ijms-logo

Journal Browser

Journal Browser

Progress of Molecular Biology and Physiology in Lepidopteran Insects

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: 20 March 2025 | Viewed by 3242

Special Issue Editors


E-Mail Website
Guest Editor
Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
Interests: tissue mimicking; insects; oxidative stress response; human homolog
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Central Agricultural Experiment Station, Agricultural Research Department, Hokkaido Research Organization (HRO), 15, Higashi6-senkita, Yubari Gun Naganuma Cho, Hokkaido 069-1395, Japan
Interests: protein–protein interaction; molecular biology; biochemistry; insect physiology; Cry toxin; bioinformatics; crop breeding; plant genome analysis

Special Issue Information

Dear Colleagues,

Lepidopteran insects are major pests causing agricultural damage worldwide. To protect crops, the development of insecticides with various mechanisms of action, insect viruses, and the use of genetically modified crops containing insecticidal proteins are being promoted; however, the rapid development of resistance to these insecticides is also a growing problem. The genome information of the silkworm moth, Bombyx mori, was released in 2008 through the collaboration of researchers from Japan and China. The genome information of many Lepidopteran insects, such as the fall armyworm and diamondback moth, is beginning to be organized, using the silkworm as a reference sequence. The information of these genomes was used for studies on insecticide mechanisms, including viruses and toxin proteins. In recent years, numerous studies using transgenic Lepidopteran insects induced by TALEN and CRISPR/Cas9 have been reported.

This Special Issue aims to focus on the latest research on the molecular biology and physiology of Lepidopteran insects, utilizing genome and various database information, as well as genome editing technologies.

Dr. Hiroko Tabunoki
Dr. Satomi Adegawa
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • silkworm
  • Bombyx mori
  • Lepidopteran insects
  • molecular biology
  • physiology
  • genome analysis
  • mode of action
  • genome editing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 8877 KiB  
Article
Permeability and Toxicity of Cryoprotective Agents in Silkworm Embryos: Impact on Cryopreservation
by David Urbán-Duarte, Shuichiro Tomita, Hiroki Sakai, Hideki Sezutsu, Horacio Álvarez-Gallardo, Yooichi Kainoh, Seiichi Furukawa and Keiro Uchino
Int. J. Mol. Sci. 2024, 25(21), 11396; https://doi.org/10.3390/ijms252111396 - 23 Oct 2024
Viewed by 494
Abstract
The permeation of cryoprotectants into insect embryos is critical for successful cryopreservation. However, the permeability of silkworm embryos to cryoprotectants and the effects of cryopreservation remain poorly studied. In this study, we evaluated the permeability and toxicity of four cryoprotective agents (CPAs) as [...] Read more.
The permeation of cryoprotectants into insect embryos is critical for successful cryopreservation. However, the permeability of silkworm embryos to cryoprotectants and the effects of cryopreservation remain poorly studied. In this study, we evaluated the permeability and toxicity of four cryoprotective agents (CPAs) as well as the vitrification effect on the viability of silkworm embryos. Among the four CPAs, propylene glycol (PG) showed the best permeability. Ethylene glycol (EG) and PG were the least toxic CPAs, but glycerol (GLY) and dimethyl sulfoxide (DMSO) were more toxic. Moreover, we examined several factors including the kind and the concentration of CPAs, exposure time, embryonic stage, and silkworm strains. Embryos at the earlier phases of stage 25 were more tolerant to vitrification using EG. We found that over 21% of embryos treated with EG at the early 2 phase of stage 25: 163 h after egg laying (AEL) developed and progressed to serosa ingestion after vitrification and rewarming. The result was the same in other strains as well. Our results are valuable for the development of new cryopreservation protocols of silkworm embryos. Full article
(This article belongs to the Special Issue Progress of Molecular Biology and Physiology in Lepidopteran Insects)
Show Figures

Figure 1

25 pages, 17728 KiB  
Article
Transcriptomic Analysis of the Response of the Dioryctria abietella Larva Midgut to Bacillus thuringiensis 2913 Infection
by Ruting Chen, Yutong Zhuang, Meiling Wang, Jia Yu and Defu Chi
Int. J. Mol. Sci. 2024, 25(20), 10921; https://doi.org/10.3390/ijms252010921 - 10 Oct 2024
Viewed by 832
Abstract
Dioryctria abietella Denis Schiffermuller (Lepidoptera: Pyralidae) is an oligophagous pest that mainly damages Pinaceae plants. Here, we investigated the effects of the Bacillus thuringiensis 2913 strain (Bt 2913), which carries the Cry1Ac, Cry2Ab, and Vip3Aa genes, on the D. [...] Read more.
Dioryctria abietella Denis Schiffermuller (Lepidoptera: Pyralidae) is an oligophagous pest that mainly damages Pinaceae plants. Here, we investigated the effects of the Bacillus thuringiensis 2913 strain (Bt 2913), which carries the Cry1Ac, Cry2Ab, and Vip3Aa genes, on the D. abietella midgut transcriptome at 6, 12, and 24 h after infection. In total, 7497 differentially expressed genes (DEGs) were identified from the midgut transcriptome of D. abietella larvae infected with Bt 2913. Among these DEGs, we identified genes possibly involved in Bt 2913-induced perforation of the larval midgut. For example, the DEGs included 67 genes encoding midgut proteases involved in Cry/Vip toxin activation, 74 genes encoding potential receptor proteins that bind to insecticidal proteins, and 19 genes encoding receptor NADH dehydrogenases that may bind to Cry1Ac. Among the three transcriptomes, 88 genes related to metabolic detoxification and 98 genes related to immune defense against Bt 2913 infection were identified. Interestingly, 145 genes related to the 60S ribosomal protein were among the DEGs identified in the three transcriptomes. Furthermore, we performed bioinformatic analysis of zonadhesin, GST, CYP450, and CarE in the D. abietella midgut to determine their possible associations with Bt 2913. On the basis of the results of this analysis, we speculated that trypsin and other serine proteases in the D. abietella larval midgut began to activate Cry/Vip prototoxin at 6 h to 12 h after Bt 2913 ingestion. At 12 h after Bt 2913 ingestion, chymotrypsin was potentially involved in degrading the active core fragment of Vip3Aa toxin, and the detoxification enzymes in the larvae contributed to the metabolic detoxification of the Bt toxin. The ABC transporter and several other receptor-protein-related genes were also downregulated to increase resistance to Bt 2913. However, the upregulation of 60S ribosomal protein and heat shock protein expression weakened the resistance of larvae to Bt 2913, thereby enhancing the expression of NADH dehydrogenase and other receptor proteins that are highly expressed in the larval midgut and bind to activating toxins, including Cry1Ac. At 24 h after Bt 2913 ingestion, many activated toxins were bound to receptor proteins such as APN in the larval midgut, resulting in membrane perforation. Here, we clarified the mechanism of Bt 2913 infection in D. abietella larvae, as well as the larval immune defense response to Bt 2913, which provides a theoretical basis for the subsequent control of D. abietella using B. thuringiensis. Full article
(This article belongs to the Special Issue Progress of Molecular Biology and Physiology in Lepidopteran Insects)
Show Figures

Graphical abstract

Review

Jump to: Research

21 pages, 2551 KiB  
Review
Physiological and Molecular Mechanisms of Lepidopteran Insects: Genomic Insights and Applications of Genome Editing for Future Research
by Dongsheng Niu, Qing Zhao, Linbo Xu and Kejian Lin
Int. J. Mol. Sci. 2024, 25(22), 12360; https://doi.org/10.3390/ijms252212360 - 18 Nov 2024
Viewed by 527
Abstract
Lepidopteran insects are a major threat to global agriculture, causing significant crop losses and economic damage. Traditional pest control methods are becoming less effective due to the rapid evolution of insecticide resistance. This study explores the current status and genomic characteristics of 1315 [...] Read more.
Lepidopteran insects are a major threat to global agriculture, causing significant crop losses and economic damage. Traditional pest control methods are becoming less effective due to the rapid evolution of insecticide resistance. This study explores the current status and genomic characteristics of 1315 Lepidopteran records, alongside an overview of relevant research, utilizing advanced functional genomics techniques, including RNA-seq and CRISPR/Cas9 gene-editing technologies to uncover the molecular mechanisms underlying insecticide resistance. Our genomic analysis revealed significant variability in genome size, assembly quality, and chromosome number, which may influence species’ biology and resistance mechanisms. We identified key resistance-associated genes and pathways, including detoxification and metabolic pathways, which help these insects evade chemical control. By employing CRISPR/Cas9 gene-editing techniques, we directly manipulated resistance-associated genes to confirm their roles in resistance, demonstrating their potential for targeted interventions in pest management. These findings emphasize the value of integrating genomic data into the development of effective and sustainable pest control strategies, reducing reliance on chemical insecticides and promoting environmentally friendly integrated pest management (IPM) approaches. Our study highlights the critical role of functional genomics in IPM and its potential to provide long-term solutions to the growing challenge of Lepidopteran resistance. Full article
(This article belongs to the Special Issue Progress of Molecular Biology and Physiology in Lepidopteran Insects)
Show Figures

Figure 1

21 pages, 8001 KiB  
Review
Molecular Functions and Physiological Roles of Gustatory Receptors of the Silkworm Bombyx mori
by Ryoichi Sato
Int. J. Mol. Sci. 2024, 25(18), 10157; https://doi.org/10.3390/ijms251810157 - 21 Sep 2024
Viewed by 893
Abstract
Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. [...] Read more.
Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. However, with further ligand analysis, it has become clear that plant secondary metabolites are important targets not only for Grs in the bitter subfamily but also for the Drosophila melanogaster Gr43a orthologue subfamily and Grs in the sugar subfamily. Gene knockout experiments showed that B. mori Gr6 (BmGr6) and BmGr9 are involved in the recognition of the feeding-promoting compounds chlorogenic acid and isoquercetin in mulberry leaves by the maxillary palps, suggesting that these Grs are responsible for palpation-dependent host recognition without biting. On the other hand, BmGr expression was also confirmed in nonsensory organs. Midgut enteroendocrine cells that produce specific neuropeptides were shown to express specific BmGrs, suggesting that BmGrs are involved in the induction of endocrine secretion in response to changes in the midgut contents. Furthermore, gene knockout experiments indicated that BmGr6 is indeed involved in the secretion of myosuppressin. On the other hand, BmGr9 was shown to induce signal transduction that is not derived from the intracellular signaling cascade mediated by G proteins but from the fructose-regulated cation channel of BmGr9 itself. Cryogenic electron microscopy revealed the mechanism by which the ion channel of the BmGr9 homotetramer opens upon binding of fructose to the ligand-binding pocket. Research on BmGrs has contributed greatly to our understanding of the functions and roles of Grs in insects. Full article
(This article belongs to the Special Issue Progress of Molecular Biology and Physiology in Lepidopteran Insects)
Show Figures

Figure 1

Back to TopTop