Integrated Analysis of Metabolome and Transcriptome Reveals the Effect of Burdock Fructooligosaccharide on the Quality of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis)
Abstract
:1. Introduction
2. Result
2.1. Effects of Different Concentrations of Burdock Fructooligosaccharide (BFO) on the Growth and Quality of Chinese Cabbage Seedlings
2.2. Metabolome Analysis of BFO on Chinese Cabbage Seedlings
2.3. Transcriptome Analysis of BFO on Chinese Cabbage Seedlings
2.4. Combined Metabolome and Transcriptome Analysis of BFO on Chinese Cabbage Seedlings
2.5. Validation of the DEGs by qRT-PCR
3. Discussion
4. Materials and Methods
4.1. BFO Preparation
4.2. Plant Materials and Treatment
4.3. Fresh Weight Measurement
4.4. Soluble Sugar Content Measurement
4.5. Metabolome
4.6. Transcriptome Analysis
4.7. Real-Time Quantitative PCR (RT-qPCR) Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANS | Anthocyanidin Synthase |
BCAT | Branched-chain Amino Acid Amino-transferases |
BFO | Burdock Fructooligosaccharide |
BGL/BGH | Beta-glucosidase |
BP | Biological Process |
CAMT | Caffeoyl-CoA O-methyltransferase |
CC | Cellular Component |
CFI | Chalcone Isomerase |
CHS | Chalcone Synthase |
CK | H2O treatment |
DAMs | Differentially Accumulated Metabolites |
DEGs | Differentially Expressed Genes |
FC | Fold Change |
FLS | Flavonol Synthase |
HxK1 | Hexokinase |
INV | Invertase |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MAM | Methylthioalkylmalate Synthases |
MF | Molecular Function |
OPLS-DA | Orthogonal Partial Least Squares-Discriminant Analysis |
PCA | Principal Component Analysis |
PFD | Photon Flux Density |
ROS | Reactive Oxygen Species |
SOT | Sulfotransferases |
SPP | Sucrose-6-phosphatase |
SPS | Sucrose Phosphate Synthase |
SUR1 | C-S lyase |
SUS | Sucrose Synthase |
UDPG | UDP-glucose |
UGT | UDP-glucosyl Transferase |
VIP | Variable Importance in Projection |
References
- Xu, R.; Sun, Y. Research progress of chinese cabbage quality. J. Anhui Agric. Sci. 2008, 15, 6259–6260. [Google Scholar] [CrossRef]
- Song, C.; Ye, X.; Liu, G.; Zhang, S.; Li, G.; Zhang, H.; Li, F.; Sun, R.; Wang, C.; Xu, D.; et al. Comprehensive evaluation of nutritional qualities of Chinese cabbage (Brassica rapa ssp. pekinensis) Varieties Based on Multivariate Statistical Analysis. Horticulturae 2023, 9, 1264. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Li, J.; Zhang, Y.; Zhou, D.; Li, C.; He, L.; Li, H.; Wang, F.; Gao, J. Identification of key genes controlling soluble sugar and glucosinolate biosynthesis in Chinese cabbage by integrating metabolome and genome-wide transcriptome analysis. Front. Plant Sci. 2022, 13, 1043489. [Google Scholar] [CrossRef]
- He, Q.; Wu, J.; Xue, Y.; Zhao, W.; Li, R.; Zhang, L. The novel gene BrMYB2, located on chromosome A07, with a short intron 1 controls the purple-head trait of Chinese cabbage (Brassica rapa L.). Hortic. Res. 2020, 7, 97. [Google Scholar] [CrossRef]
- Predes, F.S.; Ruiz, A.L.; Carvalho, J.E.; Foglio, M.A.; Dolder, H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement. Altern. Med. 2011, 11, 25. [Google Scholar] [CrossRef]
- Hao, L.; Lei, C.; Na, Z.; Chen, K.; Li, G. Separation, Purification and Structure of Burdock Oligosaccharide. Chem. J. Chin. Univ. 2005, 26, 1242–1247. [Google Scholar]
- Ru, L.; Jiang, L.; Wills, R.B.H.; Golding, J.B.; Huo, Y.; Yang, H.; Li, Y. Chitosan oligosaccharides induced chilling resistance in cucumber fruit and associated stimulation of antioxidant and HSP gene expression. Sci. Hortic. 2020, 264, 109187. [Google Scholar] [CrossRef]
- Riseh, R.S.; Hassanisaadi, M.; Vatankhah, M.; Babaki, S.A.; Barka, E.A. Chitosan as a potential natural compound to manage plant diseases. Int. J. Biol. Macromol. 2022, 220, 998–1009. [Google Scholar] [CrossRef]
- Elango, D.; Rajendran, K.; Van der Laan, L.; Sebastiar, S.; Raigne, J.; Thaiparambil, N.A.; El Haddad, N.; Raja, B.; Wang, W.; Ferela, A.; et al. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? Front. Plant Sci. 2022, 13, 829118. [Google Scholar] [CrossRef]
- Kongala, S.I.; Kondreddy, A. A review on plant and pathogen derived carbohydrates, oligosaccharides and their role in plant’s immunity. Carbohydr. Polym. Technol. Appl. 2023, 6, 100330. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Z. Application and Development of Chitino-oligosaccharides and Chitino-oligosaccharides. Chin. J. Microecol. 1998, 10, 54–57. [Google Scholar]
- Guo, Y.; Guo, M.; Zhao, W.; Chen, K.; Zhang, P. Burdock fructooligosaccharide induces stomatal closure in Pisum sativum. Carbohydr. Polym. 2013, 97, 731–735. [Google Scholar] [CrossRef]
- Guo, M.; Chen, K.; Zhang, P. Transcriptome profile analysis of resistance induced by burdock fructooligosaccharide in tobacco. J. Plant Physiol. 2012, 169, 1511–1519. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, P.; Guo, M.; Yu, W.; Chen, K. Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning. Food Chem. 2013, 138, 539–546. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Li, Y.; Yang, L.; Sun, B.; Zhang, Y.; Xu, Y.; Yan, X. Controlling effect and mechanism of burdock fructooligosaccharide against Alternaria fruit rot in blueberry during postharvest. Postharvest Biol. Technol. 2023, 196, 112175. [Google Scholar] [CrossRef]
- Sun, F.; Zhu, L.; Wang, X.; Cheng, J.; Cui, B.; Liu, J.; Tan, F.; Fu, M. Sucrose transportation control mediates the fresh-keeping effects of burdock fructooligosaccharide in ‘Crimson Seedless’ grapes. Food Chem. 2020, 332, 127437. [Google Scholar] [CrossRef]
- Jiang, Y.-Y.; Yu, J.; Li, Y.-B.; Wang, L.; Hu, L.; Zhang, L.; Zhou, Y.-H. Extraction and antioxidant activities of polysaccharides from roots of Arctium lappa L. Int. J. Biol. Macromol. 2019, 123, 531–538. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, L.; Li, Y.; Liu, Z.; Chen, G.; Zhang, C. Effects of botanical foliar fertilizers on watermelon yield, quality and nutrient absorption. Soil Fertil. Sci. China 2010, 4, 57–60+88. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, Y.; Wang, X.; Qi, J.; Yang, L.; Wei., J.; Li, G. Effects of burdock extract on spinach’s growth and quality. J. Plant Nutr. Fertil. 2009, 15, 729–732. [Google Scholar] [CrossRef]
- Hao, L.; Shi, H.; Sun, P.; Chen, K.; Li, G. Effects of Burdock Oligosaccharide on Physiological and Biochemical Features of Cucumber Seedlings. Acta Bot. Boreali-Occident. Sin. 2006, 8, 1612–1616. [Google Scholar]
- Hao, L.; Chen, K.; Li, G. Physiological Effects of Bur dock Oligosaccharide on Growth Promotion and Chilling Resistance of Cucumber Seedlings. J. Shanghai Jiaotong Univ. (Agric. Sci.) 2006, 1, 6–12. [Google Scholar]
- Yuan, P.; Shao, T.; Han, J.; Liu, C.; Wang, G.; He, S.; Xu, S.; Nian, S.; Chen, K. Burdock fructooligosaccharide as an α-glucosidase inhibitor and its antidiabetic effect on high-fat diet and streptozotocin-induced diabetic mice. J. Funct. Foods 2021, 86, 104703. [Google Scholar] [CrossRef]
- Ding, M.; Tang, Z.; Liu, W.; Shao, T.; Yuan, P.; Chen, K.; Zhou, Y.; Han, J.; Zhang, J.; Wang, G. Burdock Fructooligosaccharide Attenuates High Glucose-Induced Apoptosis and Oxidative Stress Injury in Renal Tubular Epithelial Cells. Front. Pharmacol. 2021, 12, 784187. [Google Scholar] [CrossRef]
- Mondal, S.C.; Eun, J.B. Mechanistic insights on burdock (Arctium lappa L.) extract effects on diabetes mellitus. Food Sci. Biotechnol. 2022, 31, 999–1008. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, X.; Du, Y. Oligochitosan: A plant diseases vaccine—A review. Carbohydr. Polym. 2010, 82, 1–8. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2015, 6, 1143. [Google Scholar] [CrossRef]
- Zhang, Q.; Tang, S.; Li, J.; Fan, C.; Xing, L.; Luo, K. Integrative transcriptomic and metabolomic analyses provide insight into the long-term submergence response mechanisms of young Salix variegata stems. Planta 2021, 253, 88. [Google Scholar] [CrossRef]
- Wishart, D.S. Current progress in computational metabolomics. Brief Bioinform. 2007, 8, 279–293. [Google Scholar] [CrossRef]
- Shu, J.; Ma, X.; Ma, H.; Huang, Q.; Zhang, Y.; Guan, M.; Guan, C. Transcriptomic, proteomic, metabolomic, and functional genomic approaches of Brassica napus L. during salt stress. PLoS ONE 2022, 17, e0262587. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef]
- Honda, C.; Moriya, S. Anthocyanin Biosynthesis in Apple Fruit. Hortic. J. 2018, 87, 305–314. [Google Scholar] [CrossRef]
- Deng, J.; Qin, W.; Yang, C.; Iqbal, N.; Takpah, D.; Zhang, J.; Yang, W.; Liu, J. Seed quality deterioration dynamics for isoflavones biosynthesis in soybean (Glycine max L. Merr.) seeds against field mildew stress. Acta Physiol. Plant. 2019, 41, 57. [Google Scholar] [CrossRef]
- Xi, Y.; An, L.; Zhang, Y.; Zhang, H. Network pharmacology study on the antioxidant effects of quercetin. Mod. J. Anim. Husb. Vet. Med. 2024, 1, 25–28. [Google Scholar] [CrossRef]
- Mizutani, M.; Ohta, D.; Sato, R. Isolation of a cDNA and a Genomic Clone Encoding Cinnamate 4-Hydroxylase from Arabidopsis and Its Expression Manner in Planta. Plant Physiol. 1997, 113, 755–763. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Zhao, Y.; Zhao, X.; Yuan, Z. Systematic Analysis and Expression Profiles of the 4-Coumarate: CoA Ligase (4CL) Gene Family in Pomegranate (Punica granatum L.). Int. J. Mol. Sci. 2022, 23, 3509. [Google Scholar] [CrossRef]
- Pandith, S.A.; Ramazan, S.; Khan, M.I.; Reshi, Z.A.; Shah, M.A. Chalcone synthases (CHSs): The symbolic type III polyketide synthases. Planta 2019, 251, 15. [Google Scholar] [CrossRef]
- Bednar, R.A.; Hadcock, J.R. Purification and characterization of chalcone isomerase from soybeans. J. Biol. Chem. 1988, 263, 9582–9588. [Google Scholar] [CrossRef]
- He, F.; Mu, L.; Yan, G.-L.; Liang, N.-N.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef]
- Clarke, D.B. Glucosinolates, structures and analysis in food. Anal. Methods 2010, 2, 310–325. [Google Scholar] [CrossRef]
- Tortorella, S.M.; Royce, S.G.; Licciardi, P.V.; Karagiannis, T.C. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition. Antioxid. Redox Signal. 2015, 22, 1382–1424. [Google Scholar] [CrossRef] [PubMed]
- Clay, N.K.; Adio, A.M.; Denoux, C.; Jander, G.; Ausubel, F.M. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 2009, 323, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.R.; Chen, M.; Lee, J.D.; Zhang, J.; Lin, S.Y.; Fu, T.M.; Chen, H.; Ishikawa, T.; Chiang, S.Y.; Katon, J.; et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 2019, 364, eaau0159. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Schuster, J.; Knill, T.; Reichelt, M.; Gershenzon, J.; Binder, S. BRANCHED-CHAIN AMINOTRANSFERASE4 Is Part of the Chain Elongation Pathway in the Biosynthesis of Methionine-Derived Glucosinolates in Arabidopsis. Plant Cell 2006, 18, 2664–2679. [Google Scholar] [CrossRef]
- Knill, T.; Schuster, J.; Reichelt, M.; Gershenzon, J.; Binder, S. Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiol. 2008, 146, 1028–1039. [Google Scholar] [CrossRef]
- Mitreiter, S.; Gigolashvili, T. Regulation of glucosinolate biosynthesis. J. Exp. Bot. 2021, 72, 70–91. [Google Scholar] [CrossRef]
- Kroymann, J.; Donnerhacke, S.; Schnabelrauch, D.; Mitchell-Olds, T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc. Natl. Acad. Sci. USA 2003, 100 (Suppl. S2), 14587–14592. [Google Scholar] [CrossRef]
- Grubb, C.D.; Abel, S. Glucosinolate metabolism and its control. Trends Plant Sci. 2006, 11, 89–100. [Google Scholar] [CrossRef]
- Petersen, A.; Crocoll, C.; Halkier, B.A. De novo production of benzyl glucosinolate in Escherichia coli. Metab. Eng. 2019, 54, 24–34. [Google Scholar] [CrossRef]
- Piotrowski, M.; Schemenewitz, A.; Lopukhina, A.; Müller, A.; Janowitz, T.; Weiler, E.W.; Oecking, C. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J. Biol. Chem. 2004, 279, 50717–50725. [Google Scholar] [CrossRef] [PubMed]
- Pangborn, R. Relative Taste Intensities of Selected Sugars and Organic Acids. J. Food Sci. 2006, 28, 726–733. [Google Scholar] [CrossRef]
- Stick, R.V.; Williams, S.J. Chapter 6—Monosaccharide Metabolism. In Carbohydrates: The Essential Molecules of Life, 2nd ed.; Stick, R.V., Williams, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 225–251. [Google Scholar]
- Rolland, F.; Baena-Gonzalez, E.; Sheen, J. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 2006, 57, 675–709. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cao, L.; Yang, X.; Wu, X.; Xu, S.; Liu, Y. Simultaneously optimizing multiple properties of β-glucosidase Bgl6 using combined (semi-)rational design strategies and investigation of the underlying mechanisms. Bioresour. Technol. 2023, 374, 128792. [Google Scholar] [CrossRef]
- Salgado, J.C.S.; Meleiro, L.P.; Carli, S.; Ward, R.J. Glucose tolerant and glucose stimulated β-glucosidases—A review. Bioresour. Technol. 2018, 267, 704–713. [Google Scholar] [CrossRef]
- Wang, F.; Feng, G.; Chen, K. Burdock fructooligosaccharide induces resistance to tobacco mosaic virus in tobacco seedlings. Physiol. Mol. Plant Pathol. 2009, 74, 34–40. [Google Scholar] [CrossRef]
- Cao, J.K.; Jiang, W.B.; Zhao, Y.M. Physiological and Biochemical Guidance of Fruits and Vegetables after Harvest; China Light Industry Press: Beijing, China, 2007. [Google Scholar]
Sample | Raw_Reads | Raw_Bases | Clean_Reads | Clean_Bases | Error_Rate | Q20 | Q30 | GC_Pct | Total_Map |
---|---|---|---|---|---|---|---|---|---|
CK_1 | 49,091,094 | 7.36 G | 46,527,448 | 6.98 G | 0.01 | 98.81 | 96.35 | 47.51 | 40,042,254 (86.06%) |
CK_2 | 48,287,128 | 7.24 G | 45,067,680 | 6.76 G | 0.01 | 98.95 | 96.82 | 47.77 | 38,292,249 (84.97%) |
CK_3 | 49,014,792 | 7.35 G | 45,731,388 | 6.86 G | 0.01 | 98.89 | 96.66 | 47.69 | 39,031,728 (85.35%) |
BFO_1 | 53,851,060 | 8.08 G | 53,745,642 | 8.06 G | 0.01 | 98.78 | 96.4 | 47.42 | 45,525,309 (84.71%) |
BFO_2 | 50,004,696 | 7.5 G | 45,934,370 | 6.89 G | 0.01 | 98.9 | 96.71 | 47.23 | 39,156,919 (85.25%) |
BFO_3 | 47,101,456 | 7.07 G | 47,042,114 | 7.06 G | 0.01 | 99.03 | 97.02 | 47.46 | 40,536,026 (86.17%) |
Gene ID | Prime Name | Prime Sequence (5′-3′) |
---|---|---|
BraA01g013470.3C | BraA01gANS-F | TTGAAAGAGTTGAGAGCTT |
BraA01gANS-R | TTGTGGACCGTCTTCTTT | |
BraA02g008800.3C | BraA02gSPS1-F | ATTCTGATACCGGTGGCC |
BraA02gSPS1-R | TCTCGTCCGAGAGGTCTT | |
BraA02g042670.3C | BraA02gMAM1-F | ATGGTTGTCCGGTCATTC |
BraA02gMAM1-R | TGGGAGCTTGTTCGGAAT | |
BraA03g016250.3C | BraA03gCYP73A5-F | ATGGACCTTCTCTTGTTG |
BraA03gCYP73A5-R | GGATTGGTATAGGACCAG | |
BraA04g008320.3C | BraA04gCYP83A2-F | ATGGAAGATATCATCATCGG |
BraA04gCYP83A2-R | TTAACCTGGCTAAGCTG | |
BraA04g029510.3C | BraA04gCYP83A1-F | AAGATGTCATCATCGGC |
BraA04gCYP83A1-R | GTTGTGGGTTAAGGTTCT | |
BraA05g025850.3C | BraA05g4CL2-F | ATGTCCACACGAGAAGAG |
BraA05g4CL2-R | CGTACTCGGAGATGTTT | |
BraA06g000740.3C | BraA06gINV3-F | AAGATCTCAACCAACCGT |
BraA06gINV3-R | CCCACACGATTCTTACAT | |
BraA07g038050.3C | BraA07gSOT18-F | ATCAGAGCCCTTAACCGT |
BraA07gSOT18-R | GTGACCACCGTACTCGAT | |
BraA08g002880.3C | BraA08gSPP1-F | GTGGGAACAAACTGGGAA |
BraA08gSPP1-R | GATGATCCAGTTGCTGTC | |
BraA08g025770.3C | BraA08gBGL40-F | ATGGTGACGATGGATAAGA |
BraA08gBGL40-R | CCATATGGTAGGACCTCT | |
BraA10g030950.3C | BraA10gFLS1-F | ATCGAGAGAGTCCAAGAC |
BraA10gFLS1-R | ACCTCGGAAAGTGGTGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Wang, L.; Liu, C.; Liu, Y.; Li, X.; Yao, T.; Jiao, J.; Shu, R.; Li, J.; Zhang, Y.; et al. Integrated Analysis of Metabolome and Transcriptome Reveals the Effect of Burdock Fructooligosaccharide on the Quality of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis). Int. J. Mol. Sci. 2024, 25, 11459. https://doi.org/10.3390/ijms252111459
Fu X, Wang L, Liu C, Liu Y, Li X, Yao T, Jiao J, Shu R, Li J, Zhang Y, et al. Integrated Analysis of Metabolome and Transcriptome Reveals the Effect of Burdock Fructooligosaccharide on the Quality of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis). International Journal of Molecular Sciences. 2024; 25(21):11459. https://doi.org/10.3390/ijms252111459
Chicago/Turabian StyleFu, Xin, Lixia Wang, Chenwen Liu, Yuxiang Liu, Xiaolong Li, Tiantian Yao, Jian Jiao, Rui Shu, Jingjuan Li, Yihui Zhang, and et al. 2024. "Integrated Analysis of Metabolome and Transcriptome Reveals the Effect of Burdock Fructooligosaccharide on the Quality of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis)" International Journal of Molecular Sciences 25, no. 21: 11459. https://doi.org/10.3390/ijms252111459
APA StyleFu, X., Wang, L., Liu, C., Liu, Y., Li, X., Yao, T., Jiao, J., Shu, R., Li, J., Zhang, Y., Wang, F., & Gao, J. (2024). Integrated Analysis of Metabolome and Transcriptome Reveals the Effect of Burdock Fructooligosaccharide on the Quality of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis). International Journal of Molecular Sciences, 25(21), 11459. https://doi.org/10.3390/ijms252111459