell lymphoma. Pharmgenom. Pers. Med. 2021, 14, 609–619. [Google Scholar] [CrossRef]
- Li, W.; Yao, R.; Yu, N.; Zhang, W. Identification of a prognostic signature based on five ferroptosis-related genes for diffuse large B-cell lymphoma. Cancer Biomark. 2024, 40, 125–139. [Google Scholar] [CrossRef]
- Lee, J.; Roh, J.L. Unleashing ferroptosis in human cancers: Targeting ferroptosis suppressor protein 1 for overcoming therapy resistance. Antioxidants 2023, 12, 1218. [Google Scholar] [CrossRef]
- Žarković, K.; Jakovčević, A.; Žarković, N. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases. Free Radic. Biol. Med. 2017, 111, 110–126. [Google Scholar] [CrossRef]
- Kawade, G.; Kurata, M.; Matsuki, Y.; Fukuda, S.; Onishi, I.; Kinowaki, Y.; Watabe, S.; Ishibashi, S.; Ikeda, M.; Yamamoto, M.; et al. Mediation of ferroptosis suppressor protein 1 expression via 4-hydroxy-2-nonenal accumulation contributes to acquisition of resistance to apoptosis and ferroptosis in diffuse large B-cell lymphoma. Lab. Investig. 2024, 104, 102027. [Google Scholar] [CrossRef]
- Schmitt, A.; Xu, W.; Bucher, P.; Grimm, M.; Konantz, M.; Horn, H.; Zapukhlyak, M.; Berning, P.; Brändle, M.; Jarboui, M.A.; et al. Dimethyl fumarate induces ferroptosis and impairs NF-kappaB/STAT3 signaling in DLBCL. Blood 2021, 138, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Grimm, M.; Kreienkamp, N.; Junge, H.; Labisch, J.; Schuhknecht, L.; Schönfeld, C.; Görsch, E.; Tibello, A.; Menck, K.; et al. BRD4 inhibition sensitizes diffuse large B-cell lymphoma cells to ferroptosis. Blood 2023, 142, 1143–1155. [Google Scholar] [CrossRef]
- Zhou, N.; Busino, L. Targeting epigenetics and ferroptosis in DLBCL. Blood 2023, 142, 1108–1109. [Google Scholar] [CrossRef]
- Mynott, R.L.; Habib, A.; Best, O.G.; Wallington-Gates, C.T. Ferroptosis in haematological malignancies and associated therapeutic nanotechnologies. Int. J. Mol. Sci. 2023, 24, 7661. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, H.; Daniels, J.D.; Zandkarimi, F.; Liu, H.; Brown, L.M.; Uchida, K.; O’Connor, O.A.; Stockwell, B.R. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 2019, 26, 623–633.e9. [Google Scholar] [CrossRef]
- Diao, J.; Jia, Y.; Dai, E.; Liu, J.; Kang, R.; Tang, D.; Han, L.; Zhong, Y.; Meng, L. Ferroptotic therapy in cancer: Benefits, side effects, and risks. Mol. Cancer 2024, 23, 89. [Google Scholar] [CrossRef] [PubMed]
- Picca, A.; Faitg, J.; Auwerx, J.; Ferrucci, L.; D’Amico, D. Mitophagy in human health, ageing and disease. Nat. Metab. 2023, 5, 2047–2061. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, Z. Leukemia and mitophagy: A novel perspective for understanding oncogenesis and resistance. Ann. Hematol. 2024, 103, 2185–2196. [Google Scholar] [CrossRef] [PubMed]
- Ucche, S.; Hayakawa, Y. Immunological aspects of cancer cell metabolism. Int. J. Mol. Sci. 2024, 25, 5288. [Google Scholar] [CrossRef]
- Martínez-Reyes, I.; Chandel, N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021, 21, 669–680. [Google Scholar] [CrossRef]
- Zhou, D.; Duan, Z.; Li, Z.; Ge, F.; Wei, R.; Kong, L. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front. Pharmacol. 2022, 13, 1091779. [Google Scholar] [CrossRef]
- Bhalla, K.; Jaber, S.; Nahid, M.N.; Underwood, K.; Beheshti, A.; Landon, A.; Bhandary, B.; Bastian, P.; Evens, A.M.; Haley, J.; et al. Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL. Sci. Rep. 2018, 8, 744. [Google Scholar] [CrossRef]
- Dai, L.; Fan, G.; Xie, T.; Li, L.; Tang, L.; Chen, H.; Shi, Y.; Han, X. Single-cell and spatial transcriptomics reveal a high glycolysis B cell and tumor-associated macrophages cluster correlated with poor prognosis and exhausted immune microenvironment in diffuse large B-cell lymphoma. Biomark. Res. 2024, 12, 58. [Google Scholar] [CrossRef]
- Noble, R.A.; Thomas, H.; Zhao, Y.; Herendi, L.; Howarth, R.; Dragoni, I.; Keun, H.C.; Vellano, C.P.; Marszalek, J.R.; Wedge, S.R. Simultaneous targeting of glycolysis and oxidative phosphorylation as a therapeutic strategy to treat diffuse large B-cell lymphoma. Br. J. Cancer 2022, 127, 937–947. [Google Scholar] [CrossRef]
- Reinfeld, B.I.; Madden, M.Z.; Wolf, M.M.; Chytil, A.; Bader, J.E.; Patterson, A.R.; Sugiura, A.; Cohen, A.S.; Ali, A.; Do, B.T.; et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 2021, 593, 282–288. [Google Scholar] [CrossRef]
- Szwed, A.; Kim, E.; Jacinto, E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev. 2021, 101, 1371–1426. [Google Scholar] [CrossRef]
- Wang, B.; Pei, J.; Xu, S.; Liu, J.; Yu, J. A glutamine tug-of-war between cancer and immune cells: Recent advances in unraveling the ongoing battle. J. Exp. Clin. Cancer Res. 2024, 43, 74. [Google Scholar] [CrossRef] [PubMed]
- Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 2016, 5, e189. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, S.; Guillaumond, F. Lipids in cancer: A global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 2022, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chang, N.; Liu, J.; Liu, Z.; Wu, Y.; Sui, L.; Chen, W. Reprogramming lipid metabolism as potential strategy for hematological malignancy therapy. Front. Oncol. 2022, 12, 987499. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, S. Mammalian lipids: Structure, synthesis and function. Essays Biochem. 2021, 65, 813–845. [Google Scholar] [CrossRef]
- Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020, 122, 4–22. [Google Scholar] [CrossRef]
- Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Molecules 2020, 25, 3935. [Google Scholar] [CrossRef]
- Bhatt, A.P.; Jacobs, S.R.; Freemerman, A.J.; Makowski, L.; Rathmell, J.C.; Dittmer, D.P.; Damania, B. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proc. Natl. Acad. Sci. USA 2012, 109, 11818–11823. [Google Scholar] [CrossRef]
- Uddin, S.; Hussain, A.R.; Ahmed, M.; Bu, R.; Ahmed, S.O.; Ajarim, D.; Al-Dayel, F.; Bavi, P.; Al-Kuraya, K.S. Inhibition of fatty acid synthase suppresses c-Met receptor kinase and induces apoptosis in diffuse large B-cell lymphoma. Mol. Cancer Ther. 2010, 9, 1244–1255. [Google Scholar] [CrossRef]
- Pera, B.; Krumsiek, J.; Assouline, S.E.; Marullo, R.; Patel, J.; Phillip, J.M.; Román, L.; Mann, K.K.; Cerchietti, L. Metabolomic profiling reveals cellular reprogramming of B-cell lymphoma by a lysine deacetylase inhibitor through the choline pathway. EBioMedicine 2018, 28, 80–89. [Google Scholar] [CrossRef]
- Dashnamoorthy, R.; Lansigan, F.; Davis, W.L.; Kuemmerle, N.; Kinlaw, W.B.; Evens, A.M. Fatty acid metabolism in diffuse large B-cell lymphoma (DLBCL): Interaction with oncogenic cell signaling pathways and the identification of a novel treatment paradigm. Blood 2012, 120, 2711. [Google Scholar] [CrossRef]
- Dashnamoorthy, R.; Beheshti, A.; Abermil, N.; Lansigan, F.; Kinlaw, W.; Gartenhaus, R.; Jones, G.; Hlatky, L.; Evens, A.M. Lipid addiction of diffuse large B-cell lymphoma (DLBCL): Fatty acid synthase (FASN) and PI3K dependent cell death identifies a novel therapeutic paradigm. Blood 2015, 126, 1284. [Google Scholar] [CrossRef]
- Gifford, G.K.; Gifford, A.J.; Chen, Q.; Shen, Y.; Gabrielli, S.; Gill, A.J.; Stevenson, W.S.; Best, O.G. Fatty acid synthase and adenosine monophosphate-activated protein kinase regulate cell survival and drug sensitivity in diffuse large B-cell lymphoma. Leuk. Lymphoma 2020, 61, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Peeters, R.; Cuenca-Escalona, J.; Zaal, E.A.; Hoekstra, A.T.; Balvert, A.C.G.; Vidal-Manrique, M.; Blomberg, N.; van Deventer, S.J.; Stienstra, R.; Jellusova, J.; et al. Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37. Nat. Commun. 2022, 13, 5371. [Google Scholar] [CrossRef] [PubMed]
- Enciu, A.M.; Radu, E.; Popescu, I.D.; Hinescu, M.E.; Ceafalan, L.C. Targeting CD36 as biomarker for metastasis prognostic: How far from translation into clinical practice? Biomed. Res. Int. 2018, 2018, 7801202. [Google Scholar] [CrossRef]
- Rozovski, U.; Harris, D.M.; Li, P.; Liu, Z.; Jain, P.; Ferrajoli, A.; Burger, J.A.; Bose, P.; Thompson, P.A.; Jain, N.; et al. Overexpression of CD36, driven by STAT3, mediates free fatty acid uptake in CLL cells. Blood 2017, 130 (Suppl. S1), 4301. [Google Scholar]
- Danilova, O.V.; Dumont, L.J.; Levy, N.B.; Lansigan, F.; Kinlaw, W.B.; Danilov, A.V.; Kaur, P. FASN and CD36 predict survival in rituximab-treated diffuse large B-cell lymphoma. J. Hematop. 2013, 6, 11–18. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, X.; Wang, X. Metabolic reprogramming in hematologic malignancies: Advances and clinical perspectives. Cancer Res. 2022, 82, 2955–2963. [Google Scholar] [CrossRef]
- Gouni, S.; Strati, P.; Toruner, G.; Aradhya, A.; Landgraf, R.; Bilbao, D.; Vega, F.; Agarwal, N.K. Statins enhance the chemosensitivity of R-CHOP in diffuse large B-cell lymphoma. Leuk. Lymphoma 2022, 63, 1302–1313. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, C.; Yao, Z.; Wang, Y.; Yu, Z.; Yu, J. Targeting lipid metabolism overcomes BTK inhibitor resistance in diffuse large B-cell lymphoma. Med. Nov. Technol. Devices 2024, 22, 100295. [Google Scholar] [CrossRef]
- Rink, J.S.; Lin, A.Y.; McMahon, K.M.; Calvert, A.E.; Yang, S.; Taxter, T.; Moreira, J.; Chadburn, A.; Behdad, A.; Karmali, R.; et al. Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis. J. Biol. Chem. 2021, 296, 100100. [Google Scholar] [CrossRef]
- Hulse, M.; Johnson, S.M.; Boyle, S.; Caruso, L.B.; Tempera, I. Epstein-Barr virus-encoded latent membrane protein 1 and B-cell growth transformation induce lipogenesis through fatty acid synthase. J. Virol. 2021, 95, e01857-20. [Google Scholar] [CrossRef] [PubMed]
- Cvetković, Z.; Vučić, V.; Cvetković, B.; Petrović, M.; Ristić-Medić, D.; Tepsić, J.; Glibetić, M. Abnormal fatty acid distribution of the serum phospholipids of patients with non-Hodgkin lymphoma. Ann. Hematol. 2010, 89, 775–782. [Google Scholar] [CrossRef]
- Cvetković, Z.; Milošević, M.; Cvetković, B.; Masnikosa, R.; Arsić, A.; Petrović, S.; Vučić, V. Plasma phospholipid changes are associated with response to chemotherapy in non-Hodgkin lymphoma patients. Leuk. Res. 2017, 54, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Lin, Q.; Huang, X.; Fu, D.; Huang, H. Prognostic significance of pretreatment serum free fatty acid in patients with diffuse large B-cell lymphoma in the rituximab era: A retrospective analysis. BMC Cancer 2021, 21, 1255. [Google Scholar] [CrossRef] [PubMed]
- Barré, F.P.Y.; Claes, B.S.R.; Dewez, F.; Peutz-Kootstra, C.; Munch-Petersen, H.F.; Grønbæk, K.; Lund, A.H.; Heeren, R.M.A.; Côme, C.; Cillero-Pastor, B. Specific lipid and metabolic profiles of R-CHOP-resistant diffuse large B-cell lymphoma elucidated by matrix-assisted laser desorption ionization mass spectrometry imaging and in vivo imaging. Anal. Chem. 2018, 90, 14198–14206. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, H.; Shi, Y.; Zhao, Y.; Zhen, X.; Sun, J.; Li, X.; Zhou, D.; Yang, C.; Wang, J.; et al. Dyslipidemia in diffuse large B-cell lymphoma based on the genetic subtypes: A single-center study of 259 Chinese patients. Front. Oncol. 2023, 13, 1172623. [Google Scholar] [CrossRef]
- Ottensmann, L.; Tabassum, R.; Ruotsalainen, S.E.; Gerl, M.J.; Klose, C.; Widén, E.; FinnGen; Simons, K.; Ripatti, S.; Pirinen, M.; et al. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat. Commun. 2023, 14, 6934. [Google Scholar] [CrossRef]
- Lehtimäki, M.; Mishra, B.H.; Del-Val, C.; Lyytikäinen, L.P.; Kähönen, M.; Cloninger, C.R.; Raitakari, O.T.; Laaksonen, R.; Zwir, I.; Lehtimäki, T.; et al. Uncovering the complex genetic architecture of human plasma lipidome using machine learning methods. Sci. Rep. 2023, 13, 3078. [Google Scholar] [CrossRef]
- Tabassum, R.; Rämö, J.T.; Ripatti, P.; Koskela, J.T.; Kurki, M.; Karjalainen, J.; Palta, P.; Hassan, S.; Nunez-Fontarnau, J.; Kiiskinen, T.T.J.; et al. Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nat. Commun. 2019, 10, 4329. [Google Scholar] [CrossRef]
- Gao, R.; Liang, J.H.; Wang, L.; Zhu, H.Y.; Wu, W.; Cao, L.; Fan, L.; Li, J.Y.; Yang, T.; Xu, W. Low serum cholesterol levels predict inferior prognosis and improve NCCN-IPI scoring in diffuse large B cell lymphoma. Int. J. Cancer 2018, 143, 1884–1895. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Huang, Z.; Chen, X.; Lin, Q.; Huang, H.; Fan, L. Low serum apolipoprotein A1 level predicts poor prognosis of patients with diffuse large B-cell lymphoma in the real world: A retrospective study. BMC Cancer 2024, 24, 62. [Google Scholar] [CrossRef] [PubMed]
- Beyene, H.B.; Olshansky, G.; Smith, A.A.T.; Giles, C.; Huynh, K.; Cinel, M.; Mellett, N.A.; Cadby, G.; Hung, J.; Hui, J.; et al. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: Evidence from two large population cohort studies. PLoS Biol. 2020, 18, e3000870. [Google Scholar] [CrossRef]
- Palmisano, B.T.; Zhu, L.; Eckel, R.H.; Stafford, J.M. Sex differences in lipid and lipoprotein metabolism. Mol. Metab. 2018, 15, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Slade, E.; Irvin, M.R.; Xie, K.; Arnett, D.K.; Claas, S.A.; Kind, T.; Fardo, D.W.; Graf, G.A. Age and sex are associated with the plasma lipidome: Findings from the GOLDN study. Lipids Health Dis. 2021, 20, 30. [Google Scholar] [CrossRef] [PubMed]
- Moeller, A.H. Loyal gut microbes. Science 2022, 377, 1263–1264. [Google Scholar] [CrossRef]
- Allaband, C.; McDonald, D.; Vázquez-Baeza, Y.; Minich, J.J.; Tripathi, A.; Brenner, D.A.; Loomba, R.; Smarr, L.; Sandborn, W.J.; Schnabl, B.; et al. Microbiome 101: Studying, analyzing, and interpreting gut microbiome data for clinicians. Clin. Gastroenterol. Hepatol. 2019, 17, 218–230. [Google Scholar] [CrossRef]
- Ratiner, K.; Ciocan, D.; Abdeen, S.K.; Elinav, E. Utilization of the microbiome in personalized medicine. Nat. Rev. Microbiol. 2024, 22, 291–308. [Google Scholar] [CrossRef]
- Al-Khazaleh, A.K.; Chang, D.; Münch, G.W.; Bhuyan, D.J. The gut connection: Exploring the possibility of implementing gut microbial metabolites in lymphoma treatment. Cancers 2024, 16, 1464. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, W.; Zhang, W.; Zhang, Y.; Wei, C.; Li, J.; Zhou, D. Gut microbiota in untreated diffuse large B cell lymphoma Patients. Front. Microbiol. 2021, 12, 646361. [Google Scholar] [CrossRef]
- Koliada, A.; Moseiko, V.; Romanenko, M.; Lushchak, O.; Kryzhanovska, N.; Guryanov, V.; Vaiserman, A. Sex differences in the phylum-level human gut microbiota composition. BMC Microbiol. 2021, 21, 131. [Google Scholar] [CrossRef]
- Zafar, H.; Saier, M.H., Jr. Gut Bacteroides species in health and disease. Gut Microbes 2021, 13, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Mamgain, G.; Patra, P.; Naithani, M.; Nath, U.K. The role of microbiota in the development of cancer tumour cells and lymphoma of B and T cells. Cureus 2021, 13, e19047. [Google Scholar] [CrossRef]
- Riley, D.R.; Sieber, K.B.; Robinson, K.M.; White, J.R.; Ganesan, A.; Nourbakhsh, S.; Dunning Hotopp, J.C. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput. Biol. 2013, 9, e1003107. [Google Scholar] [CrossRef]
- Wilson, M.R.; Jiang, Y.; Villalta, P.W.; Stornetta, A.; Boudreau, P.D.; Carrá, A.; Brennan, C.A.; Chun, E.; Ngo, L.; Samson, L.D.; et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019, 363, eaar7785. [Google Scholar] [CrossRef]
- Diefenbach, C.S.; Peters, B.A.; Li, H.; Raphael, B.; Moskovits, T.; Hymes, K.; Schluter, J.; Chen, J.; Bennani, N.N.; Witzig, T.E.; et al. Microbial dysbiosis is associated with aggressive histology and adverse clinical outcome in B-cell non-Hodgkin lymphoma. Blood Adv. 2021, 5, 1194–1198. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Mao, D.; Jin, C.; Wang, J.; Lai, Y.; Zhang, Y.; Zhou, M.; Ge, Q.; Zhang, P.; Sun, Y.; et al. The gut microbiota correlate with the disease characteristics and immune status of patients with untreated diffuse large B-cell lymphoma. Front. Immunol. 2023, 14, 1105293. [Google Scholar] [CrossRef] [PubMed]
- Akimova, E.; Gassner, F.J.; Greil, R.; Zaborsky, N.; Geisberger, R. Detecting bacterial-human lateral gene transfer in chronic lymphocytic leukemia. Int. J. Mol. Sci. 2022, 23, 1094. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Xu, L.; Zhang, X. Maintaining the balance of intestinal flora through the diet: Effective prevention of illness. Foods 2021, 10, 2312. [Google Scholar] [CrossRef]
- Yoon, S.E.; Kang, W.; Choi, S.; Park, Y.; Chalita, M.; Kim, H.; Lee, J.H.; Hyun, D.W.; Ryu, K.J.; Sung, H.; et al. The influence of microbial dysbiosis on immunochemotherapy-related efficacy and safety in diffuse large B-cell lymphoma. Blood 2023, 141, 2224–2238. [Google Scholar] [CrossRef]
- Bigenwald, C.; Zitvogel, L. Light shed from the gut in large B-cell lymphoma. Blood 2023, 141, 2165–2166. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.F.; Yuan, L.; Zhang, Y.; Zhang, W.; Wei, C.; Wang, W.; Zhao, D.; Zhou, D.; Li, J. The gut microbiome correlated to chemotherapy efficacy in diffuse large B-cell lymphoma patients. Hematol. Rep. 2024, 16, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, S.; Xiao, X.; Zheng, L.; Chen, Y.; Zhang, Z.; Gao, X.; Zhou, S.; Yu, K.; Huang, L.; et al. Integration analysis of tumor metagenome and peripheral immunity data of diffuse large-B cell lymphoma. Front. Immunol. 2023, 14, 1146861. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Yu, F.; Zhou, X.; Shi, H.; He, Q.; Song, X. Dissecting causal links between gut microbiota, inflammatory cytokines, and DLBCL: A Mendelian randomization study. Blood Adv. 2024, 8, 2268–2278. [Google Scholar] [CrossRef]
- Smith, M.; Dai, A.; Ghilardi, G.; Amelsberg, K.V.; Devlin, S.M.; Pajarillo, R.; Slingerland, J.B.; Beghi, S.; Herrera, P.S.; Giardina, P.; et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. 2022, 28, 713–723. [Google Scholar] [CrossRef]
- Stein-Thoeringer, C.K.; Saini, N.Y.; Zamir, E.; Blumenberg, V.; Schubert, M.L.; Mor, U.; Fante, M.A.; Schmidt, S.; Hayase, E.; Hayase, T.; et al. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat. Med. 2023, 29, 906–916. [Google Scholar] [CrossRef]
- Zhang, P.F.; Xie, D. Targeting the gut microbiota to enhance the antitumor efficacy and attenuate the toxicity of CAR-T cell therapy: A new hope? Front. Immunol. 2024, 15, 1362133. [Google Scholar] [CrossRef]
- McKelvey, E.M.; Gottlieb, J.A.; Wilson, H.E.; Haut, A.; Talley, R.W.; Stephens, R.; Lane, M.; Gamble, J.F.; Jones, S.E.; Grozea, P.N.; et al. Hydroxyldaunomycin (Adriamycin) combination chemotherapy in malignant lymphoma. Cancer 1976, 38, 1484–1493. [Google Scholar] [CrossRef]
- Montoya, S.; Soong, D.; Nguyen, N.; Affer, M.; Munamarty, S.P.; Taylor, J. Targeted therapies in cancer: To be or not to be, selective. Biomedicines 2021, 9, 1591. [Google Scholar] [CrossRef]
- Engel, P.; Boumsell, L.; Balderas, R.; Bensussan, A.; Gattei, V.; Horejsi, V.; Jin, B.Q.; Malavasi, F.; Mortari, F.; Schwartz-Albiez, R.; et al. CD nomenclature 2015: Human leukocyte differentiation antigen workshops as a driving force in immunology. J. Immunol. 2015, 195, 4555–4563. [Google Scholar] [CrossRef]
- Rastogi, I.; Jeon, D.; Moseman, J.E.; Muralidhar, A.; Potluri, H.K.; McNeel, D.G. Role of B cells as antigen presenting cells. Front. Immunol. 2022, 13, 954936. [Google Scholar] [CrossRef] [PubMed]
- Olejniczak, S.H.; Stewart, C.C.; Donohue, K.; Czuczman, M.S. A quantitative exploration of surface antigen expression in common B-cell malignancies using flow cytometry. Immunol. Investig. 2006, 35, 93–114. [Google Scholar] [CrossRef]
- Wang, K.; Wei, G.; Liu, D. CD19: A biomarker for B cell development, lymphoma diagnosis and therapy. Exp. Hematol. Oncol. 2012, 1, 36. [Google Scholar] [CrossRef] [PubMed]
- Bailly, S.; Cartron, G.; Chaganti, S.; Córdoba, R.; Corradini, P.; Düll, J.; Ferrarini, I.; Osborne, W.; Rosenwald, A.; Sancho, J.M.; et al. Targeting CD19 in diffuse large B-cell lymphoma: An expert opinion paper. Hematol. Oncol. 2022, 40, 505–517. [Google Scholar] [CrossRef]
- Düll, J.; Topp, M.; Salles, G. The use of tafasitamab in diffuse large B-cell lymphoma. Ther. Adv. Hematol. 2021, 12, 20406207211027458. [Google Scholar] [CrossRef] [PubMed]
- Pirosa, M.C.; Stathis, A.; Zucca, E. Tafasitamab for the treatment of patients with diffuse large B-cell lymphoma. Hum. Vaccines Immunother. 2024, 20, 2309701. [Google Scholar] [CrossRef]
- Salles, G.; Długosz-Danecka, M.; Ghesquières, H.; Jurczak, W. Tafasitamab for the treatment of relapsed or refractory diffuse large B-cell lymphoma. Expert Opin. Biol. Ther. 2021, 21, 455–463. [Google Scholar] [CrossRef]
- Pierpont, T.M.; Limper, C.B.; Richards, K.L. Past, present, and future of rituximab-the world’s first oncology monoclonal antibody therapy. Front. Oncol. 2018, 8, 163. [Google Scholar] [CrossRef]
- Lee, A.Y.S. CD20(+) T cells: An emerging T cell subset in human pathology. Inflamm. Res. 2022, 71, 1181–1189. [Google Scholar] [CrossRef]
- Dabkowska, A.; Domka, K.; Firczuk, M. Advancements in cancer immunotherapies targeting CD20: From pioneering monoclonal antibodies to chimeric antigen receptor-modified T cells. Front. Immunol. 2024, 15, 1363102. [Google Scholar] [CrossRef]
- Pavlasova, G.; Mraz, M. The regulation and function of CD20: An “enigma” of B-cell biology and targeted therapy. Haematologica 2020, 105, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.A.; Leach, S.; Woolcock, B.; deLeeuw, R.J.; Bashashati, A.; Sehn, L.H.; Connors, J.M.; Chhanabhai, M.; Brooks-Wilson, A.; Gascoyne, R.D. CD20 mutations involving the rituximab epitope are rare in diffuse large B-cell lymphomas and are not a significant cause of R-CHOP failure. Haematologica 2009, 94, 423–427. [Google Scholar] [CrossRef]
- Clark, E.A.; Giltiay, N.V. CD22: A regulator of innate and adaptive B cell responses and autoimmunity. Front. Immunol. 2018, 9, 2235. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Luo, W.; Li, C.; Mei, H. Targeting CD22 for B-cell hematologic malignancies. Exp. Hematol. Oncol. 2023, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Sokol, L. Targeting CD22 for the treatment of B-cell malignancies. Immunotargets Ther. 2021, 10, 225–236. [Google Scholar] [CrossRef]
- Leonard, J.P.; Coleman, M.; Ketas, J.C.; Chadburn, A.; Furman, R.; Schuster, M.W.; Feldman, E.J.; Ashe, M.; Schuster, S.J.; Wegener, W.A.; et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: Phase I/II clinical trial results. Clin. Cancer Res. 2004, 10, 5327–5334. [Google Scholar] [CrossRef]
- Van der Weyden, C.A.; Pileri, S.A.; Feldman, A.L.; Whisstock, J.; Prince, H.M. Understanding CD30 biology and therapeutic targeting: A historical perspective providing insight into future directions. Blood Cancer J. 2017, 7, e603. [Google Scholar] [CrossRef]
- Huo, Y.J.; Xu, P.P.; Fu, D.; Yi, H.M.; Huang, Y.H.; Wang, L.; Wang, N.; Ji, M.M.; Liu, Q.X.; Shi, Q.; et al. Molecular heterogeneity of CD30+ diffuse large B-cell lymphoma with prognostic significance and therapeutic implication. Blood Cancer J. 2022, 12, 48. [Google Scholar] [CrossRef]
- Bobrowicz, M.; Kubacz, M.; Slusarczyk, A.; Winiarska, M. CD37 in B cell derived tumors-more than just a docking point for monoclonal antibodies. Int. J. Mol. Sci. 2020, 21, 9531. [Google Scholar] [CrossRef]
- Bertoni, F.; Stathis, A. Staining the target: CD37 expression in lymphomas. Blood 2016, 128, 3022–3023. [Google Scholar] [CrossRef]
- Fabbri, A.; Cencini, E.; Gozzetti, A.; Schiattone, L.; Bocchia, M. Therapeutic use of brentuximab vedotin in CD30+ hematologic malignancies. Anticancer Agents Med. Chem. 2017, 17, 886–895. [Google Scholar] [CrossRef]
- Flieswasser, T.; van den Eynde, A.; Van Audenaerde, J.; De Waele, J.; Lardon, F.; Riether, C.; de Haard, H.; Smits, E.; Pauwels, P.; Jacobs, J. The CD70-CD27 axis in oncology: The new kids on the block. J. Exp. Clin. Cancer Res. 2022, 41, 12. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Ren, W.; Ye, X.; Berglund, M.; Wang, X.; Fjordén, K.; Du, L.; Giannoula, Y.; Lei, D.; Su, W.; et al. The dual role of CD70 in B-cell lymphomagenesis. Clin. Transl. Med. 2022, 12, e1118. [Google Scholar] [CrossRef] [PubMed]
- Taher, T.E.; Bystrom, J.; Mignen, O.; Pers, J.O.; Renaudineau, Y.; Mageed, R.A. CD5 and B lymphocyte responses: Multifaceted effects through multitudes of pathways and channels. Cell. Mol. Immunol. 2020, 17, 1201–1203. [Google Scholar] [CrossRef]
- Callahan, D.; Smita, S.; Joachim, S.; Hoehn, K.; Kleinstein, S.; Weisel, F.; Chikina, M.; Shlomchik, M. Memory B cell subsets have divergent developmental origins that are coupled to distinct imprinted epigenetic states. Nat. Immunol. 2024, 25, 562–575. [Google Scholar] [CrossRef]
- Elsner, R.A.; Smita, S.; Shlomchik, M.J. IL-12 induces a B cell-intrinsic IL-12/IFNγ feed-forward loop promoting extrafollicular B cell responses. Nat. Immunol. 2024, 25, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Fooksman, D.R.; Jing, Z.; Park, R. New insights into the ontogeny, diversity, maturation and survival of long-lived plasma cells. Nat. Rev. Immunol. 2024, 24, 461–470. [Google Scholar] [CrossRef]
- Lam, N.; Lee, Y.; Farber, D.L. A guide to adaptive immune memory. Nat. Rev. Immunol, 2024; advance online publication. [Google Scholar] [CrossRef]
- Kumar, M.; Thangavel, C.; Becker, R.C.; Sadayappan, S. Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity. Cancers 2020, 13, 86. [Google Scholar] [CrossRef]
- Paul, S.; Konig, M.F.; Pardoll, D.M.; Bettegowda, C.; Papadopoulos, N.; Wright, K.M.; Gabelli, S.B.; Ho, M.; van Elsas, A.; Zhou, S. Cancer therapy with antibodies. Nat. Rev. Cancer 2024, 24, 399–426. [Google Scholar] [CrossRef]
- Reff, M.E.; Carner, K.; Chambers, K.S.; Chinn, P.C.; Leonard, J.E.; Raab, R.; Newman, R.A.; Hanna, N.; Anderson, D.R. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994, 83, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Asano, T.; Suzuki, H.; Kaneko, M.K.; Kato, Y. Epitope mapping of rituximab using HisMAP method. Monoclon. Antibodies Immunodiagn. Immunother. 2022, 41, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Bar, L.; Nguyen, C.; Galibert, M.; Santos-Schneider, F.; Aldrian, G.; Dejeu, J.; Lartia, R.; Coche-Guérente, L.; Molina, F.; Boturyn, D. Determination of the rituximab binding site to the CD20 epitope using SPOT synthesis and surface plasmon resonance analyses. Anal. Chem. 2021, 93, 6865–6872. [Google Scholar] [CrossRef] [PubMed]
- Pottier, J.; Chastang, R.; Dumet, C.; Watier, H. Rethinking the INN system for therapeutic antibodies. MAbs 2017, 9, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Freeman, C.L.; Sehn, L.H. A tale of two antibodies: Obinutuzumab versus rituximab. Br. J. Haematol. 2018, 182, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Baah, S.; Laws, M.; Rahman, K.M. Antibody-drug conjugates-A tutorial review. Molecules 2021, 26, 2943. [Google Scholar] [CrossRef]
- Jin, Y.; Schladetsch, M.A.; Huang, X.; Balunas, M.J.; Wiemer, A.J. Stepping forward in antibody-drug conjugate development. Pharmacol. Ther. 2022, 229, 107917. [Google Scholar] [CrossRef]
- Maecker, H.; Jonnalagadda, V.; Bhakta, S.; Jammalamadaka, V.; Junutula, J.R. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023, 15, 2229101. [Google Scholar] [CrossRef]
- Riccardi, F.; Dal Bo, M.; Macor, P.; Toffoli, G. A comprehensive overview on antibody-drug conjugates: From the conceptualization to cancer therapy. Front. Pharmacol. 2023, 14, 1274088. [Google Scholar] [CrossRef]
- Flynn, P.; Suryaprakash, S.; Grossman, D.; Panier, V.; Wu, J. The antibody-drug conjugate landscape. Nat. Rev. Drug Discov. 2024, 23, 577–578. [Google Scholar] [CrossRef]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef]
- Sheyi, R.; de la Torre, B.G.; Albericio, F. Linkers: An assurance for controlled delivery of antibody-drug conjugate. Pharmaceutics 2022, 14, 396. [Google Scholar] [CrossRef]
- Su, Z.; Xiao, D.; Xie, F.; Liu, L.; Wang, Y.; Fan, S.; Zhou, X.; Li, S. Antibody-drug conjugates: Recent advances in linker chemistry. Acta Pharm. Sin. B 2021, 11, 3889–3907. [Google Scholar] [CrossRef]
- Mantaj, J.; Jackson, P.J.; Rahman, K.M.; Thurston, D.E. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew. Chem. Int. Ed. Engl. 2017, 56, 462–488. [Google Scholar] [CrossRef]
- Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J. Clin. Oncol. 2020, 38, 155–165. [Google Scholar] [CrossRef]
- Caimi, P.F.; Ai, W.; Alderuccio, J.P.; Ardeshna, K.M.; Hamadani, M.; Hess, B.; Kahl, B.S.; Radford, J.; Solh, M.; Stathis, A.; et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): A multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021, 22, 790–800. [Google Scholar] [CrossRef]
- Li, D.; Lee, D.; Dere, R.C.; Zheng, B.; Yu, S.F.; Fuh, F.K.; Kozak, K.R.; Chung, S.; Bumbaca Yadav, D.; Nazzal, D.; et al. Evaluation and use of an anti-cynomolgus monkey CD79b surrogate antibody-drug conjugate to enable clinical development of polatuzumab vedotin. Br. J. Pharmacol. 2019, 176, 3805–3818. [Google Scholar] [CrossRef]
- Al Sbihi, A.; Alasfour, M.; Pongas, G. Innovations in antibody-drug conjugate (ADC) in the treatment of lymphoma. Cancers 2024, 16, 827. [Google Scholar] [CrossRef]
- Su, Q.; Chen, M.; Shi, Y.; Zhang, X.; Huang, G.; Huang, B.; Liu, D.; Liu, Z.; Shi, Y. Cryo-EM structure of the human IgM B cell receptor. Science 2022, 377, 875–880. [Google Scholar] [CrossRef]
- Kawasaki, N.; Nishito, Y.; Yoshimura, Y.; Yoshiura, S. The molecular rationale for the combination of polatuzumab vedotin plus rituximab in diffuse large B-cell lymphoma. Br. J. Haematol. 2022, 199, 245–255. [Google Scholar] [CrossRef]
- Tilly, H.; Morschhauser, F.; Sehn, L.H.; Friedberg, J.W.; Trněný, M.; Sharman, J.P.; Herbaux, C.; Burke, J.M.; Matasar, M.; Rai, S.; et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N. Engl. J. Med. 2022, 386, 351–363. [Google Scholar] [CrossRef]
- Furqan, F.; Hamadani, M. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma: A review of clinical data. Ther. Adv. Hematol. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Goebeler, M.E.; Stuhler, G.; Bargou, R. Bispecific and multispecific antibodies in oncology: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2024, 21, 539–560. [Google Scholar] [CrossRef]
- Parakh, S.; King, D.; Gan, H.K.; Scott, A.M. Current development of monoclonal antibodies in cancer therapy. Recent Results Cancer Res. 2020, 214, 1–70. [Google Scholar] [CrossRef]
- Zinn, S.; Vazquez-Lombardi, R.; Zimmermann, C.; Sapra, P.; Jermutus, L.; Christ, D. Advances in antibody-based therapy in oncology. Nat. Cancer 2023, 4, 165–180. [Google Scholar] [CrossRef]
- Brinkmann, U.; Kontermann, R.E. The making of bispecific antibodies. MAbs 2017, 9, 182–212. [Google Scholar] [CrossRef]
- Godar, M.; de Haard, H.; Blanchetot, C.; Rasser, J. Therapeutic bispecific antibody formats: A patent applications review (1994–2017). Expert Opin. Ther. Pat. 2018, 28, 251–276. [Google Scholar] [CrossRef]
- Klein, C.; Brinkmann, U.; Reichert, J.M.; Kontermann, R.E. The present and future of bispecific antibodies for cancer therapy. Nat. Rev. Drug Discov. 2024, 23, 301–319. [Google Scholar] [CrossRef]
- Goebeler, M.E.; Bargou, R.C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 2020, 17, 418–434. [Google Scholar] [CrossRef]
- Trabolsi, A.; Arumov, A.; Schatz, J.H. Bispecific antibodies and CAR-T cells: Dueling immunotherapies for large B-cell lymphomas. Blood Cancer J. 2024, 14, 27. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, Y.; Gao, Q. Bispecific antibodies targeting immunomodulatory checkpoints for cancer therapy. Cancer Biol. Med. 2023, 20, 181–195. [Google Scholar] [CrossRef]
- Wu, X.; Demarest, S.J. Building blocks for bispecific and trispecific antibodies. Methods 2019, 154, 3–9. [Google Scholar] [CrossRef]
- Tapia-Galisteo, A.; Compte, M.; Álvarez-Vallina, L.; Sanz, L. When three is not a crowd: Trispecific antibodies for enhanced cancer immunotherapy. Theranostics 2023, 13, 1028–1041. [Google Scholar] [CrossRef]
- Abou Dalle, I.; Dulery, R.; Moukalled, N.; Ricard, L.; Stocker, N.; El-Cheikh, J.; Mohty, M.; Bazarbachi, A. Bi- and tri-specific antibodies in non-Hodgkin lymphoma: Current data and perspectives. Blood Cancer J. 2024, 14, 23. [Google Scholar] [CrossRef]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef]
- Hutchings, M.; Morschhauser, F.; Iacoboni, G.; Carlo-Stella, C.; Offner, F.C.; Sureda, A.; Salles, G.; Martínez-Lopez, J.; Crump, M.; Thomas, D.N.; et al. Glofitamab, a novel, bivalent CD20-targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: A phase I trial. J. Clin. Oncol. 2021, 39, 1959–1970. [Google Scholar] [CrossRef]
- Frampton, J.E. Epcoritamab: First approval. Drugs 2023, 83, 1331–1340. [Google Scholar] [CrossRef]
- Iacoboni, G.; Iraola-Truchuelo, J.; Mussetti, A.; Fernández-Caldas, P.; Garcés, V.N.; Africa, A.; Lopez, M.; Delgado, J.; Pérez Martínez, A.; Guerreiro, M.; et al. Salvage treatment with novel agents is preferable to standard chemotherapy in patients with large B-cell lymphoma progressing after chimeric antigen receptor T-cell therapy. Blood 2022, 140 (Suppl. S1), 378–380. [Google Scholar] [CrossRef]
- Burt, R.; Warcel, D.; Fielding, A.K. Blinatumomab, a bispecific B-cell and T-cell engaging antibody, in the treatment of B-cell malignancies. Hum. Vaccines Immunother. 2019, 15, 594–602. [Google Scholar] [CrossRef]
- Bukhari, A.; Lee, S.T. Blinatumomab: A novel therapy for the treatment of non-Hodgkin’s lymphoma. Expert Rev. Hematol. 2019, 12, 909–918. [Google Scholar] [CrossRef]
- Ahmed, G.; Khan, R.; Kamireddy, C.; Qadir, H.; Khan, I.; Gul, Z. Blinatumomab-associated neurological adverse events. Am. J. Ther. 2020, 27, e543–e547. [Google Scholar] [CrossRef]
- Parker, K.R.; Migliorini, D.; Perkey, E.; Yost, K.E.; Bhaduri, A.; Bagga, P.; Haris, M.; Wilson, N.E.; Liu, F.; Gabunia, K.; et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 2020, 183, 126–142.e17. [Google Scholar] [CrossRef] [PubMed]
- Bannerji, R.; Arnason, J.E.; Advani, R.H.; Brown, J.R.; Allan, J.N.; Ansell, S.M.; Barnes, J.A.; O’Brien, S.M.; Chávez, J.C.; Duell, J.; et al. Odronextamab, a human CD20×CD3 bispecific antibody in patients with CD20-positive B-cell malignancies (ELM-1): Results from the relapsed or refractory non-Hodgkin lymphoma cohort in a single-arm, multicentre, phase 1 trial. Lancet Haematol. 2022, 9, e327–e339. [Google Scholar] [CrossRef] [PubMed]
- Ayyappan, S.; Kim, W.S.; Kim, T.M.; Walewski, J.; Cho, S.G.; Jarque, I.; Iskierka-Jazdzewska, E.; Poon, M.; Oh, S.Y.; Lorraine, F.; et al. Final analysis of the phase 2 ELM-2 sudy: Odronextamab in patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). Blood 2023, 142 (Suppl. S1), 436. [Google Scholar] [CrossRef]
- Patel, K.; Riedell, P.A.; Tilly, H.; Ahmed, S.; Michot, J.M.; Ghesquieres, H.; de Collela, J.M.S.; Chanan-Khan, A.; Bouabdallah, K.; Tessoulin, B.A.; et al. A Phase 1 study of plamotamab, an anti-CD20 x anti-CD3 bispecific antibody, in patients with relapsed/refractory non-Hodgkin’s lymphoma: Recommended dose safety/efficacy update and escalation exposure-response analysis. Blood 2022, 140 (Suppl. S1), 9470–9472. [Google Scholar] [CrossRef]
- Kang, C. Mosunetuzumab: First approval. Drugs 2022, 82, 1229–1234. [Google Scholar] [CrossRef]
- Olszewski, A.J.; Phillips, T.J.; Hoffmann, M.S.; Armand, P.; Kim, T.M.; Yoon, D.H.; Mehta, A.; Greil, R.; Westin, J.; Lossos, I.S.; et al. Mosunetuzumab in combination with CHOP in previously untreated DLBCL: Safety and efficacy results from a phase 2 study. Blood Adv. 2023, 7, 6055–6065. [Google Scholar] [CrossRef] [PubMed]
- Grimm, E.A.; Mazumder, A.; Zhang, H.Z.; Rosenberg, S.A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 1982, 155, 1823–1841. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Spiess, P.; Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986, 233, 1318–1321. [Google Scholar] [CrossRef]
- Shafer, P.; Kelly, L.M.; Hoyos, V. Cancer therapy with TCR-engineered T cells: Current strategies, challenges, and prospects. Front. Immunol. 2022, 13, 835762. [Google Scholar] [CrossRef]
- Rudolph, M.G.; Stanfield, R.L.; Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 2006, 24, 419–466. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.Y.; Zeng, N.; Liu, C.Q.; Sun, J.X.; An, Y.; Zhang, S.H.; Xu, J.Z.; Zhong, X.Y.; Ma, S.Y.; He, H.D.; et al. Enhanced cellular therapy: Revolutionizing adoptive cellular therapy. Exp. Hematol. Oncol. 2024, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Collignon, A.; Bouchacourt, B.; Sfumato, P.; Brisou, G.; de Collela, J.M.S.; Inchiappa, L.; Calmels, B.; Lemarie, C.; Reichert, T.; Harbi, S.; et al. Autologous stem cell transplant in 2nd line DLBCL in 2022, still the standard of care? A monocentric experience. Blood 2022, 140 (Suppl. S1), 7712–7713. [Google Scholar] [CrossRef]
- Kato, K.; Sugio, T.; Ikeda, T.; Yoshitsugu, K.; Miyazaki, K.; Suzumiya, J.; Yamamoto, G.; Kim, S.W.; Ikegame, K.; Uehara, Y.; et al. Outcomes of allogeneic hematopoietic stem cell transplantation for relapsed or refractory diffuse large B-cell lymphoma. Bone Marrow Transplant. 2024, 59, 306–314. [Google Scholar] [CrossRef]
- Cong, M.; Ai, S.; Kang, L.; Jin, M.; Zhu, Y.; Li, C.; Jin, Z.; Yu, L.; Wu, D.; Huang, H. Outcomes of allogeneic hematopoietic stem cell transplantation in R/R DLBCL patients with failure of CAR-T therapy. Exp. Hematol. Oncol. 2024, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.H.; Fiorenza, S.; Koldej, R.M.; Jaworowski, A.; Ritchie, D.S.; Quinn, K.M. T cell fitness and autologous CAR T cell therapy in haematologic malignancy. Front. Immunol. 2021, 12, 780442. [Google Scholar] [CrossRef]
- Eshhar, Z.; Waks, T.; Gross, G.; Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 1993, 90, 720–724. [Google Scholar] [CrossRef]
- Jensen, M.C.; Riddell, S.R. Designing chimeric antigen receptors to effectively and safely target tumors. Curr. Opin. Immunol. 2015, 33, 9–15. [Google Scholar] [CrossRef]
- Benmebarek, M.R.; Karches, C.H.; Cadilha, B.L.; Lesch, S.; Endres, S.; Kobold, S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int. J. Mol. Sci. 2019, 20, 1283. [Google Scholar] [CrossRef]
- Yun, K.; Siegler, E.L.; Kenderian, S.S. Who wins the combat, CAR or TCR? Leukemia 2023, 37, 1953–1962. [Google Scholar] [CrossRef]
- Jayaraman, J.; Mellody, M.P.; Hou, A.J.; Desai, R.P.; Fung, A.W.; Pham, A.H.T.; Chen, Y.Y.; Zhao, W. CAR-T design: Elements and their synergistic function. EBioMedicine 2020, 58, 102931. [Google Scholar] [CrossRef]
- Tomasik, J.; Jasiński, M.; Basak, G.W. Next generations of CAR-T cells—New therapeutic opportunities in hematology? Front. Immunol. 2022, 13, 1034707. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.A.; Kersten, M.J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as second-line therapy for large B-cell lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Tam, C.S.; Borchmann, P.; Worel, N.; McGuirk, J.P.; Holte, H.; Waller, E.K.; Jaglowski, S.; Bishop, M.R.; Damon, L.E.; et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Cappell, K.M.; Kochenderfer, J.N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef]
- Haradhvala, N.J.; Leick, M.B.; Maurer, K.; Gohil, S.H.; Larson, R.C.; Yao, N.; Gallagher, K.M.E.; Katsis, K.; Frigault, M.J.; Southard, J.; et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 2022, 28, 1848–1859. [Google Scholar] [CrossRef]
- Massaro, F.; Andreozzi, F.; Abrassart, T.; Castiaux, J.; Massa, H.; Rizzo, O.; Vercruyssen, M. Beyond chemotherapy: Present and future perspectives in the treatment of lymphoproliferative disorders. Biomedicines 2024, 12, 977. [Google Scholar] [CrossRef]
- Tokarew, N.; Ogonek, J.; Endres, S.; von Bergwelt-Baildon, M.; Kobold, S. Teaching an old dog new tricks: Next-generation CAR T cells. Br. J. Cancer 2019, 120, 26–37. [Google Scholar] [CrossRef]
- Minnar, C.M.; Lui, G.; Gulley, J.L.; Schlom, J.; Gameiro, S.R. Preclinical and clinical studies of a tumor targeting IL-12 immunocytokine. Front. Oncol. 2023, 13, 1321318. [Google Scholar] [CrossRef]
- Baghery Saghchy Khorasani, A.; Yousefi, A.M.; Bashash, D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int. Immunopharmacol. 2022, 110, 109041. [Google Scholar] [CrossRef]
- Huang, R.; Wen, Q.; Zhang, X. CAR-NK cell therapy for hematological malignancies: Recent updates from ASH 2022. J. Hematol. Oncol. 2023, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Geng, S.; Dong, Z.Z.; Jin, Y.; Ying, H.; Li, H.W.; Shi, L. A new era of cancer immunotherapy: Combining revolutionary technologies for enhanced CAR-M therapy. Mol. Cancer 2024, 23, 117. [Google Scholar] [CrossRef]
- Chan, A.; Dogan, A. Prognostic and predictive biomarkers in diffuse large B-cell lymphoma. Surg. Pathol. Clin. 2019, 12, 699–707. [Google Scholar] [CrossRef]
- Garcia-Prieto, C.A.; Villanueva, L.; Bueno-Costa, A.; Davalos, V.; González-Navarro, E.A.; Juan, M.; Urbano-Ispizua, Á.; Delgado, J.; Ortiz-Maldonado, V.; Del Bufalo, F.; et al. Epigenetic profiling and response to CD19 chimeric antigen receptor T-cell therapy in B-cell malignancies. J. Natl. Cancer Inst. 2022, 114, 436–445. [Google Scholar] [CrossRef]
- Nydegger, A.; Novak, U.; Kronig, M.N.; Legros, M.; Zeerleder, S.; Banz, Y.; Bacher, U.; Pabst, T. Transformed lymphoma is associated with a favorable response to CAR-T-cell treatment in DLBCL patients. Cancers 2021, 13, 6073. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, H.; Bollard, C.M.; Toner, K. CD19 CAR-T cell therapy for relapsed or refractory diffuse large B cell lymphoma: Why does it fail? Semin. Hematol. 2023, 60, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhao, L.; Zhang, Y.; Qin, Y.; Guan, Y.; Zhang, T.; Liu, C.; Zhou, J. Understanding the mechanisms of resistance to CAR T-cell therapy in malignancies. Front. Oncol. 2019, 9, 1237. [Google Scholar] [CrossRef]
- Yan, Z.; Li, L.; Fu, D.; Wu, W.; Qiao, N.; Huang, Y.; Jiang, L.; Wu, D.; Hu, Y.; Zhang, H.; et al. Immunosuppressive tumor microenvironment contributes to tumor progression in diffuse large B-cell lymphoma upon anti-CD19 chimeric antigen receptor T therapy. Front. Med. 2023, 17, 699–713. [Google Scholar] [CrossRef]
- Majzner, R.G.; Mackall, C.L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018, 8, 1219–1226. [Google Scholar] [CrossRef]
- Locke, F.L.; Lekakis, L.J.; Eradat, H.; Munoz, J.; Tees, M.T.; de Vos, S.; Nath, R.; Stevens, D.A.; Malik, S.; Popplewell, L.; et al. Phase 1 results with anti-CD19 allogeneic CAR T ALLO-501/501A in relapsed/refractory large B-cell lymphoma (r/r LBCL). J. Clin. Oncol. 2023, 41 (Suppl. S16), 2517. [Google Scholar] [CrossRef]
- Dimitri, A.; Herbst, F.; Fraietta, J.A. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol. Cancer 2022, 21, 78. [Google Scholar] [CrossRef]
- Marin, D.; Li, Y.; Basar, R.; Rafei, H.; Daher, M.; Dou, J.; Mohanty, V.; Dede, M.; Nieto, Y.; Uprety, N.; et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19(+) B cell tumors: A phase 1/2 trial. Nat. Med. 2024, 30, 772–784. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Wang, Z.; Liu, Y.; Wang, T.; Zhang, M.; Xia, C.; Zhang, F.; Huang, D.; Zhang, L.; et al. Comparison of seven CD19 CAR designs in engineering NK cells for enhancing anti-tumour activity. Cell Prolif. 2024, e13683. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Zhang, J.; Zhang, Z.; Wang, S.; Tang, F.; Teng, M.; Li, Y. A bibliometric and knowledge-map analysis of CAR-T cells from 2009 to 2021. Front. Immunol. 2022, 13, 840956. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Li, H.; Zhang, Y. A bibliometric and knowledge-map study on the treatment of hematological malignancies with CAR-T cells from 2012 to 2023. Hum. Vaccines Immunother. 2024, 20, 2371664. [Google Scholar] [CrossRef]
- Li, H.; Huang, Q.; Zhang, Y. A bibliometric and knowledge-map study of CAR-T cell-related cytokine release syndrome (CRS) from 2012 to 2023. Hum. Vaccines Immunother. 2023, 19, 2291900. [Google Scholar] [CrossRef]
- Xie, W.; Medeiros, L.J.; Li, S.; Yin, C.C.; Khoury, J.D.; Xu, J. PD-1/PD-L1 pathway and its blockade in patients with classic Hodgkin lymphoma and non-Hodgkin large-cell lymphomas. Curr. Hematol. Malig. Rep. 2020, 15, 372–381. [Google Scholar] [CrossRef]
- Hu, B.; Jacobs, R.; Ghosh, N. Checkpoint inhibitors Hodgkin lymphoma and non-Hodgkin lymphoma. Curr. Hematol. Malig. Rep. 2018, 13, 543–554. [Google Scholar] [CrossRef]
- Condoluci, A.; Rossi, D. Biology and treatment of Richter transformation. Front. Oncol. 2022, 12, 829983. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Ding, W.; Viswanatha, D.S.; Chen, D.; Shi, M.; Van Dyke, D.; Tian, S.; Dao, L.N.; Parikh, S.A.; Shanafelt, T.D.; et al. PD-1 expression in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and large B-cell Richter transformation (DLBCL-RT): A characteristic feature of DLBCL-RT and potential surrogate marker for clonal relatedness. Am. J. Surg. Pathol. 2018, 42, 843–854. [Google Scholar] [CrossRef]
- Godfrey, J.; Tumuluru, S.; Bao, R.; Leukam, M.; Venkataraman, G.; Phillip, J.; Fitzpatrick, C.; McElherne, J.; MacNabb, B.W.; Orlowski, R.; et al. PD-L1 gene alterations identify a subset of diffuse large B-cell lymphoma harboring a T-cell-inflamed phenotype. Blood 2019, 133, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Kiyasu, J.; Miyoshi, H.; Hirata, A.; Arakawa, F.; Ichikawa, A.; Niino, D.; Sugita, Y.; Yufu, Y.; Choi, I.; Abe, Y.; et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood 2015, 126, 2193–2201. [Google Scholar] [CrossRef]
- Xu, P.; Liu, J.; Chen, H.; Shang, L.; Wang, F.; Zhu, Y.; Guo, Y.; Li, F.; Yan, F.; Xie, X.; et al. Clinical significance of plasma PD-L1(+) exosomes in the management of diffuse large B cell lymphoma. Ann. Hematol. 2023, 102, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Modi, D.; Potugari, B.; Uberti, J. Immunotherapy for diffuse large B-cell lymphoma: Current landscape and future directions. Cancers 2021, 13, 5827. [Google Scholar] [CrossRef]
- Ansell, S.M.; Minnema, M.C.; Johnson, P.; Timmerman, J.M.; Armand, P.; Shipp, M.A.; Rodig, S.J.; Ligon, A.H.; Roemer, M.G.M.; Reddy, N.; et al. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: A single-arm, phase II study. J. Clin. Oncol. 2019, 37, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.D.; Till, B.G.; Shadman, M.S.; Lynch, R.C.; Cowan, A.J.; Wu, Q.V.; Voutsinas, J.; Rasmussen, H.A.; Blue, K.; Ujjani, C.S.; et al. Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: Potential for biomarker driven therapy. Br. J. Haematol. 2020, 189, 1119–1126. [Google Scholar] [CrossRef]
- Herrera, A.F.; Goy, A.; Mehta, A.; Ramchandren, R.; Pagel, J.M.; Svoboda, J.; Guan, S.; Hill, J.S.; Kwei, K.; Liu, E.A.; et al. Safety and activity of ibrutinib in combination with durvalumab in patients with relapsed or refractory follicular lymphoma or diffuse large B-cell lymphoma. Am. J. Hematol. 2020, 95, 18–27. [Google Scholar] [CrossRef]
- Nowakowski, G.S.; Willenbacher, W.; Greil, R.; Larsen, T.S.; Patel, K.; Jäger, U.; Manges, R.F.; Trumper, L.H.; Haioun, C.; Evaraus, H.; et al. Safety and efficacy of the PD-L1 inhibitor Durvalumab with R-CHOP or R2-CHOP in subjects with previously untreated, high-risk DLBCL. Hematol. Oncol. 2019, 37 (Suppl. S2), 132–134. [Google Scholar] [CrossRef]
- Palomba, M.L.; Cartron, G.; Popplewell, L.; Ribrag, V.; Westin, J.; Chitra, S.; Huw, L.; Newberry, K.; Raval, A.; Xu, J.; et al. Safety and clinical activity of Atezolizumab in combination with tazemetostat in relapsed or refractory diffuse large B-cell lymphoma: Primary analysis of a phase 1B study. Hematol. Oncol. 2019, 37 (Suppl. S2), 517–519. [Google Scholar] [CrossRef]
- Younes, A.; Burke, J.M.; Cheson, B.D.; Diefenbach, C.S.; Ferrari, S.; Hahn, U.H.; Hawkes, E.A.; Khan, C.; Lossos, I.S.; Musuraka, G.; et al. Safety and efficacy of atezolizumab in combination with rituximab plus CHOP in previously untreated patients with diffuse large B-cell lymphoma (DLBCL): Updated analysis of a phase I/II study. Blood 2019, 134 (Suppl. S1), 2969. [Google Scholar] [CrossRef]
- Yin, N.; Li, X.; Zhang, X.; Xue, S.; Cao, Y.; Niedermann, G.; Lu, Y.; Xue, J. Development of pharmacological immunoregulatory anti-cancer therapeutics: Current mechanistic studies and clinical opportunities. Signal Transduct. Target. Ther. 2024, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Yang, Y.; Chen, K.; Zhang, Q.; Huang, Y.; Jian, S. Diffuse large B-cell lymphoma: The significance of CD8(+) tumor-infiltrating lymphocytes exhaustion mediated by TIM3/Galectin-9 pathway. J. Transl. Med. 2024, 22, 174. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, Y.; Lubben, B.; Adebayo, O.; Muz, B.; Azab, A.K. CD47-targeting antibodies as a novel therapeutic strategy in hematologic malignancies. Leuk. Res. Rep. 2021, 16, 100268. [Google Scholar] [CrossRef]
- Yang, H.; Xun, Y.; You, H. The landscape overview of CD47-based immunotherapy for hematological malignancies. Biomark. Res. 2023, 11, 15. [Google Scholar] [CrossRef]
- Eladl, E.; Tremblay-LeMay, R.; Rastgoo, N.; Musani, R.; Chen, W.; Liu, A.; Chang, H. Role of CD47 in hematological malignancies. J. Hematol. Oncol. 2020, 13, 96. [Google Scholar] [CrossRef]
- Advani, R.; Flinn, I.; Popplewell, L.; Forero, A.; Bartlett, N.L.; Ghosh, N.; Kline, J.; Roschewski, M.; LaCasce, A.; Collins, G.P.; et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 2018, 379, 1711–1721. [Google Scholar] [CrossRef]
- Weiskopf, K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur. J. Cancer 2017, 76, 100–109. [Google Scholar] [CrossRef]
- Chao, M.P.; Alizadeh, A.A.; Tang, C.; Myklebust, J.H.; Varghese, B.; Gill, S.; Jan, M.; Cha, A.C.; Chan, C.K.; Tan, B.T.; et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010, 142, 699–713. [Google Scholar] [CrossRef]
- Mamgain, G.; Singh, P.K.; Patra, P.; Naithani, M.; Nath, U.K. Diffuse large B-cell lymphoma and new insights into its pathobiology and implication in treatment. J. Family Med. Prim. Care 2022, 11, 4151–4158. [Google Scholar] [CrossRef]
- Susanibar-Adaniya, S.; Barta, S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol. 2021, 96, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Kubuschok, B.; Held, G.; Pfreundschuh, M. Management of diffuse large B-cell lymphoma (DLBCL). Cancer Treat. Res. 2015, 165, 271–288. [Google Scholar] [CrossRef]
- Lamy, T.; Damaj, G.; Soubeyran, P.; Gyan, E.; Cartron, G.; Bouabdallah, K.; Gressin, R.; Cornillon, J.; Banos, A.; Le Du, K.; et al. R-CHOP 14 with or without radiotherapy in nonbulky limited-stage diffuse large B-cell lymphoma. Blood 2018, 131, 174–181. [Google Scholar] [CrossRef]
- Persky, D.O.; Li, H.; Stephens, D.M.; Park, S.I.; Bartlett, N.L.; Swinnen, L.J.; Barr, P.M.; Winegarden, J.D., 3rd; Constine, L.S.; Fitzgerald, T.J.; et al. Positron emission tomography-directed therapy for patients with limited-stage diffuse large B-cell lymphoma: Results of Intergroup National Clinical Trials Network Study S1001. J. Clin. Oncol. 2020, 38, 3003–3011. [Google Scholar] [CrossRef]
- Poeschel, V.; Held, G.; Ziepert, M.; Witzens-Harig, M.; Holte, H.; Thurner, L.; Borchmann, P.; Viardot, A.; Soekler, M.; Keller, U.; et al. Four versus six cycles of CHOP chemotherapy in combination with six applications of rituximab in patients with aggressive B-cell lymphoma with favourable prognosis (FLYER): A randomised, phase 3, non-inferiority trial. Lancet 2019, 394, 2271–2281. [Google Scholar] [CrossRef]
- Roschewski, M.; Staudt, L.M.; Wilson, W.H. Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat. Rev. Clin. Oncol. 2014, 11, 12–23. [Google Scholar] [CrossRef]
- Brooks, T.R.; Caimi, P.F. A paradox of choice: Sequencing therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Rev. 2024, 63, 101140. [Google Scholar] [CrossRef]
- Pacis, S.; Bolzani, A.; Heuck, A.; Gossens, K.; Kruse, M.; Fritz, B.; Maywald, U.; Wilke, T.; Kunz, C. Epidemiology and real-world treatment of incident diffuse large B-cell lymphoma (DLBCL): A German claims data analysis. Oncol. Ther. 2024, 12, 293–309. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, J.; Xu-Monette, Z.Y.; Young, K.H. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp. Hematol. Oncol. 2023, 12, 72. [Google Scholar] [CrossRef]
- Ernst, M.; Oeser, A.; Besiroglu, B.; Caro-Valenzuela, J.; Abd El Aziz, M.; Monsef, I.; Borchmann, P.; Estcourt, L.J.; Skoetz, N.; Goldkuhle, M. Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma. Cochrane Database Syst. Rev. 2021, 9, CD013365. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, F.; Gordon, L.I. Lisocabtagene maraleucel in the treatment of relapsed/refractory large B-cell lymphoma. Future Oncol. 2023, 19, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.L.; Pasquini, M.C.; Connolly, J.E.; Porter, D.L.; Gustafson, M.P.; Boelens, J.J.; Horwitz, E.M.; Grupp, S.A.; Maus, M.V.; Locke, F.L.; et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat. Med. 2024, 30, 338–341. [Google Scholar] [CrossRef]
- Shargian, L.; Raanani, P.; Yeshurun, M.; Gafter-Gvili, A.; Gurion, R. Chimeric antigen receptor T-cell therapy is superior to standard of care as second-line therapy for large B-cell lymphoma: A systematic review and meta-analysis. Br. J. Haematol. 2022, 198, 838–846. [Google Scholar] [CrossRef]
- Westin, J.; Sehn, L.H. CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift? Blood 2022, 139, 2737–2746. [Google Scholar] [CrossRef]
- Gordon, L.I.; Liu, F.F.; Braverman, J.; Hoda, D.; Ghosh, N.; Hamadani, M.; Hildebrandt, G.C.; Peng, L.; Guo, S.; Shi, L.; et al. Lisocabtagene maraleucel for second-line relapsed or refractory large B-cell lymphoma: Patient-reported outcomes from the PILOT study. Haematologica 2024, 109, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Akbar, U.A.; Rashid, Z.; Rehman, Z.; Alam, S.; Altaf, Z.; Anwar, R.U.; Khan, A.; Wakeel, J.; Farooq, S.; Khan, M.H.; et al. CAR-T cell therapy in first line for high risk diffuse large B-cell lymphoma: Review of efficacy and cost-effectiveness against standard of care chemo-immunotherapy. Blood 2022, 140 (Suppl. S1), 12052–12054. [Google Scholar] [CrossRef]
- Lionel, A.C.; Westin, J. Evolving role of CAR T cell therapy in first- and second-line treatment of large B cell lymphoma. Curr. Oncol. Rep. 2023, 25, 1387–1396. [Google Scholar] [CrossRef]
- Scholler, N.; Perbost, R.; Locke, F.L.; Jain, M.D.; Turcan, S.; Danan, C.; Chang, E.C.; Neelapu, S.S.; Miklos, D.B.; Jacobson, C.A.; et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat. Med. 2022, 28, 1872–1882. [Google Scholar] [CrossRef]
- Locke, F.L.; Rossi, J.M.; Neelapu, S.S.; Jacobson, C.A.; Miklos, D.B.; Ghobadi, A.; Oluwole, O.O.; Reagan, P.M.; Lekakis, L.J.; Lin, Y.; et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020, 4, 4898–4911. [Google Scholar] [CrossRef]
- Hoy, S.M. Tafasitamab: First approval. Drugs 2020, 80, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Salles, G.; Duell, J.; González Barca, E.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; André, M.; et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Qualls, D.A.; Lambert, N.; Caimi, P.F.; Merrill, M.; Pullarkat, P.; Godby, R.C.; Bond, D.A.; Wehmeyer, G.T.; Romancik, J.; Amoozgar, B.; et al. Tafasitamab and lenalidomide in large B-cell lymphoma: Real-world outcomes in a multicenter retrospective study. Blood 2023, 142, 2327–2331. [Google Scholar] [CrossRef] [PubMed]
- Goldfinger, M.; Cooper, D.L. Lenalidomide in DLBCL: Are we past the cell of origin? Clin. Adv. Hematol. Oncol. 2021, 19, 320–325. [Google Scholar] [PubMed]
- Carlo-Stella, C.; Luigi, P.; Zinzani, L.; Janakiram, M.; Dia, V.; He, X.; Ervin-Haynes, A.; Depaus, J. Planned interim analysis of a phase 2 study of loncastuximab tesirine plus ibrutinib in patients with advanced diffuse large B-cell lymphoma (LOTIS-3). Blood 2021, 138 (Suppl. S1), 54. [Google Scholar] [CrossRef]
- Hamadani, M.; Linhares, Y.; Gandhi, M.; Chung, M.; Adamis, H.; Ungar, D.; Carmelo Carlo-Stella, C. Phase 3 randomized study of loncastuximab tesirine plus rituximab versus immunochemotherapy in patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL): LOTIS-5. J. Clin. Oncol. 2021, 39 (Suppl. S15), TPS7574. [Google Scholar] [CrossRef]
- Bourbon, E.; Salles, G. Polatuzumab vedotin: An investigational anti-CD79b antibody drug conjugate for the treatment of diffuse large B-cell lymphoma. Expert Opin. Investig. Drugs 2020, 29, 1079–1088. [Google Scholar] [CrossRef]
- Russler-Germain, D.A.; Cliff, E.R.S.; Bartlett, N.L. Cell-of-origin effect of polatuzumab vedotin in diffuse large B-cell lymphoma: No ordinary subgroup analysis. Blood 2023, 142, 2216–2219. [Google Scholar] [CrossRef]
- Polgarova, K.; Trneny, M. An evaluation of glofitamab, the first fixed-duration bispecific antibody for relapsed or refractory large B-cell lymphomas. Expert Opin. Biol. Ther. 2024, 24, 7–13. [Google Scholar] [CrossRef]
- Peterson, T.J.; Orozco, J.; Buege, M. Selinexor: A first-in-class nuclear export inhibitor for management of multiply relapsed multiple myeloma. Ann. Pharmacother. 2020, 54, 577–582. [Google Scholar] [CrossRef]
- Lalić, H.; Aurer, I.; Batinić, D.; Višnjić, D.; Smoljo, T.; Babić, A. Bendamustine: A review of pharmacology, clinical use and immunological effects (Review). Oncol. Rep. 2022, 47, 114. [Google Scholar] [CrossRef]
- Stokes, J.; Molina, M.S.; Hoffman, E.A.; Simpson, R.J.; Katsanis, E. Immunomodulatory effects of bendamustine in hematopoietic cell transplantation. Cancers 2021, 13, 1702. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 7 October 2024).
- Jiménez, C.; Garrote-de-Barros, A.; López-Portugués, C.; Hernández-Sánchez, M.; Díez, P. Characterization of human B cell hematological malignancies using protein-based approaches. Int. J. Mol. Sci. 2024, 25, 4644. [Google Scholar] [CrossRef]
- van der Meeren, L.E.; Kluiver, J.; Rutgers, B.; Alsagoor, Y.; Kluin, P.M.; van den Berg, A.; Visser, L. A super-SILAC based proteomics analysis of diffuse large B-cell lymphoma-NOS patient samples to identify new proteins that discriminate GCB and non-GCB lymphomas. PLoS ONE 2019, 14, e0223260. [Google Scholar] [CrossRef] [PubMed]
- Yanguas-Casas, N.; Pedrosa, L.; Fernández-Miranda, I.; Sánchez-Beato, M. An overview on diffuse large B-cell lymphoma models: Towards a functional genomics approach. Cancers 2021, 13, 2893. [Google Scholar] [CrossRef] [PubMed]
WHO-HAEM5 | WHO-HAEMR4 | ICC | Key Pathological and Clinical Features |
---|---|---|---|
DLBCL, NOS
| DLBCL, NOS
| DLBCL, NOS
|
|
T cell/histiocyte rich LBCL | T-cell/histiocyte rich LBCL | T-cell/histiocyte rich LBCL |
|
DLBCL/high grade BCL with MYC and BCL2 rearrangements | High grade BCL with MYC and BCL2 and/or BCL6 rearrangements doublehit triple hit | High grade BCL, with MYC and BCL2 and/or BCL6 rearrangements |
|
High grade BCL with MYC and BCL6 rearrangements * |
| ||
High-grade BCL, NOS | High-grade BCL, NOS | High-grade BCL, NOS | Blastoid morphology, more Burkitt-like Genetic findings: LBCL with MYC amplification and BCL2 or BCL6 rearrangements; LBCL with MYC rearrangement and BCL2 amplification |
Primary mediastinal BCL | Primary mediastinal BCL | Primary mediastinal BCL |
|
Mediastinal gray zone lymphoma | BCL, unclassifiable, with features intermediate between DLBCL and classic HL | Mediastinal gray zone lymphoma |
|
Included in HL (nodular lymphocyte predominant HL) | Included in HL (Nodular lymphocyte predominant HL) | Nodular lymphocyte predominant BCL |
|
ALK-positive LBCL | ALK-positive LBCL | ALK-positive LBCL |
|
LBCL with IRF4 rearrangement | LBCL with IRF4 rearrangement * | LBCL with IRF4 rearrangement |
|
High grade BCL with 11q aberrations | Burkitt-like lymphoma with 11q aberrations * | High grade BCL with 11q aberrations * |
|
Primary LBCL of immuno-privileged sites:
|
|
|
|
Primary cutaneous DLBCL, leg type | Primary cutaneous DLBCL, leg type | Primary cutaneous DLBCL, leg type |
|
Intravascular LBCL | Intravascular LBCL | Intravascular LBCL |
|
Fluid overload-associated LBCL | HHV8- and EBV-negative primary effusion-based lymphoma * |
| |
Primary effusion lymphoma | Primary effusion lymphoma | Primary effusion lymphoma |
|
Included in lymphoid proliferations and lymphomas associated with immunodeficiency and dysregulation | EBV-positive mucocutaneous ulcer * | EBV-positive mucocutaneous ulcer |
|
DLBCL associated with chronic inflammation | DLBCL associated with chronic inflammation | DLBCL associated with chronic inflammation |
|
Fibrin-associated LBCL |
| ||
Lymphomatoid granulomatosis | Lymphomatoid granulomatosis | Lymphomatoid granulomatosis |
|
EBV-positive polymorphic B-cell lympho-proliferative disorder, NOS * |
| ||
Plasmablastic lymphoma | Plasmablastic lymphoma | Plasmablastic lymphoma |
|
Blood Cancer | Hematological Malignancy | Lymphoma | NHL | LBCL | DLBCL | |
---|---|---|---|---|---|---|
Small molecule inhibitors | 2 | 7 | 45 | 7 | 6 | 5 |
Adoptive cell therapy | 5 | 30 | 10 | 1 | 1 | 1 |
Chimeric antigen receptors | 42 | 259 | 510 | 139 | 154 | 114 |
Bispecific antibodies | 4 | 19 | 112 | 35 | 40 | 32 |
Bispecific T-cell engagers | 1 | 11 | 23 | 11 | 8 | 7 |
Targeted therapy | 14 | 53 | 333 | 52 | 40 | 40 |
Antibody-drug conjugates | 6 | 18 | 47 | 22 | 40 | 35 |
PROTACs | 2 | 7 | 11 | 2 | 1 | 1 |
Molecular glues | 0 | 1 | 3 | 1 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masnikosa, R.; Cvetković, Z.; Pirić, D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 11384. https://doi.org/10.3390/ijms252111384
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. International Journal of Molecular Sciences. 2024; 25(21):11384. https://doi.org/10.3390/ijms252111384
Chicago/Turabian StyleMasnikosa, Romana, Zorica Cvetković, and David Pirić. 2024. "Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review" International Journal of Molecular Sciences 25, no. 21: 11384. https://doi.org/10.3390/ijms252111384
APA StyleMasnikosa, R., Cvetković, Z., & Pirić, D. (2024). Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. International Journal of Molecular Sciences, 25(21), 11384. https://doi.org/10.3390/ijms252111384