Synergistic Effect between the APOE ε4 Allele with Genetic Variants of GSK3B and MAPT: Differential Profile between Refractory Epilepsy and Alzheimer Disease
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Allelic and Genotypic Distribution
2.3. Genetic Inheritance Models and ApoE ε4 Interaction
2.4. Linkage Disequilibrium Analysis
2.5. Evaluation of Gene–Gene Interactions by Multifactorial Dimensionality Reduction
2.6. Cognitive Function in Patients with Epilepsy
3. Discussion
4. Materials and Methods
4.1. Subjects
- (a)
- Patients: Patients with late-onset Alzheimer’s disease (LOAD) and temporal lobe epilepsy (TLE) were analyzed in the present genetic study. Patients with late-onset Alzheimer’s disease (age onset ≥ 60 years, n = 100) were recruited from the General Hospital of Mexico (HGM), Hospital Angeles Mocel, and the National Institute of Neurology and Neurosurgery of Mexico (INNN), all of which are located in Mexico City. The inclusion criteria were as follows: (1) individuals over 60 years of age and (2) who had been clinically diagnosed with AD by a group of experts, using the criteria of the National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) [60]. Subjects with any other type of neurodegenerative or neuroinfectious disease and patients with neoplasia were excluded from this study. Patients clinically diagnosed with refractory temporal lobe epilepsy (18–60 years, n = 198) who underwent epilepsy resective surgery were recruited from the Epilepsy Priority Program ‘PPE’ of the INNN and the HGM hospital. The inclusion criteria for clinically diagnosed individuals with refractory epilepsy were as follows: (1) having received at least two drug regimens at appropriate therapeutic doses for at least 6 months, (2) with neurological monitoring, and (3) having seizures at a frequency of at least 3 per month [61]. TLE cases were stratified according to their pathological findings into patients with Hippocampal Sclerosis-TLE (HS-TLE, n = 79), patients with non-Hippocampal Sclerosis-TLE (nHS-TLE, n = 49), and patients with Tumor-Associated-TLE (TA-TLE, n = 70). Subjects with any other type of neurodegenerative disease were excluded from the study.
- (b)
- Controls. Healthy individuals were recruited as controls and stratified by age into two groups as follows: Controls for patients with LOAD and Controls for patients with TLE. Controls for the patients with LOAD (n = 106) were recruited at the INNN and HGM hospitals following the following inclusion criteria: (1) subjects older than 60 years and (2) clinically diagnosed as non-demented according to the NINCDS-ADRD criteria. Subjects diagnosed with any neurodegenerative disease or with a family genetic history of neurodegenerative disease were excluded from the study. Controls for patients with TLE (n = 245) were recruited at the INNN and HGM hospitals using the following inclusion criteria: (1) subjects around 18 and 60 years old (2) clinically diagnosed as healthy. Subjects diagnosed with any neurological disease or with a family genetic history of neurological disease were excluded from the study.
4.2. DNA Extraction and SNP Genotyping
4.3. Statistical Analyses
4.4. Multifactorial Dimensionality Reduction (MDR)
4.5. Evaluation of Cognitive Function in Patients with Epilepsy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hesdorffer, D.C. The natural history of epilepsy: Spontaneous remission and mortality. Epilepsy Curr./Am. Epilepsy Soc. 2010, 10, 55–56. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Epilepsy: A Public Health Imperative: Summary; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Engel, J., Jr. Report of the ILAE classification core group. Epilepsia 2006, 47, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Bertram, E.H. Temporal lobe epilepsy: Where do the seizures really begin? Epilepsy Behav. 2009, 14 (Suppl. S1), 32–37. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.M.; Caboclo, L.O.; da Silva, T.I.; Noffs, M.H.; Carrete, H., Jr.; Lin, K.; Lin, J.; Sakamoto, A.C.; Yacubian, E.M. Cognitive decline in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsy. Behav. E B 2007, 10, 477–485. [Google Scholar] [CrossRef]
- Palop, J.J.; Mucke, L. Epilepsy and cognitive impairments in Alzheimer disease. Arch. Neurol. 2009, 66, 435–440. [Google Scholar] [CrossRef]
- Duan, Y.; Lin, Y.; Rosen, D.; Du, J.; He, L.; Wang, Y. Identifying Morphological Patterns of Hippocampal Atrophy in Patients With Mesial Temporal Lobe Epilepsy and Alzheimer Disease. Front. Neurol. 2020, 11, 21. [Google Scholar] [CrossRef]
- Helmstaedter, C.; Witt, J.A. Epilepsy and cognition—A bidirectional relationship? Seizure 2017, 49, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Blumcke, I.; Thom, M.; Aronica, E.; Armstrong, D.D.; Bartolomei, F.; Bernasconi, A.; Bernasconi, N.; Bien, C.G.; Cendes, F.; Coras, R.; et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013, 54, 1315–1329. [Google Scholar] [CrossRef]
- Rodriguez-Cruces, R.; Concha, L. White matter in temporal lobe epilepsy: Clinico-pathological correlates of water diffusion abnormalities. Quant. Imaging Med. Surg. 2015, 5, 264–278. [Google Scholar]
- Subota, A.; Jette, N.; Josephson, C.B.; McMillan, J.; Keezer, M.R.; Gonzalez-Izquierdo, A.; Holroyd-Leduc, J. Risk factors for dementia development, frailty, and mortality in older adults with epilepsy—A population-based analysis. Epilepsy Behav. 2021, 120, 108006. [Google Scholar] [CrossRef]
- Zott, B.; Busche, M.A.; Sperling, R.A.; Konnerth, A. What Happens with the Circuit in Alzheimer’s Disease in Mice and Humans? Annu. Rev. Neurosci. 2018, 41, 277–297. [Google Scholar] [CrossRef] [PubMed]
- Beagle, A.J.; Darwish, S.M.; Ranasinghe, K.G.; La, A.L.; Karageorgiou, E.; Vossel, K.A. Relative Incidence of Seizures and Myoclonus in Alzheimer’s Disease, Dementia with Lewy Bodies, and Frontotemporal Dementia. J. Alzheimers Dis. 2017, 60, 211–223. [Google Scholar] [CrossRef]
- Gaitatzis, A.; Carroll, K.; Majeed, A.; Sander, J.W. The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia 2004, 45, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Hesdorffer, D.C.; Hauser, W.A.; Annegers, J.F.; Kokmen, E.; Rocca, W.A. Dementia and adult-onset unprovoked seizures. Neurology 1996, 46, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Irizarry, M.C.; Jin, S.; He, F.; Emond, J.A.; Raman, R.; Thomas, R.G.; Sano, M.; Quinn, J.F.; Tariot, P.N.; Galasko, D.R.; et al. Incidence of new-onset seizures in mild to moderate Alzheimer disease. Arch. Neurol. 2012, 69, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, I.R.; Miller, L.A. Senile plaques in temporal lobe epilepsy. Acta Neuropathol. 1994, 87, 504–510. [Google Scholar] [CrossRef]
- Sen, A.; Thom, M.; Martinian, L.; Harding, B.; Cross, J.H.; Nikolic, M.; Sisodiya, S.M. Pathological tau tangles localize to focal cortical dysplasia in older patients. Epilepsia 2007, 48, 1447–1454. [Google Scholar] [CrossRef]
- DeVos, S.L.; Goncharoff, D.K.; Chen, G.; Kebodeaux, C.S.; Yamada, K.; Stewart, F.R.; Schuler, D.R.; Maloney, S.E.; Wozniak, D.F.; Rigo, F.; et al. Antisense reduction of tau in adult mice protects against seizures. J. Neurosci. 2013, 33, 12887–12897. [Google Scholar] [CrossRef]
- Xi, Z.Q.; Xiao, F.; Yuan, J.; Wang, X.F.; Wang, L.; Quan, F.Y.; Liu, G.W. Gene expression analysis on anterior temporal neocortex of patients with intractable epilepsy. Synapse 2009, 63, 1017–1028. [Google Scholar] [CrossRef]
- Aboud, O.; Mrak, R.E.; Boop, F.; Griffin, S.T. Apolipoprotein epsilon 3 alleles are associated with indicators of neuronal resilience. BMC Med. 2012, 10, 35. [Google Scholar] [CrossRef]
- Wall, J.D.; Pritchard, J.K. Haplotype blocks and linkage disequilibrium in the human genome. Nat. Rev. Genet. 2003, 4, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Motsinger, A.A.; Ritchie, M.D. Multifactor dimensionality reduction: An analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum. Genomics 2006, 2, 318–328. [Google Scholar] [CrossRef]
- Engel, J., Jr.; McDermott, M.P.; Wiebe, S.; Langfitt, J.T.; Stern, J.M.; Dewar, S.; Sperling, M.R.; Gardiner, I.; Erba, G.; Fried, I.; et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: A randomized trial. JAMA 2012, 307, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.E.; Qu, J.; Long, H.Y.; Long, L.L.; Qu, Q.; Li, X.M.; Yang, L.M.; Xiao, B. Common variants of APOE are associated with anti-epileptic drugs resistance in Han Chinese patients. Int. J. Neurosci. 2017, 127, 14–19. [Google Scholar] [CrossRef]
- Liang, Y.; Zhou, Z.; Wang, H.; Cheng, X.; Zhong, S.; Zhao, C. Association of apolipoprotein E genotypes with epilepsy risk: A systematic review and meta-analysis. Epilepsy Behav. 2019, 98 Pt A, 27–35. [Google Scholar] [CrossRef]
- Lamoureux, L.; Marottoli, F.M.; Tseng, K.Y.; Tai, L.M. APOE4 Promotes Tonic-Clonic Seizures, an Effect Modified by Familial Alzheimer’s Disease Mutations. Front. Cell Dev. Biol. 2021, 9, 656521. [Google Scholar] [CrossRef] [PubMed]
- Therriault, J.; Benedet, A.L.; Pascoal, T.A.; Mathotaarachchi, S.; Savard, M.; Chamoun, M.; Thomas, E.; Kang, M.S.; Lussier, F.; Tissot, C.; et al. APOEepsilon4 potentiates the relationship between amyloid-beta and tau pathologies. Mol. Psychiatry 2021, 26, 5977–5988. [Google Scholar] [CrossRef] [PubMed]
- Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997, 278, 1349–1356. [Google Scholar] [CrossRef]
- Gamboa, R.; Hernandez-Pacheco, G.; Hesiquio, R.; Zuniga, J.; Masso, F.; Montaño, L.F.; Ramoskuri, M.; Estrada, J.; Granados, J.; Vargasalarcón, G. Apolipoprotein E polymorphism in the Indian and Mestizo populations of Mexico. Hum. Biol. 2000, 72, 975–981. [Google Scholar]
- Leal, B.; Chaves, J.; Carvalho, C.; Bettencourt, A.; Freitas, J.; Lopes, J.; Ramalheira, J.; Costa, P.P.; Mendonca, D.; Silva, A.M.; et al. Age of onset of mesial temporal lobe epilepsy with hippocampal sclerosis: The effect of apolipoprotein E and febrile seizures. Int. J. Neurosci. 2017, 127, 800–804. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, H.; Qiu, X.; Meng, Y. Genetic influence of Apolipoprotein E gene epsilon2/epsilon3/epsilon4 isoforms on odds of mesial temporal lobe epilepsy. Afr. Health Sci. 2021, 21, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, A.; Aguglia, U.; Cittadella, R.; Romeo, N.; Sibilia, G.; LePiane, E.; Messina, D.; Manna, I.; Oliveri, R.L.; Zappia, M.; et al. Apolipoprotein E polymorphisms and the risk of nonlesional temporal lobe epilepsy. Epilepsia 1999, 40, 1804–1807. [Google Scholar] [CrossRef] [PubMed]
- Yeni, S.N.; Ozkara, C.; Buyru, N.; Baykara, O.; Hanoglu, L.; Karaagac, N.; Ozyurt, E.; Uzan, M. Association between APOE polymorphisms and mesial temporal lobe epilepsy with hippocampal sclerosis. Eur. J. Neurol. 2005, 12, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Dattani, S.; Howard, D.M.; Lewis, C.M.; Sham, P.C. Clarifying the causes of consistent and inconsistent findings in genetics. Genet. Epidemiol. 2022, 46, 372–389. [Google Scholar] [CrossRef]
- Myers, A.J.; Kaleem, M.; Marlowe, L.; Pittman, A.M.; Lees, A.J.; Fung, H.C.; Duckworth, J.; Leung, D.; Gibson, A.; Morris, C.M.; et al. The H1c haplotype at the MAPT locus is associated with Alzheimer’s disease. Hum. Mol. Genet. 2005, 14, 2399–2404. [Google Scholar] [CrossRef]
- Kwok, J.B.; Loy, C.T.; Hamilton, G.; Lau, E.; Hallupp, M.; Williams, J.; Owen, M.J.; Broe, G.A.; Tang, N.; Lam, L.; et al. Glycogen synthase kinase-3beta and tau genes interact in Alzheimer’s disease. Ann. Neurol. 2008, 64, 446–454. [Google Scholar] [CrossRef]
- Feulner, T.M.; Laws, S.M.; Friedrich, P.; Wagenpfeil, S.; Wurst, S.H.; Riehle, C.; Kuhn, K.A.; Krawczak, M.; Schreiber, S.; Nikolaus, S.; et al. Examination of the current top candidate genes for AD in a genome-wide association study. Mol. Psychiatry 2010, 15, 756–766. [Google Scholar] [CrossRef]
- Bullido, M.J.; Aldudo, J.; Frank, A.; Coria, F.; Avila, J.; Valdivieso, F. A polymorphism in the tau gene associated with risk for Alzheimer’s disease. Neurosci. Lett. 2000, 278, 49–52. [Google Scholar] [CrossRef]
- Abraham, R.; Sims, R.; Carroll, L.; Hollingworth, P.; O’Donovan, M.C.; Williams, J.; Owen, M.J. An association study of common variation at the MAPT locus with late-onset Alzheimer’s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150B, 1152–1155. [Google Scholar] [CrossRef]
- Cousin, E.; Mace, S.; Rocher, C.; Dib, C.; Muzard, G.; Hannequin, D.; Pradier, L.; Deleuze, J.F.; Genin, E.; Brice, A.; et al. No replication of genetic association between candidate polymorphisms and Alzheimer’s disease. Neurobiol. Aging 2011, 32, 1443–1451. [Google Scholar] [CrossRef]
- Laws, S.M.; Friedrich, P.; Diehl-Schmid, J.; Muller, J.; Eisele, T.; Bauml, J.; Forstl, H.; Kurz, A.; Riemenschneider, M. Fine mapping of the MAPT locus using quantitative trait analysis identifies possible causal variants in Alzheimer’s disease. Mol. Psychiatry 2007, 12, 510–517. [Google Scholar] [CrossRef]
- Myers, A.J.; Pittman, A.M.; Zhao, A.S.; Rohrer, K.; Kaleem, M.; Marlowe, L.; Lees, A.; Leung, D.; McKeith, I.G.; Perry, R.H.; et al. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol. Dis. 2007, 25, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yu, J.T.; Yang, Y.; Yang, J.; Zhang, W.; Tan, L. Association analysis of GSK3B and MAPT polymorphisms with Alzheimer’s disease in Han Chinese. Brain Res. 2011, 1391, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Rankin, C.A.; Sun, Q.; Gamblin, T.C. Tau phosphorylation by GSK-3beta promotes tangle-like filament morphology. Mol. Neurodegener. 2007, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Engel, T.; Hernandez, F.; Avila, J.; Lucas, J.J. Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J. Neurosci. 2006, 26, 5083–5090. [Google Scholar] [CrossRef]
- Lucas, J.J.; Hernandez, F.; Gomez-Ramos, P.; Moran, M.A.; Hen, R.; Avila, J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 2001, 20, 27–39. [Google Scholar] [CrossRef]
- Inkster, B.; Nichols, T.E.; Saemann, P.G.; Auer, D.P.; Holsboer, F.; Muglia, P.; Matthews, P.M. Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder. Arch. Gen. Psychiatry 2009, 66, 721–728. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, H.; Cao, X.; Cheng, C.; Yang, C.; Xu, C.; Zhang, A.; Sun, N.; Li, X.; Zhang, K. A combined study of GSK3beta polymorphisms and brain network topological metrics in major depressive disorder. Psychiatry Res. 2014, 223, 210–217. [Google Scholar] [CrossRef]
- Ke, S.; Li, J.; Zhao, L.; Yang, J.; Zhao, X.; Zhang, W.; Qiu, X.; Yang, X.; Zhou, J.; Tong, Y.; et al. The Gender-Specific Interaction of DVL3 and GSK3beta Polymorphisms on Major Depressive Disorder Susceptibility in a Chinese Han Population: A Case-Control Study. Oxid. Med. Cell. Longev. 2022, 2022, 2633127. [Google Scholar] [CrossRef]
- Lehmann, D.J.; Wiebusch, H.; Marshall, S.E.; Johnston, C.; Warden, D.R.; Morgan, K.; Schappert, K.; Poirier, J.; Xuereb, J.; Kalsheker, N.; et al. HLA class I, II & III genes in confirmed late-onset Alzheimer’s disease. Neurobiol. Aging 2001, 22, 71–77. [Google Scholar]
- Combarros, O.; Cortina-Borja, M.; Smith, A.D.; Lehmann, D.J. Epistasis in sporadic Alzheimer’s disease. Neurobiol. Aging 2009, 30, 1333–1349. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.H.; Williams, S.M. Traversing the conceptual divide between biological and statistical epistasis: Systems biology and a more modern synthesis. Bioessays 2005, 27, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yamada, K.; Liddelow, S.A.; Smith, S.T.; Zhao, L.; Luo, W.; Tsai, R.M.; Spina, S.; Grinberg, L.T.; Rojas, J.C.; et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 2017, 549, 523–527. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, M.; Gratuze, M.; Bao, X.; Shi, Y.; Andhey, P.S.; Manis, M.; Schroeder, C.; Yin, Z.; Madore, C.; et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 2021, 109, 1657–1674.e7. [Google Scholar] [CrossRef] [PubMed]
- Caruso, A.; Motolese, M.; Iacovelli, L.; Caraci, F.; Copani, A.; Nicoletti, F.; Terstappen, G.C.; Gaviraghi, G.; Caricasole, A. Inhibition of the canonical Wnt signaling pathway by apolipoprotein E4 in PC12 cells. J. Neurochem. 2006, 98, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Gharbi-Meliani, A.; Dugravot, A.; Sabia, S.; Regy, M.; Fayosse, A.; Schnitzler, A.; Kivimaki, M.; Singh-Manoux, A.; Dumurgier, J. The association of APOE epsilon4 with cognitive function over the adult life course and incidence of dementia: 20 years follow-up of the Whitehall II study. Alzheimers Res. Ther. 2021, 13, 5. [Google Scholar] [CrossRef]
- Emrani, S.; Arain, H.A.; DeMarshall, C.; Nuriel, T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: A systematic review. Alzheimers Res. Ther. 2020, 12, 141. [Google Scholar] [CrossRef]
- Busch, R.M.; Lineweaver, T.T.; Naugle, R.I.; Kim, K.H.; Gong, Y.; Tilelli, C.Q.; Prayson, R.A.; Bingaman, W.; Najm, I.M.; Diaz-Arrastia, R. ApoE-epsilon4 is associated with reduced memory in long-standing intractable temporal lobe epilepsy. Neurology 2007, 68, 409–414. [Google Scholar] [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G.; Moshe, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010, 51, 1069–1077. [Google Scholar] [CrossRef]
- Semaev, S.; Shakhtshneider, E.; Shcherbakova, L.; Ivanoshchuk, D.; Orlov, P.; Malyutina, S.; Gafarov, V.; Ragino, Y.; Voevoda, M. Associations of APOE Gene Variants rs429358 and rs7412 with Parameters of the Blood Lipid Profile and the Risk of Myocardial Infarction and Death in a White Population of Western Siberia. Curr. Issues Mol. Biol. 2022, 44, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Attia, J.; Thakkinstian, A.; D’Este, C. Meta-analyses of molecular association studies: Methodologic lessons for genetic epidemiology. J. Clin. Epidemiol. 2003, 56, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [PubMed]
nHS-TLE | HS-TLE | TA-TLE | Controls | AD | AD Controls | |
---|---|---|---|---|---|---|
n = 49 | n = 79 | n = 70 | n = 245 | n = 100 | n = 106 | |
Age (years) | 36.8 ± 9.87 | 38.2 ± 10.2 | 37.33 ± 12.22 | 38.8 ± 20.08 | 75.37 ± 10.35 | 73.53 ± 10.22 |
Mean ± SD | ||||||
min–max | 22–66 | 19–68 | 17–69 | 18–91 | 32–100 | 43–100 |
Median (p25–p75) | 36 (29–41) | 37 (30–45) | 36.5 (28–46) | 30 (24–47) | 75.5 (68.5–83) | 73.5 (68–83) |
p-value | 0.101 | 0.011 | 0.167 | 0.178 | ||
Sex N (%) | ||||||
Males | 23 (47%) | 42 (53.2%) | 36 (51.4%) | 103 (42%) | 32 (32%) | 39 (36.8%) |
Females | 26 (53%) | 37 (46.8%) | 34 (48.6%) | 142 (58%) | 68 (68%) | 67 (63.2%) |
x2 | 0.4 | 2.99 | 1.94 | 0.52 | ||
p-value | 0.52 | 0.08 | 0.16 | 0.47 |
Polymorphisms Alleles/Genotypes | nHS-TLE | HS-TLE | TA-TLE | Controls | AD | AD Controls | |
---|---|---|---|---|---|---|---|
Gene | n = 49 | n = 79 | n = 70 | n = 245 | n = 100 | n = 106 | |
MAPT | rs242557 | n(%) | n(%) | n(%) | n(%) | n(%) | n(%) |
A/G | 32 (33)/66 (67) | 63 (39)/96 (61) | 51 (36)/90 (64) | 182 (37)/308 (63) | 74 (37)/126 (63) | 71 (33)/142 (67) | |
AA/GA/GG | 5 (10)/22 (45)/22 (45) | 10 (12.7)/42 (53.2)/27 (34.2) | 6 (8.6)/38 (54.3)/26 (37.1) | 31 (13)/120 (49)/94 (38) | 13 (13)/48 (48)/39 (39) | 11 (10.4)/48 (45.3)/47 (44.3) | |
p | 0.68 | 0.78 | 0.57 | 0.69 | |||
EHW p | 1 | 0.36 | 0.19 | 0.5 | 0.83 | 1 | |
rs1467967 | |||||||
A/G | 67 (68)/31 (32) | 101 (64)/57 (36) | 88 (63)/52 (37) | 312 (64)/178 (36) | 123 (62)/77 (38) | 144 (68)/68 (32) | |
AA/AG/GG | 24 (49)/19 (39)/6 (12) | 33 (42)/35 (44)/11 (14) | 29 (41)/30 (43)/11 (16) | 103 (42)/106 (43)/36 (15) | 41 (41)/41 (41)/18 (18) | 52 (49.1)/40 (37.7)/14 (13.2) | |
p | 0.66 | 0.98 | 0.98 | 0.44 | |||
EHW p | 0.51 | 0.81 | 0.61 | 0.33 | 0.2 | 0.18 | |
rs2471738 | |||||||
C/T | 72 (72)/27 (28) | 107 (67)/52 (33) | 97 (69)/44 (31 | 322 (66)/169 (34) | 148 (74)/53 (26) | 136 (64)/77 (36) | |
CC/CT/TT | 25 (51)/21 (42.9)/3 (6.1) | 36 (45.6)/34 (43)/9 (11.4) | 35 (50.0)/26 (37.1)/9 (12.9) | 105 (42.9)/111 (45.3)/29 (11.8) | 57 (57)/33 (33)/10 (10) | 14 (13.2)/49 (46.2)/43 (40.6) | |
p | 0.38 | 0.91 | 0.47 | 0.06 | |||
EHW p | 0.73 | 0.8 | 0.27 | 1 | 0.13 | 1 | |
rs7521 | |||||||
A/G | 30 (31)/68 (69) | 49 (31)/109 (69) | 44 (31)/96 (69) | 145 (30)/345 (70) | 56 (28)/144 (72) | 61 (29)/151(71) | |
AA/GA/GG | 5 (10.2)/20 (40.8)/24 (49.0) | 4 (5.1)/41 (51.9)/34 (43) | 6 (8.6)/32 (45.7)/32 (45.7) | 16 (6.5)/113 (46.1)/116 (47.3) | 12 (12)/32 (32)/56 (56) | 8 (7.5)/45 (42.5)/53 (50.0) | |
p | 0.59 | 0.65 | 0.836 | 0.23 | |||
EHW p | 0.74 | 0.11 | 0.78 | 0.12 | 0.046 | 0.82 | |
rs3785883 | |||||||
A/G | 16 (16)/82 (84) | 22 (14)/136 (86) | 20 (14)/120 (86) | 81 (17)/409 (83) | 30 (15)/170 (85) | 46 (22)/166 (78) | |
AA/GA/GG | 2 (4.1)/12 (24.5)/35 (71.4) | 2 (2.5)/18 (22.8)/59 (74.7) | 2 (2.9)/16 (22.9)/52 (74.3) | 7 (2.9)/67 (27.3)/171 (69.8) | 2 (2)/26 (26)/72 (72) | 4 (3.8)/38 (35.8)/64 (60.4) | |
p | 0.84 | 0.7 | 0.75 | 0.2 | |||
EHW p | 0.59 | 0.64 | 0.62 | 0.82 | 1 | 0.78 | |
GSK3B | rs334558 | ||||||
A/ G | 77 (79)/21 (21) | 111 (70)/47 (30) | 100 (71)/40 (29) | 350 (71)/140 (29) | 149 (74)/51 (26) | 144 (0.68)/68 (0.32) | |
AA/AG/GG | 31 (63.3)/15 (30.6)/3 (6.1) | 38 (48.1)/35 (44.3)/6 (7.6) | 39 (55.7)/22 (31.4)/9 (12.9) | 126 (51.4)/98 (40)/21 (8.6) | 59 (59)/31 (31)/ | 52 (49.1)/40 (37.7)/14 (13.2) | |
p | 0.31 | 0.79 | 0.32 | 0.35 | |||
EHW p | 0.67 | 0.79 | 0.075 | 0.76 | 0.068 | 0.18 | |
rs6438552 | |||||||
A/G | 72 (73)/26 (27) | 110 (71)/46 (29) | 101 (72)/39 (28) | 342 (70)/148 (30) | 141 (70)/59 (30) | 145 (68)/67 (32) | |
AA/AG/GG | 24 (49)/24 (49)/1 (2) | 40 (50.6)/31 (39.2)/8 (10.1) | 35 (50.0)/31 (44.3)/4 (5.7) | 120 (49)/102 (41.6)/23 (9.3) | 52 (52)/37 (37)/11 (11) | 53 (50.0)/39 (36.8)/14 (13.2) | |
p | 0.2 | 0.93 | 0.62 | 0.88 | |||
EHW p | 0.14 | 0.58 | 0.55 | 0.88 | 0.33 | 0.12 | |
APOE | APOE | ||||||
E2/E2 | 1 (2) | 2 (2.5) | 0 | 3 (1.2) | 0 (0) | 1 (1) | |
E2/E3 | 0 (0) | 1 (1.3) | 0 | 27 (11) | 7 (7) | 44 (41.9) | |
E3/E3 | 34 (69.4) | 67 (84.8) | 56 (80) | 170 (69.4) | 57 (57) | 45 (42.9) | |
E3/E4 | 14 (28.6) | 9 (11.4) | 14 (20) | 43 (17.6) | 28 (28) | 14 (13.3) | |
E4/E4 | 0 | 0 | 0 | 2 (0.8) | 8 (8) | 0 (0) | |
E2/E4 | 0 | 0 | 0 | 0 | 0 (0) | 1 (1) | |
p | 0.073 | 0.024 | 0.038 | 0.0001 |
nHS-TLE | HS-TLE | TA-TLE | AD | ||
n= 49 | n= 79 | n= 70 | n= 100 | ||
Gene | Polymorphisms | ||||
MAPT | rs242557 | ||||
MODELS | [OR(CI), p] | [OR(CI), p] | [OR(CI), p] | [OR(CI), p] | |
D | |||||
“A/G+A/A” vs. G/G | 0.507 (0.244–1.054), 0.069 | 1.242 (0.696–2.217), 0.464 | 1.171 (0.624–2.198), 0.624 | 0.806 (0.419–1.548), 0.516 | |
“A/G+A/A” vs. G/G * APOE | 4.22 (0.845–21.068), 0.079 | 0.568 (0.118–2.722), 0.479 | 0.488 (0.124–1.930), 0.307 | 4.682 (1.104–19.852), 0.036 | |
R | |||||
A/A vs. “A/G+G/G” | 0.358 (0.081–1.580), 0.175 | 0.862 (0.382–1.084), 0.721 | 0.557 (0.203–1.530), 0.256 | 1.487 (0.576–3.840), 0.413 | |
A/A vs. “A/G+G/G” * APOE | 11.366 (1.147–112.648), 0.038 | 2.128 (0.168–26.78), 0.559 | 1.737 (0.134–22.574), 0.673 | 0.866 (0.069–10.930), 0.912 | |
H | |||||
A/G vs. “A/A+G/G” | 0.729 (0.349–1.522), 0.401 | 1.305 (0.753–2.26), 0.343 | 1.464 (0.803–2.669), 0.214 | 0.661 (0.340–1.287), 0.223 | |
A/G vs. “A/A+G/G” * APOE | 1.359 (0.327–5.636), 0.673 | 0.452 (0.096–2.126), 0.315 | 0.396 (0.102–1.545), 0.182 | 4.862 (1.171–20.187), 0.029 | |
rs1467967 | |||||
D | |||||
“A/G+G/G” vs. A/A | 0.671 (0.326–1.380), 0.278 | 0.971 (0.557–1.694), 0.919 | 1.007 (0.550–1.844), 0.982 | 1.244 (0.647–2.391), 0.513 | |
“A/G+G/G” vs. A/A * APOE | 1.640 (0.399–6.733), 0.493 | 1.019 (0.217–4.797), 0.981 | 1.105 (0.284- 4.302), 0.886 | 1.559 (0.388–6.261), 0.531 | |
R | |||||
G/G vs. “A/G+A/A” | 0.150 (0.20–1.138), 0.066 | 0.880 (0.405–1.910), 0.747 | 1.131 (0.515–2.481), 0.756 | 1.441 (605–3.432), 0.41 | |
G/G vs. “A/G+A/A” * APOE | 47.717 (3.727–610.877), 0.003 | 1.799 (0.153–21.088), 0.64 | 0.759 (0.067–8.531), 0.823 | 2.319 (0.213–25.279), 0.49 | |
H | |||||
A/G vs. “A/A+G/G” | 1.152 (0.559–2.376), 0.701 | 1.1 (0.633–1.911), 0.735 | 0.938 (0.513–1.716), 0.836 | 1.03 (0.518–1.980), 0.969 | |
A/G vs. “A/A+G/G” * APOE | 0.257 (0.053–1.255), 0.093 | 0.785 (0.167–3.693), 0.759 | 1.237 (0.321–4.763), 0.757 | 1.173 (0.286–4.804), 0.824 | |
rs2471738 | |||||
D | |||||
“T/C+T/T” vs. C/C | 0.647 (0.314–1.33), 0.238 | 0.711 (0.410–1.235), 0.226 | 0.684 (0.376–1.243), 0.213 | 0.458 (0.237- 0.888), 0.021 | |
“T/C+T/T” vs. C/C * APOE | 1.71 (0.420–6.966), 0.454 | 5.375 (0.917–31.522), 0.062 | 1.562 (0.406–6.010), 0.517 | 2.786 (0.658–11.791), 0.164 | |
R | |||||
T/T vs. “T/C+C/C” | 0.437 (0.098–1.940), 0.276 | 0.659 (0.256–1.694), 0.387 | 0.855 (0.330–2.215), 0.747 | 0.943 (0.340–2.616), 0.91 | |
T/T vs. “T/C+C/C” * APOE | 1.356 (0.092–20.028), 0.825 | 5.748 (0.840–39.331), 0.075 | 2.411 (0.380–15.319), 0.351 | 0.374 (0.050–2.813), 0.339 | |
H | |||||
T/C vs. “T/T+C/C” | 0.840 (0.406–1.739), 0.638 | 0.832 (0.478–1.447), 0.515 | 0.727 (0.396–1.334), 0.303 | 0.457 (0.232–0.899), 0.023 | |
T/C vs. “T/T+C/C” * APOE | 1.587 (0.381–6.606), 0.525 | 1.711 (0.361–8.111), 0.499 | 0.952 (0.223–4.061), 0.947 | 6.4 (1.063–38.798), 0.043 | |
rs7521 | |||||
D | |||||
“A/G+A/A” vs. G/G | 1.094 (0.531–2.253), 0.807 | 1.639 (0.937–2.868), 0.083 | 1.278 (0.702–2.327), 0.423 | 0.687 (0.356–1.323), 0.262 | |
“A/G+A/A” vs. G/G * APOE | 0.505 (0.123–2.080), 0.344 | 0.093 (0.016–0.556), 0.009 | 0.437 (0.112–1.695), 0.231 | 1.129 (0.281–4.543), 0.864 | |
R | |||||
A/A vs. “A/G+G/G” | 1.928 (0.582–6.388), 0.283 | 0.660 (0.182–2.393), 0.573 | 1.845 (0.660–5.154), 0.243 | 1.036 (0.339–3.165), 0.95 | |
A/A vs. “A/G+G/G” * APOE | 0.916 (0.058–14.405), 0.95 | 4.093 (0.239–70.014), 0.331 | |||
H | |||||
A/G vs. “A/A+G/G” | 0.888 (0.427–1.849), 0.751 | 1.77 (1.0018–3.076), 0.043 | 1.060 (0.582–1.93), 0.849 | 0.654 (0.328–1.303), 0.227 | |
A/G vs. “A/A+G/G” * APOE | 0.555 (0.133–2.312), 0.419 | 0.046 (0.005–0.428) p = 0.007 | 0.628 (0.163–2.422), 0.499 | 0.532 (0.128–2.217), 0. 386 | |
rs3785883 | |||||
D | |||||
“A/G+A/A” vs. G/G | 0.746 (0.329–1.69), 0.482 | 0.680 (0.363–1.273), 0.228 | 0.722 (0.367–1.420), 0.345 | 0.92 (0.469–1.805), 0.809 | |
“A/G+A/A” vs. G/G * APOE | 2.338 (0.507–10.78), 0.276 | 2.657 (0.493–14.316), 0.255 | 1.919 (0.421–8.75), 0.4 | 0.155 (0.034–0.710), 0.016 | |
R | |||||
A/A vs. “A/G+G/G” | 1.862 (363–9.553), 0.456 | 0.397 (0.040–3.332), 0.395 | 1.131 (0.224–5.702), 0.882 | 0.897 (0.144–5.587), 0.907 | |
A/A vs. “A/G+G/G” * APOE | |||||
H | |||||
A/G vs. “A/A+G/G” | 0.624 (0.257–1.517), 0.298 | 0.743 (0.391–1.410), 0.363 | 0.685 (0.336–1.398), 0.299 | 0.933 (0.467–1.862), 0.844 | |
A/G vs. “A/A+G/G” * APOE | 2.796 (0.583–13.411), 0.199 | 1.360 (0.215–8.581), 0.744 | 2.026 (0.436–9.413), 0.368 | 0.204 (0.045–0.930), 0.04 | |
GSK3B | rs334558 | ||||
D | |||||
“A/G+G/G” vs. A/A | 0.477 (0.221–1.029), 0.059 | 1.187 (0.684–2.060), 0.542 | 0.890 (0.499–1.618), 0.702 | 0.701 (0.366–1.344), 0.285 | |
“A/G+G/G” vs. A/A * APOE | 2.53 (0.604–10.601), 0.204 | 0.807 (0.171–3.801), 0.786 | 0.733 (0.183–2.931), 0.66 | 0.689 (0.170–2.794), 0.602 | |
R | |||||
G/G vs. “A/G+A/A” | 0.706 (0.153–3.252), 0.655 | 0.866 (0.302–2.483), 0.789 | 2.254 (0.926–5.485), 0.073 | 0.603 (0.215–1.695), 0.338 | |
G/G vs. “A/G+A/A” * APOE | 1.079 (0.069–16.927), 0.957 | 1.449 (0.112–18.729), 0.777 | 2.677 (0.218–32.822), 0.441 | ||
H | |||||
A/G vs. “A/A+G/G” | 0.499 (0.222–1.120), 0.092 | 1.238 (0.713–2.149), 0.448 | 0.616 (0.326–1.167), 0.137 | 0.853 (0.429–1.694), 0.649 | |
A/G vs. “A/A+G/G” * | 2.643 (0.608–11.483), 0.195 | 0.705 (0.140–3.557), 0.673 | 1.563 (0.382–6.402), 0.535 | 0.473 (0.114–1.968), 0.303 | |
rs6438552 | |||||
D | |||||
“A/G+G/G” vs. A/A | 0.582 (0.276–1.224), 0.153 | 1.054 (0.609–1.824), 0.852 | 1.226 (0.673–2.234), 0.506 | 0.961 (0.504–1.830), 0.903 | |
“A/G+G/G” vs. A/A * APOE | 9.549 (1.613–56.539), 0.013 | 0.443 (0.089–2.210), 0.321 | 0.285 (0.067–1.207), 0.088 | 0.723 (0.179–2.913), 0.648 | |
R | |||||
G/G vs. “A/G+A/A” | 0.337 (0.043–2.635), 0.3 | 1.442 (0.587–3.542), 0.425 | 0.876 (0.278–2.756), 0.821 | 0.724 (0.269–1.948), 0.523 | |
G/G vs. “A/G+A/A” * APOE | 2.233 (0.185–26.897), 0.527 | ||||
H | |||||
A/G vs. “A/A+G/G” | 0.714 (0.335–1.519), 0.381 | 0.924 (0.529–1.615), 0.782 | 1.27 (0.699–2.307), 0.433 | 1.12 (0.569–2.203), 0.743 | |
A/G vs. “A/A+G/G” * APOE | 13.523 (2.265–80.736), 0.004 | 0.871 (0.173–4.382), 0.867 | 0.478 (0.112–2.028), 0.317 | 0.531 (0.130–2.163), 0.377 | |
APOE | APOE | ||||
MODELS | |||||
ApoE4 carriers vs. ApoE4 non-carriers E4 | 1.8 (0.892–1.013) | 0.588 (0.271–1.271) | 1.138 (0.580–2.233) | 3.458 (1.734–6.897) | |
p | 0.1 | 0.177 | 0.707 | 0.0001 | |
INTERACTION | nHS-TLE | ||||
MAPT_GSK3B_APOE | [OR(CI), p] | ||||
rs1467967 (G/G vs. “A/G+A/A”)_ rs6438552 (“A/G+G/G” vs. A/A)_APOE | 23.401 (2.496–219.402), 0.006 |
Model | Accuracy | Sensitivity | Specificity | Consistency | OR (95%CI) | p |
---|---|---|---|---|---|---|
Non-Hippocampal Sclerosis-Temporal Lobe Epilepsy | ||||||
APOE | 0.686 | 0.354 | 0.752 | 7/10 | 1.663 (0.835–3.312) | 0.145 |
GSK3B_rs6438552, APOE (G*ε4 carriers) | 0.556 | 0.696 | 0.528 | 9/10 | 2.566 (1.282–5.137) | 0.006 |
MAPT2_rs1467967, GSK3B_rs6438552, APOE (GG*ε4) | 0.652 | 0.696 | 0.643 | 10/10 | 4.136 (2.057–8.316) | <0.001 |
MAPT1_rs242557, MAPT2_rs1467967, GSK3B_rs6438552, APOE (AGG*ε4) | 0.632 | 0.809 | 0.597 | 10/10 | 6.291 (2.831–13.97) | <0.001 |
Hippocampal Sclerosis-Temporal Lobe Epilepsy | ||||||
APOE | 0.413 | 0.783 | 0.294 | 7/10 | 1.505 (0.798–2.839) | 0.204 |
MAPT4_rs7521, APOE (A*ε4) | 0.588 | 0.601 | 0.584 | 10/10 | 2.108 (1.222–3.635) | 0.007 |
Patients with Alzheimer’s Disease | ||||||
APOE | 0.616 | 0.36 | 0.858 | 10/10 | 3.412 (1.663–7.003) | <0.001 |
MAPT3_rs2471738, APOE (T*ε4) | 0.632 | 0.59 | 0.671 | 7/10 | 2.933 (1.611–5.339) | <0.001 |
MAPT3_rs2471738, MAPT5_rs3785883, APOE (TA*ε4) | 0.658 | 0.628 | 0.686 | 6/10 | 3.695 (2.011–6.787) | <0.001 |
MAPT1_rs242557, MAPT3_rs2471738, MAPT5_rs3785883, APOE (ATA*ε4) | 0.683 | 0.547 | 0.812 | 10/10 | 5.221 (2.697–10.108) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toral-Rios, D.; Pichardo-Rojas, P.; Ruiz-Sánchez, E.; Rosas-Carrasco, Ó.; Carvajal-García, R.; Gálvez-Coutiño, D.C.; Martínez-Rodríguez, N.L.; Rubio-Chávez, A.D.; Alcántara-Flores, M.; López-Ramírez, A.; et al. Synergistic Effect between the APOE ε4 Allele with Genetic Variants of GSK3B and MAPT: Differential Profile between Refractory Epilepsy and Alzheimer Disease. Int. J. Mol. Sci. 2024, 25, 10228. https://doi.org/10.3390/ijms251810228
Toral-Rios D, Pichardo-Rojas P, Ruiz-Sánchez E, Rosas-Carrasco Ó, Carvajal-García R, Gálvez-Coutiño DC, Martínez-Rodríguez NL, Rubio-Chávez AD, Alcántara-Flores M, López-Ramírez A, et al. Synergistic Effect between the APOE ε4 Allele with Genetic Variants of GSK3B and MAPT: Differential Profile between Refractory Epilepsy and Alzheimer Disease. International Journal of Molecular Sciences. 2024; 25(18):10228. https://doi.org/10.3390/ijms251810228
Chicago/Turabian StyleToral-Rios, Danira, Pavel Pichardo-Rojas, Elizabeth Ruiz-Sánchez, Óscar Rosas-Carrasco, Rosa Carvajal-García, Dey Carol Gálvez-Coutiño, Nancy Lucero Martínez-Rodríguez, Ana Daniela Rubio-Chávez, Myr Alcántara-Flores, Arely López-Ramírez, and et al. 2024. "Synergistic Effect between the APOE ε4 Allele with Genetic Variants of GSK3B and MAPT: Differential Profile between Refractory Epilepsy and Alzheimer Disease" International Journal of Molecular Sciences 25, no. 18: 10228. https://doi.org/10.3390/ijms251810228
APA StyleToral-Rios, D., Pichardo-Rojas, P., Ruiz-Sánchez, E., Rosas-Carrasco, Ó., Carvajal-García, R., Gálvez-Coutiño, D. C., Martínez-Rodríguez, N. L., Rubio-Chávez, A. D., Alcántara-Flores, M., López-Ramírez, A., Martínez-Rosas, A. R., Ruiz-Chow, Á. A., Alonso-Vanegas, M., & Campos-Peña, V. (2024). Synergistic Effect between the APOE ε4 Allele with Genetic Variants of GSK3B and MAPT: Differential Profile between Refractory Epilepsy and Alzheimer Disease. International Journal of Molecular Sciences, 25(18), 10228. https://doi.org/10.3390/ijms251810228