Molecular Modeling and In Vitro Functional Analysis of the RGS12 PDZ Domain Variant Associated with High-Penetrance Familial Bipolar Disorder
Abstract
:1. Introduction
2. Results
2.1. Establishing a Model for the Liganded Wildtype RGS12 PDZ Domain and the Disposition of Its Arginine-59 Side Chain
2.2. In Silico Evaluation of a Third Binding Target for the Wildtype RGS12 PDZ Domain—SAPAP3
2.3. In Vitro Evaluation of SAPAP3 as a Third Binding Target for the Wildtype RGS12 PDZ Domain
2.4. MD Simulations of Wildtype and Variant RGS12 PDZ Models for Ligand Selectivity Changes
2.5. SPR Testing of Ligand Binding to Wildtype and R59Q Variant RGS12 PDZ Domains
2.6. MD Simulations of De Novo Structural Models Derived from AlphaFold2 (AF2)
3. Discussion
- CXCR2, a chemokine-family GPCR activated by interleukin-8 and primarily recognized for its role in immune regulation and inflammation [74,75], is also expressed in the microglia within the CNS [76]. As inflammation can significantly impact the pathophysiology of bipolar disorder [77], including alterations in microglial activity being linked to mood regulation and neuroplasticity [78], a change in the interaction between RGS12 and CXCR2, given the R59Q variation, may influence the microglial and/or global immune system responses, potentially affecting the cytokine profiles and neuronal signaling pathways crucial to the development and exacerbation of bipolar disorder symptoms (e.g., depression, as reviewed in [79]).
- MEK2 is integral to the MAPK/ERK signaling pathway [80,81], which is crucial for neuronal development, survival, and plasticity (e.g., ref. [82]). The interaction of RGS12 with MEK2, as we previously reported in identifying its involvement in TrkA/NGF signaling [42], may influence neurodevelopmental processes and synaptic plasticity (e.g., ref. [83]). Disruptions in this pathway have been implicated in the pathogenesis of various psychiatric disorders [84], including bipolar disorder [85], by affecting the neuronal circuitry and potentially contributing to the neurobiological underpinnings of mood dysregulation and cognitive impairments observed in the disorder.
- SAPAP3 is a synaptic scaffolding protein that interacts with postsynaptic density proteins like SHANK, playing a critical role in the structuring of synaptic junctions [59]. Mutations and dysfunctions in SAPAP3 and the associated proteins have been linked to neuropsychiatric disorders, most notably obsessive–compulsive disorder [59,86]. The interaction of RGS12 with SAPAP3 might affect synaptic stability and signaling, key areas of interest in bipolar disorder research focusing on synaptic homeostasis disruptions as a core element of the disease’s neuropsychiatric manifestations [87,88].
4. Methods
4.1. Domain Architecture and Phylogenetic Analyses
4.2. Creating Models of the Liganded Wildtype RGS12 PDZ Domain by Receptor Grid Docking
4.3. MD Simulations of the Arg59 Residue Within a Solvated Model of the Wildtype RGS12 PDZ Domain
- 100 picoseconds of Brownian dynamics NVT at −263.15 °C with restraints on solute-heavy atoms;
- 12 picoseconds NVT at −263.15 °C with restraints on solute-heavy atoms;
- 12 picoseconds NPT at −263.15 °C with restraints on solute-heavy atoms;
- 12 picoseconds NPT with restraints on solute-heavy atoms;
- 24 picoseconds NPT without restraints;
- 200 nanosecond NPT production run (sampled every 1.0 ns).
4.4. FEP+ MD of Binding Affinities Among Three C-Tail Ligands and Congeneric Pentamers
4.5. Transient Transfection and Co-Immunoprecipitation
4.6. MD Simulations of RGS12 PDZ Domains to Predict Ligand Selectivity Changes
4.7. Surface Plasmon Resonance (SPR) Biosensor Measurements
4.7.1. Single Concentration Analyses
- mNotch1, biotin-NH-PSQITHIPEAFK-carboxylic acid;
- CXCR2, biotin-NH-PKDSRPSFVGSSSGHTSTTL-carboxylic acid;
- SAPAP3 wt (aa 960-979), biotin-NH-SATESADSIEIYIPEAQTRL-carboxylic acid;
- SAPAP3 mutant (“mt”), biotin-NH-SATESADSIEIYIPEAQSRL-amide(mutations underlined).
4.7.2. Single-Cycle Kinetics Analyses
- mNotch1, biotin-Ahx-PSQITHIPEAFK-carboxylic acid;
- rβ2AR, biotin-Ahx-QGRNCNTNDSPL-carboxylic acid;
- CXCR2, biotin-Ahx-VGSSSGHTSTTL-carboxylic acid;
- MEK2, biotin-Ahx-RTLRLKQPSTPTRTAV-carboxylic acid;
- SAPAP3, biotin-Ahx-IYIPEAQTRL-carboxylic acid.
4.8. Creating De Novo Models of Unliganded and Liganded RGS12 PDZ Domain with AlphaFold2
4.9. MD Simulations of AlphaFold2-Derived Structural Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Wang, L.; Yu, H.; Chen, J.; Sun, P. Polygenic Risk Scores for Bipolar Disorder: Progress and Perspectives. Neuropsychiatr. Dis. Treat. 2023, 19, 2617–2626. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.R.; McClung, C.A. Bipolar Disorder. Curr. Opin. Neurobiol. 2023, 83, 102801. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Chen, Y.; Shen, Y.; Zhang, D.; Wei, C.; Lai, J.; Hu, S. Progress and Implications from Genetic Studies of Bipolar Disorder. Neurosci. Bull. 2024, 40, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.H.; Smoller, J.W. The genetics of bipolar disorder. Neuroscience 2009, 164, 331–343. [Google Scholar] [CrossRef]
- Alsabban, S.; Rivera, M.; McGuffin, P. Genome-wide searches for bipolar disorder genes. Curr. Psychiatry Rep. 2011, 13, 522–527. [Google Scholar] [CrossRef]
- Dima, D.; de Jong, S.; Breen, G.; Frangou, S. The polygenic risk for bipolar disorder influences brain regional function relating to visual and default state processing of emotional information. Neuroimage Clin. 2016, 12, 838–844. [Google Scholar] [CrossRef]
- Holmgren, A.; Akkouh, I.; O’Connell, K.S.; Osete, J.R.; Bjornstad, P.M.; Djurovic, S.; Hughes, T. Bipolar patients display stoichiometric imbalance of gene expression in post-mortem brain samples. Mol. Psychiatry 2024, 29, 1128–1138. [Google Scholar] [CrossRef]
- Jiang, X.; Zai, C.C.; Dimick, M.K.; Kennedy, J.L.; Young, L.T.; Birmaher, B.; Goldstein, B.I. Psychiatric Polygenic Risk Scores across Youth with Bipolar Disorder, Youth at High Risk for Bipolar Disorder, and Controls. J. Am. Acad. Child. Adolesc. Psychiatry 2024. [Google Scholar] [CrossRef]
- Mullins, N.; Forstner, A.J.; O’Connell, K.S.; Coombes, B.; Coleman, J.R.I.; Qiao, Z.; Als, T.D.; Bigdeli, T.B.; Borte, S.; Bryois, J.; et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 2021, 53, 817–829. [Google Scholar] [CrossRef]
- Forstner, A.J.; Fischer, S.B.; Schenk, L.M.; Strohmaier, J.; Maaser-Hecker, A.; Reinbold, C.S.; Sivalingam, S.; Hecker, J.; Streit, F.; Degenhardt, F.; et al. Whole-exome sequencing of 81 individuals from 27 multiply affected bipolar disorder families. Transl. Psychiatry 2020, 10, 57. [Google Scholar] [CrossRef]
- Koromina, M.; Ravi, A.; Panagiotaropoulou, G.; Schilder, B.M.; Humphrey, J.; Braun, A.; Bidgeli, T.; Chatzinakos, C.; Coombes, B.; Kim, J.; et al. Fine-mapping genomic loci refines bipolar disorder risk genes. medRxiv 2024. [Google Scholar] [CrossRef]
- Hosang, G.M.; Shakoor, S.; King, N.; Sanches, M.; Vincent, J.B.; Kennedy, J.L.; McGuffin, P.; Keers, R.; Zai, C.C. Interplay between polygenic risk for mood disorders and stressful life events in bipolar disorder. J. Affect. Disord. 2024, 350, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Mirza, S.; Lima, C.N.C.; Del Favero-Campbell, A.; Rubinstein, A.; Topolski, N.; Cabrera-Mendoza, B.; Kovacs, E.H.C.; Blumberg, H.P.; Richards, J.G.; Williams, A.J.; et al. Blood epigenome-wide association studies of suicide attempt in adults with bipolar disorder. Transl. Psychiatry 2024, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Ohi, K.; Shimada, M.; Soda, M.; Nishizawa, D.; Fujikane, D.; Takai, K.; Kuramitsu, A.; Muto, Y.; Sugiyama, S.; Hasegawa, J.; et al. Genome-wide DNA methylation risk scores for schizophrenia derived from blood and brain tissues further explain the genetic risk in patients stratified by polygenic risk scores for schizophrenia and bipolar disorder. BMJ Ment. Health 2024, 27, e300936. [Google Scholar] [CrossRef]
- Snow, B.E.; Antonio, L.; Suggs, S.; Gutstein, H.B.; Siderovski, D.P. Molecular cloning and expression analysis of rat Rgs12 and Rgs14. Biochem. Biophys. Res. Commun. 1997, 233, 770–777. [Google Scholar] [CrossRef]
- Guipponi, M.; Santoni, F.A.; Setola, V.; Gehrig, C.; Rotharmel, M.; Cuenca, M.; Guillin, O.; Dikeos, D.; Georgantopoulos, G.; Papadimitriou, G.; et al. Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes. PLoS ONE 2014, 9, e112745. [Google Scholar] [CrossRef]
- Xu, B.; Roos, J.L.; Dexheimer, P.; Boone, B.; Plummer, B.; Levy, S.; Gogos, J.A.; Karayiorgou, M. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 2011, 43, 864–868. [Google Scholar] [CrossRef]
- Lima Lde, A.; Feio-dos-Santos, A.C.; Belangero, S.I.; Gadelha, A.; Bressan, R.A.; Salum, G.A.; Pan, P.M.; Moriyana, T.S.; Graeff-Martins, A.S.; Tamanaha, A.C.; et al. An integrative approach to investigate the respective roles of single-nucleotide variants and copy-number variants in Attention-Deficit/Hyperactivity Disorder. Sci. Rep. 2016, 6, 22851. [Google Scholar] [CrossRef]
- Snow, B.E.; Hall, R.A.; Krumins, A.M.; Brothers, G.M.; Bouchard, D.; Brothers, C.A.; Chung, S.; Mangion, J.; Gilman, A.G.; Lefkowitz, R.J.; et al. GTPase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain. J. Biol. Chem. 1998, 273, 17749–17755. [Google Scholar] [CrossRef]
- Lopez-Aranda, M.F.; Acevedo, M.J.; Carballo, F.J.; Gutierrez, A.; Khan, Z.U. Localization of the GoLoco motif carrier regulator of G-protein signalling 12 and 14 proteins in monkey and rat brain. Eur. J. Neurosci. 2006, 23, 2971–2982. [Google Scholar] [CrossRef]
- Neubig, R.R.; Siderovski, D.P. Regulators of G-protein signalling as new central nervous system drug targets. Nat. Rev. Drug Discov. 2002, 1, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Kimple, A.J.; Bosch, D.E.; Giguere, P.M.; Siderovski, D.P. Regulators of G-protein signaling and their Galpha substrates: Promises and challenges in their use as drug discovery targets. Pharmacol. Rev. 2011, 63, 728–749. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.D.; Kaski, S.W.; Schmidt, K.T.; Cogan, E.S.; Boyt, K.M.; Wix, K.; Schroer, A.B.; McElligott, Z.A.; Siderovski, D.P.; Setola, V. Role of RGS12 in the differential regulation of kappa opioid receptor-dependent signaling and behavior. Neuropsychopharmacology 2019, 44, 1728–1741. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.D.; Kaski, S.W.; Schroer, A.B.; Wix, K.A.; Siderovski, D.P.; Setola, V. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants. J. Psychopharmacol. 2018, 32, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Blosser, T.R.; Djekidel, M.N.; Hao, J.; Bhattacherjee, A.; Chen, W.; Tuesta, L.M.; Zhuang, X.; Zhang, Y. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat. Neurosci. 2021, 24, 1757–1771. [Google Scholar] [CrossRef]
- Britt, J.P.; McGehee, D.S. Presynaptic opioid and nicotinic receptor modulation of dopamine overflow in the nucleus accumbens. J. Neurosci. 2008, 28, 1672–1681. [Google Scholar] [CrossRef]
- Bruijnzeel, A.W. kappa-Opioid receptor signaling and brain reward function. Brain Res. Rev. 2009, 62, 127–146. [Google Scholar] [CrossRef]
- Crowley, N.A.; Kash, T.L. Kappa opioid receptor signaling in the brain: Circuitry and implications for treatment. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 62, 51–60. [Google Scholar] [CrossRef]
- Schindler, A.G.; Messinger, D.I.; Smith, J.S.; Shankar, H.; Gustin, R.M.; Schattauer, S.S.; Lemos, J.C.; Chavkin, N.W.; Hagan, C.E.; Neumaier, J.F.; et al. Stress produces aversion and potentiates cocaine reward by releasing endogenous dynorphins in the ventral striatum to locally stimulate serotonin reuptake. J. Neurosci. 2012, 32, 17582–17596. [Google Scholar] [CrossRef]
- Chavkin, C.; Ehrich, J.M. How does stress-induced activation of the kappa opioid system increase addiction risk? Biol. Psychiatry 2014, 76, 760–762. [Google Scholar] [CrossRef]
- Ehrich, J.M.; Messinger, D.I.; Knakal, C.R.; Kuhar, J.R.; Schattauer, S.S.; Bruchas, M.R.; Zweifel, L.S.; Keiffer, B.L.; Phillips, P.E.M.; Chavkin, C. Kappa Opioid Receptor-Induced Aversion Requires p38 MAPK Activation in VTA Dopamine Neurons. J. Neurosci. 2015, 35, 12917–12931. [Google Scholar] [CrossRef] [PubMed]
- White, K.L.; Robinson, J.E.; Zhu, H.; DiBerto, J.F.; Polepally, P.R.; Zjawiony, J.K.; Nichols, D.E.; Malanga, C.J.; Roth, B.L. The G protein-biased kappa-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. J. Pharmacol. Exp. Ther. 2015, 352, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Chavkin, C.; Koob, G.F. Dynorphin, Dysphoria, and Dependence: The Stress of Addiction. Neuropsychopharmacology 2016, 41, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Di Chiara, G.; Imperato, A. Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J. Pharmacol. Exp. Ther. 1988, 244, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Donzanti, B.A.; Althaus, J.S.; Payson, M.M.; Von Voigtlander, P.F. Kappa agonist-induced reduction in dopamine release: Site of action and tolerance. Res. Commun. Chem. Pathol. Pharmacol. 1992, 78, 193–210. [Google Scholar] [PubMed]
- Thompson, A.C.; Zapata, A.; Justice, J.B.; Jr Vaughan, R.A.; Sharpe, L.G.; Shippenberg, T.S. Kappa-opioid receptor activation modifies dopamine uptake in the nucleus accumbens and opposes the effects of cocaine. J. Neurosci. 2000, 20, 9333–9340. [Google Scholar] [CrossRef]
- Kivell, B.; Uzelac, Z.; Sundaramurthy, S.; Rajamanickam, J.; Ewald, A.; Chefer, V.; Jaligam, V.; Bolan, E.; Simonson, B.; Annamalai, B.; et al. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism. Neuropharmacology 2014, 86, 228–240. [Google Scholar] [CrossRef]
- Liu-Chen, L.Y.; Huang, P. Signaling underlying kappa opioid receptor-mediated behaviors in rodents. Front. Neurosci. 2022, 16, 964724. [Google Scholar] [CrossRef]
- Kaski, S.W.; White, A.N.; Gross, J.D.; Siderovski, D.P. Potential for Kappa-Opioid Receptor Agonists to Engineer Nonaddictive Analgesics: A Narrative Review. Anesth. Analg. 2021, 132, 406–419. [Google Scholar] [CrossRef]
- Kimple, R.J.; De Vries, L.; Tronchere, H.; Behe, C.I.; Morris, R.A.; Gist Farquhar, M.; Siderovski, D.P. RGS12 and RGS14 GoLoco motifs are Gαi-interaction sites with guanine nucleotide dissociation inhibitor activity. J. Biol. Chem. 2001, 276, 29275–29281. [Google Scholar] [CrossRef]
- Kimple, R.J.; Kimple, M.E.; Betts, L.; Sondek, J.; Siderovski, D.P. Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature 2002, 416, 878–881. [Google Scholar] [CrossRef]
- Willard, M.D.; Willard, F.S.; Li, X.; Cappell, S.D.; Snider, W.D.; Siderovski, D.P. Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation. EMBO J. 2007, 26, 2029–2040. [Google Scholar] [CrossRef]
- Uhlik, M.T.; Temple, B.; Bencharit, S.; Kimple, A.J.; Siderovski, D.P.; Johnson, G.L. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol. 2005, 345, 1–20. [Google Scholar] [CrossRef]
- Woods, D.F.; Bryant, P.J. ZO-1, DlgA and PSD-95/SAP90: Homologous proteins in tight, septate and synaptic cell junctions. Mech. Dev. 1993, 44, 85–89. [Google Scholar] [CrossRef]
- Doyle, D.A.; Lee, A.; Lewis, J.; Kim, E.; Sheng, M.; MacKinnon, R. Crystal structures of a complexed and peptide-free membrane protein-binding domain: Molecular basis of peptide recognition by PDZ. Cell 1996, 85, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Songyang, Z.; Fanning, A.S.; Fu, C.; Xu, J.; Marfatia, S.M.; Chishti, A.H.; Crompton, A.; Chan, A.C.; Anderson, J.M.; Cantley, L.C. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997, 275, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Zheng, J.J. PDZ domains and their binding partners: Structure, specificity, and modification. Cell Commun. Signal. 2010, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 7, 20. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Carter, H.; Parla, J.; Kramer, M.; Goes, F.S.; Pirooznia, M.; Zandi, P.P.; McCombie, W.R.; Potash, J.B.; Karchin, R. A hybrid likelihood model for sequence-based disease association studies. PLoS Genet. 2013, 9, e1003224. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Rodelsperger, C.; Schuelke, M.; Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 2010, 7, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Panday, S.K.; Alexov, E. SAAFEC-SEQ: A Sequence-Based Method for Predicting the Effect of Single Point Mutations on Protein Thermodynamic Stability. Int. J. Mol. Sci. 2021, 22, 606. [Google Scholar] [CrossRef]
- Umerenkov, D.; Nikolaev, F.; Shashkova, T.I.; Strashnov, P.V.; Sindeeva, M.; Shevtsov, A.; Ivanisenko, N.V.; Kardymon, O.L. PROSTATA: A framework for protein stability assessment using transformers. Bioinformatics 2023, 39, btad671. [Google Scholar] [CrossRef] [PubMed]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; et al. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun. 2020, 11, 5918. [Google Scholar] [CrossRef] [PubMed]
- Parthiban, V.; Gromiha, M.M.; Schomburg, D. CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Res. 2006, 34, W239–W242. [Google Scholar] [CrossRef]
- Pires, D.E.; Ascher, D.B.; Blundell, T.L. mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014, 30, 335–342. [Google Scholar] [CrossRef]
- Luck, K.; Charbonnier, S.; Trave, G. The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett. 2012, 586, 2648–2661. [Google Scholar] [CrossRef]
- Aoidi, R.; Maltais, A.; Charron, J. Functional redundancy of the kinases MEK1 and MEK2: Rescue of the Mek1 mutant phenotype by Mek2 knock-in reveals a protein threshold effect. Sci. Signal. 2016, 9, ra9. [Google Scholar] [CrossRef]
- Welch, J.M.; Lu, J.; Rodriguiz, R.M.; Trotta, N.C.; Peca, J.; Ding, J.D.; Feliciano, C.; Chen, M.; Adams, J.P.; Luo, J.; et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 2007, 448, 894–900. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P.A.; Crichlow, G.V.; Dalenberg, K.; Duarte, J.M.; et al. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023, 51, D488–D508. [Google Scholar] [CrossRef]
- Friedman, P.A.; Mamonova, T. The molecular sociology of NHERF1 PDZ proteins controlling renal hormone-regulated phosphate transport. Biosci. Rep. 2024, 44, BSR20231380. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lu, G.; Trescott, L.R.; Hou, Y.; Guan, X.; Wang, S.; Stamenkovich, A.; Brunzelle, J.; Sirinupong, N.; Li, C.; et al. New conformational state of NHERF1-CXCR2 signaling complex captured by crystal lattice trapping. PLoS ONE 2013, 8, e81904. [Google Scholar] [CrossRef]
- Lu, G.; Wu, Y.; Jiang, Y.; Wang, S.; Hou, Y.; Guan, X.; Brunzelle, J.; Sirinupong, N.; Sheng, S.; Li, C.; et al. Structural insights into neutrophilic migration revealed by the crystal structure of the chemokine receptor CXCR2 in complex with the first PDZ domain of NHERF1. PLoS ONE 2013, 8, e76219. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- Snow, B.E.; Brothers, G.M.; Siderovski, D.P. Molecular cloning of regulators of G-protein signaling family members and characterization of binding specificity of RGS12 PDZ domain. Methods Enzymol. 2002, 344, 740–761. [Google Scholar] [CrossRef]
- Ishikita, H.; Saito, K. Proton transfer reactions and hydrogen-bond networks in protein environments. J. R. Soc. Interface 2014, 11, 20130518. [Google Scholar] [CrossRef]
- Tubert-Brohman, I.; Sherman, W.; Repasky, M.; Beuming, T. Improved docking of polypeptides with Glide. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar] [CrossRef]
- Abel, R.; Wang, L.; Harder, E.D.; Berne, B.J.; Friesner, R.A. Advancing Drug Discovery through Enhanced Free Energy Calculations. Acc. Chem. Res. 2017, 50, 1625–1632. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. (Eds.) Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the SC ’06 Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006. [Google Scholar] [CrossRef]
- Ross, G.A.; Lu, C.; Scarabelli, G.; Albanese, S.K.; Houang, E.; Abel, R.; Harder, E.D.; Wang, L. The maximal and current accuracy of rigorous protein-ligand binding free energy calculations. Commun. Chem. 2023, 6, 222. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H. Efficient estimation of free energy differences from Monte Carlo data. J. Comput. Phys. 1976, 22, 245–268. [Google Scholar] [CrossRef]
- Buel, G.R.; Walters, K.J. Can AlphaFold2 predict the impact of missense mutations on structure? Nat. Struct. Mol. Biol. 2022, 29, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schutze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Holmes, W.E.; Lee, J.; Kuang, W.J.; Rice, G.C.; Wood, W.I. Structure and functional expression of a human interleukin-8 receptor. Science 1991, 253, 1278–1280. [Google Scholar] [CrossRef] [PubMed]
- Waugh, D.J.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef] [PubMed]
- Flynn, G.; Maru, S.; Loughlin, J.; Romero, I.A.; Male, D. Regulation of chemokine receptor expression in human microglia and astrocytes. J. Neuroimmunol. 2003, 136, 84–93. [Google Scholar] [CrossRef]
- Jones, G.H.; Vecera, C.M.; Pinjari, O.F.; Machado-Vieira, R. Inflammatory signaling mechanisms in bipolar disorder. J. Biomed. Sci. 2021, 28, 45. [Google Scholar] [CrossRef]
- Walker, F.R.; Nilsson, M.; Jones, K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr. Drug Targets 2013, 14, 1262–1276. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron. 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. MEK1/2 dual-specificity protein kinases: Structure and regulation. Biochem. Biophys. Res. Commun. 2012, 417, 5–10. [Google Scholar] [CrossRef]
- Luke, J.J.; Ott, P.A.; Shapiro, G.I. The biology and clinical development of MEK inhibitors for cancer. Drugs 2014, 74, 2111–2128. [Google Scholar] [CrossRef]
- Numakawa, T.; Suzuki, S.; Kumamaru, E.; Adachi, N.; Richards, M.; Kunugi, H. BDNF function and intracellular signaling in neurons. Histol. Histopathol. 2010, 25, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Sweatt, J.D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol. 2004, 14, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat. Med. 2016, 22, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Manji, H.K.; Quiroz, J.A.; Payne, J.L.; Singh, J.; Lopes, B.P.; Viegas, J.S.; Zarate, C.A. The underlying neurobiology of bipolar disorder. World Psychiatry 2003, 2, 136–146. [Google Scholar] [PubMed]
- Züchner, S.; Wendland, J.R.; Ashley-Koch, A.E.; Collins, A.L.; Tran-Viet, K.N.; Quinn, K.; Timpano, K.C.; Cuccaro, M.L.; Pericak-Vance, M.A.; Steffens, D.C.; et al. Multiple rare SAPAP3 missense variants in trichotillomania and OCD. Mol. Psychiatry 2009, 14, 6–9. [Google Scholar] [CrossRef]
- Sigitova, E.; Fisar, Z.; Hroudova, J.; Cikankova, T.; Raboch, J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin. Neurosci. 2017, 71, 77–103. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, H.; Li, C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells 2022, 11, 3815. [Google Scholar] [CrossRef]
- Chartoff, E.H.; Mavrikaki, M. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction. Front. Neurosci. 2015, 9, 466. [Google Scholar] [CrossRef]
- Machado-Vieira, R. Lithium, Stress, and Resilience in Bipolar Disorder: Deciphering this key homeostatic synaptic plasticity regulator. J. Affect. Disord. 2018, 233, 92–99. [Google Scholar] [CrossRef]
- Ebner, S.R.; Roitman, M.F.; Potter, D.N.; Rachlin, A.B.; Chartoff, E.H. Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology 2010, 210, 241–252. [Google Scholar] [CrossRef]
- Taylor, G.T.; Manzella, F. Kappa Opioids, Salvinorin A and Major Depressive Disorder. Curr. Neuropharmacol. 2016, 14, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Limoges, A.; Yarur, H.E.; Tejeda, H.A. Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Front. Syst. Neurosci. 2022, 16, 963691. [Google Scholar] [CrossRef] [PubMed]
- Siderovski, D.P.; Agogo-Mawuli, P.S. Rapidly transitioning from in silico hits to leads on ‘undruggable’ pain targets. Drug Target. Rev. 2022, 9, 14–16. [Google Scholar]
- Atomwise, A.P. AI is a viable alternative to high throughput screening: A 318-target study. Sci. Rep. 2024, 14, 7526. [Google Scholar] [CrossRef]
- Grossfield A. WHAM: The Weighted Histogram Analysis Method, Version 2024. Available online: http://membrane.urmc.rochester.edu/?page_id=126 (accessed on 24 September 2024).
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Johnston, R.C.; Yao, K.; Kaplan, Z.; Chelliah, M.; Leswing, K.; Seekins, S.; Watts, S.; Calkins, D.; Elk, J.C.; Jerome, S.V.; et al. Epik: pK(a) and Protonation State Prediction through Machine Learning. J. Chem. Theory Comput. 2023, 19, 2380–2388. [Google Scholar] [CrossRef]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; Dahlgren, M.K.; Greenwood, J.; et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc. 2015, 137, 2695–2703. [Google Scholar] [CrossRef]
- Wang, L.; Chambers, J.; Abel, R. Protein-Ligand Binding Free Energy Calculations with FEP. Methods Mol. Biol. 2019, 2022, 201–232. [Google Scholar] [CrossRef]
- Sambi, B.S.; Hains, M.D.; Waters, C.M.; Connell, M.C.; Willard, F.S.; Kimple, A.J.; Pyne, S.; Siderovski, D.P.; Pyne, N.J. The effect of RGS12 on PDGFbeta receptor signalling to p42/p44 mitogen activated protein kinase in mammalian cells. Cell Signal. 2006, 18, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Ross, G.A.; Russell, E.; Deng, Y.; Lu, C.; Harder, E.D.; Abel, R.; Wang, L. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo. J. Chem. Theory Comput. 2020, 16, 6061–6076. [Google Scholar] [CrossRef] [PubMed]
- Hutsell, S.Q.; Kimple, R.J.; Siderovski, D.P.; Willard, F.S.; Kimple, A.J. High-affinity immobilization of proteins using biotin- and GST-based coupling strategies. Methods Mol. Biol. 2010, 627, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Kimple, A.J.; Muller, R.E.; Siderovski, D.P.; Willard, F.S. A capture coupling method for the covalent immobilization of hexahistidine tagged proteins for surface plasmon resonance. Methods Mol. Biol. 2010, 627, 91–100. [Google Scholar] [CrossRef]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
2KV8 Pose | Ligand | GLIDE SPpep Score | GLIDE XP Score | Ligand | GLIDE SPpep Score | GLIDE XP Score | Ligand | GLIDE Sppep Score | GLIDE XP Score | Ligand | GLIDE SPpep Score | GLIDE XP Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | TSTTL-COOH (CXCR2) | −5.5 | −7.8 | TRTAV-COOH (MEK2) | −6.8 | −7.2 | AQTRL-COOH (SAPAP3) | −6.4 | −5.5 | PEAFK-COOH (mNotch1) | −6.7 | −7.3 |
2 | TSTTL-COOH (CXCR2) | −6.1 | −8.0 | TRTAV-COOH (MEK2) | −5.2 | −7.9 | AQTRL-COOH (SAPAP3) | −6.2 | −7.0 | PEAFK-COOH (mNotch1) | −6.9 | −5.6 |
3 | TSTTL-COOH (CXCR2) | −5.9 | −7.7 | TRTAV-COOH (MEK2) | −5.9 | −7.2 | AQTRL-COOH (SAPAP3) | −6.1 | −6.5 | PEAFK-COOH (mNotch1) | −5.4 | −5.4 |
4 | TSTTL-COOH (CXCR2) | −5.7 | −6.8 | TRTAV-COOH (MEK2) | −5.9 | −6.5 | AQTRL-COOH (SAPAP3) | −5.4 | −6.6 | PEAFK-COOH (mNotch1) | −6.2 | −4.9 |
5 | TSTTL-COOH (CXCR2) | −6.2 | −9.0 | TRTAV-COOH (MEK2) | −6.0 | −7.7 | AQTRL-COOH (SAPAP3) | −5.8 | −7.8 | PEAFK-COOH (mNotch1) | −6.3 | −5.7 |
6 | TSTTL-COOH (CXCR2) | −7.1 | −8.5 | TRTAV-COOH (MEK2) | −5.6 | −7.1 | AQTRL-COOH (SAPAP3) | −7.9 | −8.0 | PEAFK-COOH (mNotch1) | −8.1 | −6.4 |
7 | TSTTL-COOH (CXCR2) | −6.7 | −8.3 | TRTAV-COOH (MEK2) | −6.6 | −8.0 | AQTRL-COOH (SAPAP3) | −6.5 | −7.3 | PEAFK-COOH (mNotch1) | −6.8 | −6.5 |
8 | TSTTL-COOH (CXCR2) | −6.9 | −8.5 | TRTAV-COOH (MEK2) | −6.1 | −7.7 | AQTRL-COOH (SAPAP3) | −7.9 | −8.4 | PEAFK-COOH (mNotch1) | −8.1 | −6.1 |
9 | TSTTL-COOH (CXCR2) | −7.2 | −7.6 | TRTAV-COOH (MEK2) | −4.9 | −6.4 | AQTRL-COOH (SAPAP3) | −5.6 | −6.2 | PEAFK-COOH (mNotch1) | −6.2 | −5.8 |
10 | TSTTL-COOH (CXCR2) | −6.5 | −9.7 | TRTAV-COOH (MEK2) | −6.0 | −7.6 | AQTRL-COOH (SAPAP3) | −5.3 | −6.7 | PEAFK-COOH (mNotch1) | −7.1 | −5.9 |
11 | TSTTL-COOH (CXCR2) | −6.9 | −9.5 | TRTAV-COOH (MEK2) | −5.9 | −9.3 | AQTRL-COOH (SAPAP3) | −8.2 | −9.2 | PEAFK-COOH (mNotch1) | −7.7 | −7.0 |
12 | TSTTL-COOH (CXCR2) | −6.4 | −8.4 | TRTAV-COOH (MEK2) | −5.3 | −7.1 | AQTRL-COOH (SAPAP3) | −7.7 | −8.4 | PEAFK-COOH (mNotch1) | −5.9 | −5.0 |
13 | TSTTL-COOH (CXCR2) | −6.1 | −8.2 | TRTAV-COOH (MEK2) | −5.8 | −7.8 | AQTRL-COOH (SAPAP3) | −6.4 | −6.8 | PEAFK-COOH (mNotch1) | −6.4 | −5.7 |
14 | TSTTL-COOH (CXCR2) | −5.8 | −7.9 | TRTAV-COOH (MEK2) | −5.1 | −7.0 | AQTRL-COOH (SAPAP3) | −5.5 | −6.8 | PEAFK-COOH (mNotch1) | −6.6 | −6.3 |
15 | TSTTL-COOH (CXCR2) | −5.6 | −8.2 | TRTAV-COOH (MEK2) | −6.0 | −6.4 | AQTRL-COOH (SAPAP3) | −5.5 | −7.2 | PEAFK-COOH (mNotch1) | −7.3 | −6.7 |
16 | TSTTL-COOH (CXCR2) | −7.8 | −12.4 | TRTAV-COOH (MEK2) | −7.6 | −10.8 | AQTRL-COOH (SAPAP3) | −8.8 | −12.1 | PEAFK-COOH (mNotch1) | −7.2 | −7.8 |
17 | TSTTL-COOH (CXCR2) | −6.9 | −8.5 | TRTAV-COOH (MEK2) | −5.7 | −8.0 | AQTRL-COOH (SAPAP3) | −7.6 | −7.8 | PEAFK-COOH (mNotch1) | −5.6 | −5.0 |
18 | TSTTL-COOH (CXCR2) | −6.6 | −7.9 | TRTAV-COOH (MEK2) | −5.3 | −7.7 | AQTRL-COOH (SAPAP3) | −6.6 | −8.4 | PEAFK-COOH (mNotch1) | −7.1 | −6.5 |
19 | TSTTL-COOH (CXCR2) | −7.1 | −8.6 | TRTAV-COOH (MEK2) | −6.5 | −5.9 | AQTRL-COOH (SAPAP3) | −7.4 | −7.3 | PEAFK-COOH (mNotch1) | −5.4 | −6.5 |
20 | TSTTL-COOH (CXCR2) | −6.9 | −7.7 | TRTAV-COOH (MEK2) | −5.4 | −6.8 | AQTRL-COOH (SAPAP3) | −7.5 | −7.4 | PEAFK-COOH (mNotch1) | −7.2 | −6.4 |
average docking score: | −6.5 | −8.5 | average docking score: | −5.9 | −7.5 | average docking score: | −6.7 | −7.6 | average docking score: | −6.7 | −6.1 |
Peptide Within 2KV8 Pose 16 | Best GLIDE SPpep Docking Score | Best GLIDE XP Docking Score | FEP+ Solvation + Binding Energy (ΔG; kcal/mol) |
---|---|---|---|
TSTTL-COOH (CXCR2) | −7.8 | −12.4 | −12.3 ± 0.5 |
TRTAV-COOH (MEK2) | −7.6 | −10.8 | −11.1 ± 0.4 |
AQTRL-COOH (SAPAP3) | −8.8 | −12.1 | −12.7 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agogo-Mawuli, P.S.; Mendez, J.; Oestreich, E.A.; Bosch, D.E.; Siderovski, D.P. Molecular Modeling and In Vitro Functional Analysis of the RGS12 PDZ Domain Variant Associated with High-Penetrance Familial Bipolar Disorder. Int. J. Mol. Sci. 2024, 25, 11431. https://doi.org/10.3390/ijms252111431
Agogo-Mawuli PS, Mendez J, Oestreich EA, Bosch DE, Siderovski DP. Molecular Modeling and In Vitro Functional Analysis of the RGS12 PDZ Domain Variant Associated with High-Penetrance Familial Bipolar Disorder. International Journal of Molecular Sciences. 2024; 25(21):11431. https://doi.org/10.3390/ijms252111431
Chicago/Turabian StyleAgogo-Mawuli, Percy S., Joseph Mendez, Emily A. Oestreich, Dustin E. Bosch, and David P. Siderovski. 2024. "Molecular Modeling and In Vitro Functional Analysis of the RGS12 PDZ Domain Variant Associated with High-Penetrance Familial Bipolar Disorder" International Journal of Molecular Sciences 25, no. 21: 11431. https://doi.org/10.3390/ijms252111431
APA StyleAgogo-Mawuli, P. S., Mendez, J., Oestreich, E. A., Bosch, D. E., & Siderovski, D. P. (2024). Molecular Modeling and In Vitro Functional Analysis of the RGS12 PDZ Domain Variant Associated with High-Penetrance Familial Bipolar Disorder. International Journal of Molecular Sciences, 25(21), 11431. https://doi.org/10.3390/ijms252111431