Permeability and Toxicity of Cryoprotective Agents in Silkworm Embryos: Impact on Cryopreservation
Abstract
:1. Introduction
2. Results
2.1. Osmotic Responses to Different CPA Solutions
2.2. Effect of Different CPA Solutions on the Embryonic Viability
2.3. Effect of Different Exposure Times of 2 M EG and PG Solutions on the Embryonic Viability
2.4. Sensitivities of Embryos to Vitrification Solutions
2.5. Sensitivities of Different Embryos Stages to Vitrification
2.6. Vitrification Using a Different Strain
3. Discussion
4. Materials and Methods
4.1. Collection of Eggs and Embryonic Stages
4.2. Dechorionation and Permeabilization
4.3. Osmotic Response of Embryos to CPAs
4.4. Treatment of CPAs for Assessment of Toxicity
4.5. Vitrification and Rewarming of Embryos
4.6. Assessment of Development and Viability
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazur, P.; Cole, K.W.; Hall, J.W.; Schreuders, P.D.; Mahowald, A.P. Cryobiological preservation of Drosophila embryos. Science 1992, 258, 1932–1935. [Google Scholar] [CrossRef] [PubMed]
- Barbas, J.P.; Mascarenhas, R.D. Cryopreservation of domestic animal sperm cells. Cell Tissue Bank. 2009, 10, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Massip, A. Cryopreservation of embryos of farm animals. Reprod. Domest. Anim. 2001, 36, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Meryman, H.T. Cryopreservation of living cells: Principles and practice. Transfus. 2007, 47, 935–945. [Google Scholar] [CrossRef]
- Elliott, G.D.; Wang, S.; Fuller, B.J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017, 76, 74–91. [Google Scholar] [CrossRef]
- Pedro, P.B.; Yokoyama, E.; Zhu, S.E.; Yoshida, N.; Valdez Jr, D.M.; Tanaka, M.; Edashie, K.; Kasai, M. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J. Reprod. Dev. 2005, 51, 235–246. [Google Scholar] [CrossRef]
- Somfai, T.; Kikuchi, K.; Nagai, T. Factors affecting cryopreservation of porcine oocytes. J. Reprod. Dev. 2012, 58, 17–24. [Google Scholar] [CrossRef]
- Rajamohan, A.; Leopold, R.A. Cryopreservation of Mexican fruit flies by vitrification: Stage selection and avoidance of thermal stress. Cryobiology 2007, 54, 44–54. [Google Scholar] [CrossRef]
- Rajamohan, A.; Rinehart, J.P.; Leopold, R.A. Stage selection and restricted oviposition period improves cryopreservation of dipteran embryos. Cryobiology 2015, 70, 143–149. [Google Scholar] [CrossRef]
- Zhan, L.; Li, M.; Hays, T.; Bischof, J. Cryopreservation method for Drosophila melanogaster embryos. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Fukumori, H.; Yoshida, M.; Tanaka, D.; Banno, Y. Embryonic stage selection for cryopreservation of the silkworm Bombyx mori and the effects of cryopreservation on embryo tissues. Cryobiology 2020, 95, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, X.; Song, X.; Wu, X.; Xian, Y. Cryopreservation of Luciola praeusta Kiesenwetter (Coleoptera: Lampyridae) embryos by vitrification. Cryobiology 2017, 78, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Fahy, G.M.; Wowk, B. 2015. Principles of cryopreservation by vitrification. In Cryopreservation and Freeze-Drying Protocols, 3rd ed.; Wolkers, W.F., Oldenhof, H., Eds.; Springer: New York, NY, USA, 2015; Volume 1257, pp. 21–82. [Google Scholar] [CrossRef]
- Urbán-Duarte, D.; Tomita, S.; Sakai, H.; Sezutsu, H.; De La Torre-Sánchez, J.F.; Kainoh, Y.; Furukawa, S.; Uchino, K. Effect of chemical dechorionation on silkworm embryo viability. J. Insect Physiol. 2022, 137, 104327. [Google Scholar] [CrossRef] [PubMed]
- Urbán-Duarte, D.; Tomita, S.; Sakai, H.; Sezutsu, H.; De La Torre-Sánchez, J.F.; Kainoh, Y.; Furukawa, S.; Uchino, K. An Effective Chemical Permeabilization of Silkworm Embryos. Bioengineering 2023, 10, 563. [Google Scholar] [CrossRef]
- Campbell, J.B.; Dosch, A.; Hunt, C.M.; Dotson, E.M.; Benedict, M.Q.; Rajamohan, A.; Rinehart, J.P. Physiological responses to cryoprotectant treatment in an early larval stage of the malaria mosquito, Anopheles gambiae. Cryobiology 2021, 99, 114–121. [Google Scholar] [CrossRef]
- Van den Abbeel, E.; Schneider, U.; Liu, J.; Agca, Y.; Critser, J.K.; Van Steirteghem, A. Osmotic responses and tolerance limits to changes in external osmolalities, and oolemma permeability characteristics, of human in vitro matured MII oocytes. Hum. Reprod. 2007, 22, 1959–1972. [Google Scholar] [CrossRef]
- Zhang, T.; Isayeva, A.; Adams, S.L.; Rawson, D.M. Studies on membrane permeability of zebrafish (Danio rerio) oocytes in the presence of different cryoprotectants. Cryobiology 2005, 50, 285–293. [Google Scholar] [CrossRef]
- Abidalla, M.; Cosi, E.; Cappellozza, S.; Saviane, A.; Pagano, J.; Battaglia, D.; Roversi, P.F. Preliminary studies on the cryopreservation of silkworm (Bombyx mori) eggs, Bull. Insectology 2019, 72, 287–296. [Google Scholar]
- Jin, B.; Higashiyama, R.I.; Nakata, Y.I.; Yonezawa, J.I.; Xu, S.; Miyake, M.; Takahashi, S.; Kikuchi, K.; Yazawa, K.; Mizobuchi, S.; et al. Rapid movement of water and cryoprotectants in pig expanded blastocysts via channel processes: Its relevance to their higher tolerance to cryopreservation. Biol. Reprod. 2013, 89, 1–12. [Google Scholar] [CrossRef]
- Edashige, K. Permeability of the plasma membrane to water and cryoprotectants in mammalian oocytes and embryos: Its relevance to vitrification. Reprod. Med. Biol. 2017, 16, 36–39. [Google Scholar] [CrossRef]
- Finn, R.N.; Chauvigné, F.; Stavang, J.A.; Belles, X.; Cerda, J. Insect glycerol transporters evolved by functional co-option and gene replacement. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Kawai, Y.; Hara, T.; Takeda; Seki, S.; Nakata, Y.I.; Matsukawa, K.; Koshimoto, C.; Kasai, M.; Edashige, K. Pathway for the movement of water and cryoprotectants in bovine oocytes and embryos. Biol. Reprod. 2011, 85, 834–847. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, M.; Kleinhans, F.W.; Wildt, D.E.; Rall, W.F. Chill sensitivity and cryoprotectant permeability of dechorionated zebrafish embryos, Brachydanio rerio. Cryobiology 1997, 34, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Bó, G.A.; Mapletoft, R.J. Evaluation and classification of bovine embryos. Anim. Reprod. 2018, 10, 344–348. [Google Scholar]
- Leopold, R.A.; Rinehart, J.P. A template for insect cryopreservation. In Low Temperature Biology of Insects, 1st ed.; Denlinger, D.L., Lee, R.E., Jr., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 325–341. [Google Scholar] [CrossRef]
- Markow, T.A.; Beall, S.; Matzkin, L.M. Egg size, embryonic development time and ovoviviparity in Drosophila species. J. Evol. Biol. 2009, 22, 430–434. [Google Scholar] [CrossRef]
- Miya, K. The Early Embryonic Development of Bombyx mori—An Ultrastructural Point of View, 1st ed.; Gendaitosho: Sagamihara, Japan, 2003; pp. 1–183. Available online: https://jebl.org/eb_web/4-906666-25-6.pdf (accessed on 10 June 2024).
- Panfilio, K.A. Extraembryonic development in insects and the acrobatics of blastokinesis. Dev. Biol. 2008, 313, 471–491. [Google Scholar] [CrossRef]
- Schmidt-Ott, U.; Kwan, C.W. Morphogenetic functions of extraembryonic membranes in insects. Curr. Opin. Insect. Sci. 2016, 13, 86–92. [Google Scholar] [CrossRef]
- Luo, L.; Pang, Y.; Chen, Q.; Li, G. Cryopreservation of the late stage embryos of Spodoptera exigua (Lepidoptera: Noctuidae). CryoLetters 2006, 27, 341–352. [Google Scholar]
- Gallichotte, E.N.; Dobos, K.M.; Ebel, G.D.; Hagedorn, M.; Rasgon, J.L.; Richardson, J.H.; Stedman, T.T.; Barfield, J.P. Towards a method for cryopreservation of mosquito vectors of human pathogens. Cryobiology 2021, 99, 1–10. [Google Scholar] [CrossRef]
- Fukumori, H.; Tanaka, D.; Banno, Y. Application of the V-cryoplate method for the cryopreservation of silkworm embryos. J. Insect Biotechnol. Sericology 2018, 87, 89–96. [Google Scholar] [CrossRef]
- Hanslick, J.L.; Lau, K.; Noguchi, K.K.; Olney, J.W.; Zorumski, C.F.; Mennerick, S.; Farber, N.B. Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol. Dis. 2009, 34, 1–10. [Google Scholar] [CrossRef]
- Chino, H. Carbohydrate metabolism in the diapause egg of the silkworm, Bombyx mori—II: Conversion of glycogen into sorbitol and glycerol during diapause. J. Insect Physiol. 1958, 2, 1–12. [Google Scholar] [CrossRef]
- Yaginuma, T.; Yamashita, O. Changes in glycogen, sorbitol and glycerol content during diapause of the silkworm eggs. J. Sericult. Sci. Japan 1977, 48, 5–10. (In Japanese) [Google Scholar] [CrossRef]
- Horie, Y.; Kanda, T.; Mochida, Y. Sorbitol as an arrester of embryonic development in diapausing eggs of the silkworm, Bombyx mori. J. Insect Physiol. 2000, 46, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.; Bryant, S.J.; Wilkinson, B.L.; Bryant, G. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim. Biophys. Acta-Gen. Subj. 2021, 1865, 129749. [Google Scholar] [CrossRef]
- Izumi, Y. Freezing damage avoidance mechanism of overwintering larvae of rice stem borer, Chilo suppressalis Walker. Low Temp. Sci. 2023, 81, 1–9. (In Japanese) [Google Scholar]
- Best, B.P. Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Res. 2015, 18, 422–436. [Google Scholar] [CrossRef]
- Shaw, J.M.; Jones, G.M. Terminology associated with vitrification and other cryopreservation procedures for oocytes and embryos. Hum. Reprod. Update 2003, 9, 583–605. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbán-Duarte, D.; Tomita, S.; Sakai, H.; Sezutsu, H.; Álvarez-Gallardo, H.; Kainoh, Y.; Furukawa, S.; Uchino, K. Permeability and Toxicity of Cryoprotective Agents in Silkworm Embryos: Impact on Cryopreservation. Int. J. Mol. Sci. 2024, 25, 11396. https://doi.org/10.3390/ijms252111396
Urbán-Duarte D, Tomita S, Sakai H, Sezutsu H, Álvarez-Gallardo H, Kainoh Y, Furukawa S, Uchino K. Permeability and Toxicity of Cryoprotective Agents in Silkworm Embryos: Impact on Cryopreservation. International Journal of Molecular Sciences. 2024; 25(21):11396. https://doi.org/10.3390/ijms252111396
Chicago/Turabian StyleUrbán-Duarte, David, Shuichiro Tomita, Hiroki Sakai, Hideki Sezutsu, Horacio Álvarez-Gallardo, Yooichi Kainoh, Seiichi Furukawa, and Keiro Uchino. 2024. "Permeability and Toxicity of Cryoprotective Agents in Silkworm Embryos: Impact on Cryopreservation" International Journal of Molecular Sciences 25, no. 21: 11396. https://doi.org/10.3390/ijms252111396
APA StyleUrbán-Duarte, D., Tomita, S., Sakai, H., Sezutsu, H., Álvarez-Gallardo, H., Kainoh, Y., Furukawa, S., & Uchino, K. (2024). Permeability and Toxicity of Cryoprotective Agents in Silkworm Embryos: Impact on Cryopreservation. International Journal of Molecular Sciences, 25(21), 11396. https://doi.org/10.3390/ijms252111396