Deciphering the Role of Copper Homeostasis in Atherosclerosis: From Molecular Mechanisms to Therapeutic Targets
Abstract
:1. Introduction
2. Physiological Mechanisms of Copper Homeostasis
2.1. Copper Biochemistry: Metabolism and Transport Mechanisms
2.2. Copper Proteins in Copper Homeostasis
3. Copper Homeostasis and Atherosclerosis Signaling Pathways
3.1. Copper Proteins in Vascular Endothelial Cells
3.2. Copper in Macrophages
3.3. Copper in Vascular Smooth Muscle Cells
3.4. Copper in Metabolism
4. Copper Homeostasis Imbalance-Induced Cell Death
5. Copper Homeostasis-Related Genes and AS: Potential Value
Gene | Description | Aliases | Distribution | Subcellular Locations | Role in Copper Homeostasis | Clinical Values | Ref. |
---|---|---|---|---|---|---|---|
SLC31A1 | Solute Carrier Family 31 Member 1 | COPT1, CTR1, NSCT | Liver, small intestine | Cell membrane, early endosomes, and recycling endosomes | High-affinity copper transporter mediating the entry of copper ions from the extracellular environment into cells | Emerging diagnostic biomarker and therapeutic target for acute myocardial infarction and arteriosclerosis | [22,25,99] |
SLC31A2 | Solute Carrier Family 31 Member 2 | COPT2, CTR2, hCTR2 | Esophagus mucosa, duodenum, gall bladder, adipose, liver | Late endosomes and lysosomes inner membranes | Copper ion transmembrane transporter that exports copper (I) from the lumen of the vesicle to the cytoplasm, participating in copper isolation and regulation | Highly expressed in arteriosclerotic plaques | [25,98] |
ATP7A | ATPase copper transporting alpha | MK; MNK; HMNX; DSMAX; SMAX3 | Small intestine, lung, kidney, muscle | Golgi or plasma membrane | Copper transporter that moves cytoplasmic copper ions into the lumen of the Golgi apparatus and further distributes them to various copper-dependent enzymes and proteins. | Potential therapeutic target for inflammatory vascular diseases | [25,30,64,100,101] |
ATP7B | ATPase copper transporting beta | WD; PWD; WC1; WND | Liver, small intestine, kidney, placenta | Liver, small intestine, kidney, placenta | ATP7B is responsible for transporting copper from the cytoplasm to the Golgi apparatus for use by copper-dependent enzymes and proteins. | -- | [25,99] |
SLC25A3 | solute carrier family 25 member 3 | PHC; PTP; PiC; OK/SW-cl.48 | Mitochondria | Mitochondrial outer membrane | Copper transporter responsible for importing copper into the mitochondria | -- | [35,36] |
COX11 | cytochrome c oxidase copper chaperone COX11 | COX11P; MC4DN23 | Liver | Mitochondrial membrane | Copper chaperone protein that acts as an assembly factor for COX, not directly involved in copper transport or metabolism. | -- | [37] |
COX17 | cytochrome c oxidase copper chaperone COX17 | -- | Heart, muscle | Cytosol | Copper transport protein responsible for transporting copper from the cytoplasm to the mitochondria. This process is crucial for maintaining the function of cytochrome c oxidase (COX), a copper-containing enzyme whose activity depends on the presence of copper ions. | -- | [37] |
ATOX1 | antioxidant 1 copper chaperone | ATX1; HAH1 | Liver | Cytoplasm | Copper chaperone protein that binds and transports copper ions from the cytoplasm to the ATPase proteins located in the trans-Golgi network. | Potential therapeutic target for VSMC migration and inflammation-related vascular diseases. | [39,102,103,104] |
CCS | copper chaperone for superoxide dismutase | -- | Liver, spleen | Cytoplasm | Copper chaperone for superoxide dismutase (CCS) that delivers copper ions to the copper/zinc superoxide dismutase (SOD1) protein. | -- | [51,52] |
CP | ceruloplasmin | CP-2; AB073614 | Liver | Plasma (extracellular space) | A copper-containing metalloprotein, one of the main transporters of copper in the body, facilitates the transport and distribution of copper, ensuring its efficient delivery to various cells and tissues that require it, while preventing the toxic effects of free copper ions. | A potential biomarker for the risk of arteriosclerotic thrombosis | [105] |
SOD | superoxide dismutase 1 | ALS; SOD; ALS1; IPOA; STAHP; hSod1; HEL-S-44; homodimer | Liver, kidney, heart | Cytosol, mitochondria, extracellular matrix | A copper-containing metalloenzyme that catalyzes the dismutation of superoxide anion radicals into oxygen and hydrogen peroxide, thus protecting cells from damage by reactive oxygen species. | Improves lipid and glucose levels in atherosclerotic mice. | [106,107] |
LOX | lysyl oxidase | AAT10 | Fat, gallbladder | Extracellular matrix | - | A copper-dependent amine oxidase essential for the cross-linking of collagen and elastin, a process necessary for maintaining the structure and function of connective tissue. | [108,109,110,111,112,113,114] |
FDX1 | ferredoxin 1 | ADX; FDX; LOH11CR1D | Liver and kidney | Mitochondria | Encoding iron–sulfur proteins, it is crucial for various metabolic reactions within the mitochondria, including the synthesis and metabolism of steroids, vitamin D, and bile acids. It acts as a key regulator in copper ion carrier-induced cell death and is an upstream regulator of cellular protein lipidation, participating in the synthesis of the electron transport chain and iron–sulfur clusters. | Highly expressed in atherosclerotic plaques and also highly expressed in a newly discovered subset of macrophages. | [95,115] |
LIAS | lipoic acid synthetase | LS; LAS; LIP1; PDHLD; HGCLAS; HUSSY-01 | Liver | Mitochondria | The encoded protein belongs to the biotin and lipoic acid synthetase family and is a crucial iron–sulfur enzyme that catalyzes the final step in the biosynthesis pathway of lipoic acid. It directly binds to FDX1, enhancing its role in cellular protein lipidation. | Overexpression of LIAS significantly reduces the size of atherosclerotic lesions in the aortic sinus. | [116,117,118] |
LIPT1 | lipoyltransferase 1 | LIPT1D | Liver | Mitochondria | LIPT1 is responsible for the transfer of lipoic acid to proteins. This process is regulated by FDX1 and involves the lipoylation of DLAT. | Regulates mitochondrial function and lipid metabolism processes | [95] |
DLD | dihydrolipoamide dehydrogenase | E3; LAD; DLDD; DLDH; GCSL; PHE3; OGDC-E3 | Expressed at higher levels in the liver, heart, and kidneys | Mitochondria | The E3 subunit of the pyruvate dehydrogenase complex. | Associated with energy metabolism and lipid metabolism | [119,120] |
DLAT | dihydrolipoamide S-acetyltransferase | E2; PBC; DLTA; PDCE2; PDC-E2 | Expressed at higher levels in the liver. | Mitochondria | Excess copper leads to the aggregation of dihydrolipoamide S-acetyltransferase (DLAT), which is associated with the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress. | Ischemic cardiomyopathy immune biomarkers. | [121] |
PDHA1 | pyruvate dehydrogenase E1 subunit alpha 1 | PDHA; PDHAD; PHE1A; E1alpha; PDHCE1A | Heart, fat, liver | Mitochondria | A component of the pyruvate dehydrogenase complex E1 subunit, a gene regulating cuproptosis. | A crucial link between glycolysis and the tricarboxylic acid cycle, it also directly impacts fatty acid metabolism and energy production. | [98,122] |
PDHB | pyruvate dehydrogenase E1 subunit beta | PDHBD; PHE1B; E1beta; PDHE1B; PDHE1-B | Highly expressed in the heart and liver | Mitochondria | A component of the pyruvate dehydrogenase complex E1 subunit, a gene regulating cuproptosis. | - | [95,96,97] |
MTF1 | metal regulatory transcription factor 1 | ZRF; MTF-1 | Highly expressed in the liver | nucleus | Encoding a crucial transcription factor, it regulates the expression of genes related to heavy metal stress. In maintaining copper homeostasis, MTF1 senses changes in intracellular copper ion concentration, thereby controlling the expression of a series of copper-binding proteins and copper transport proteins to maintain the dynamic balance of copper ions within the cell. | Modulating lipid metabolism to reduce the risk of atherosclerosis caused by a high-fat diet. | [97,123] |
GLS | glutaminase | GAC; GAM; KGA; GLS1; AAD20; DEE71; GDPAG; CASGID; EIEE71 | Widely expressed in the liver and small intestine. | Mitochondria | GLS, as a key enzyme in glutamine metabolism, is influenced by intracellular copper ion concentrations. | Downregulation of GLS expression in atherosclerotic plaques. | [124] |
CDKN2A | cyclin dependent kinase inhibitor 2A | ARF; MLM; P14; P16; P19; CAI2; CMM2; INK4; | Expressed at higher levels in the heart and muscle tissues | nucleus | Genes regulating cuproptosis | Plays a key role in cellular aging, and in atherosclerosis models, the mRNA levels of CDKN2A are reduced. | [125,126,127,128] |
6. Clinical Application of Copper Targeting Strategy in Atherosclerosis
6.1. Copper Homeostasis Regulators
6.2. Copper Homeostasis Nano-Regulators
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Heart Federation. World Heart Report 2023: Confronting the World’s Number One Killer; World Heart Federation: Geneva, Switzerland, 2023. [Google Scholar]
- Chen, N.; Guo, L.Z.; Wang, L.; Dai, S.S.; Zhu, X.C.; Wang, E. Sleep fragmentation exacerbates myocardial ischemia-reperfusion injury by promoting copper overload in cardiomyocytes. Nat. Commun. 2024, 15, 3834. [Google Scholar] [CrossRef] [PubMed]
- Kitala-Tanska, K.; Socha, K.; Juskiewicz, J.; Krajewska-Wlodarczyk, M.; Majewski, M. The Effect of an Elevated Dietary Copper Level on the Vascular Contractility and Oxidative Stress in Middle-Aged Rats. Nutrients 2024, 16, 1172. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.B.; Zanetti, M.A.; Del Claro, G.R.; de Paiva, F.A.; Silva, S.D.E.; Netto, A.S. Effects of supplementation with two sources and two levels of copper on meat lipid oxidation, meat colour and superoxide dismutase and glutathione peroxidase enzyme activities in Nellore beef cattle. Br. J. Nutr. 2014, 112, 1266–1273. [Google Scholar] [CrossRef]
- Bertinato, J.; Iskandar, M.; L’Abbé, M.R. Copper deficiency induces the upregulation of the copper chaperone for Cu/Zn superoxide dismutase in weanling male rats. J. Nutr. 2003, 133, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Maung, M.T.; Carlson, A.; Olea-Flores, M.; Elkhadragy, L.; Schachtschneider, K.M.; Navarro-Tito, N.; Padilla-Benavides, T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J. 2021, 35, e21810. [Google Scholar] [CrossRef]
- Heller, L.J.; Mohrman, D.E.; Prohaska, J.R. Decreased passive stiffness of cardiac myocytes and cardiac tissue from copper-deficient rat hearts. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1840–H1847. [Google Scholar] [CrossRef] [PubMed]
- Hunsaker, H.A.; Morita, M.; Allen, K.G. Marginal copper deficiency in rats. Aortal morphology of elastin and cholesterol values in first-generation adult males. Atherosclerosis 1984, 51, 1–19. [Google Scholar] [CrossRef]
- Sakai, N.; Shin, T.; Schuster, R.; Blanchard, J.; Lentsch, A.B.; Johnson, W.T.; Schuschke, D.A. Marginal copper deficiency increases liver neutrophil accumulation after ischemia/reperfusion in rats. Biol. Trace Elem. Res. 2011, 142, 47–54. [Google Scholar] [CrossRef]
- Deng, H.; Zhu, S.; Yang, H.; Cui, H.; Guo, H.; Deng, J.; Ren, Z.; Geng, Y.; Ouyang, P.; Xu, Z.; et al. The Dysregulation of Inflammatory Pathways Triggered by Copper Exposure. Biol. Trace Elem. Res. 2023, 201, 539–548. [Google Scholar] [CrossRef]
- Yang, F.; Pei, R.; Zhang, Z.; Liao, J.; Yu, W.; Qiao, N.; Han, Q.; Li, Y.; Hu, L.; Guo, J.; et al. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol. In Vitro 2019, 54, 310–316. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Hannan, G.N.; McAuslan, B.R. Modulation of synthesis of specific proteins in endothelial cells by copper, cadmium, and disulfiram: An early response to an angiogenic inducer of cell migration. J. Cell Physiol. 1982, 111, 207–212. [Google Scholar] [CrossRef]
- Fuentealba, I.; Haywood, S.; Foster, J. Cellular mechanisms of toxicity and tolerance in the copper-loaded rat. II. Pathogenesis of copper toxicity in the liver. Exp. Mol. Pathol. 1989, 50, 26–37. [Google Scholar] [CrossRef]
- Hamilton, I.M.; Gilmore, W.S.; Strain, J.J. Marginal copper deficiency and atherosclerosis. Biol. Trace Elem. Res. 2000, 78, 179–189. [Google Scholar] [CrossRef]
- Radovits, T.; Gerö, D.; Lin, L.N.; Loganathan, S.; Hoppe-Tichy, T.; Szabó, C.; Karck, M.; Sakurai, H.; Szabó, G. Improvement of aging-associated cardiovascular dysfunction by the orally administered copper(II)-aspirinate complex. Rejuvenation Res. 2008, 11, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, B.; Akbari, N.; Tabiban, S.; Habibi, V.; Mokhberi, V. Serum level of copper in patients with coronary artery disease. Niger. Med. J. 2015, 56, 39–42. [Google Scholar] [CrossRef]
- Seo, Y.; Cho, Y.S.; Huh, Y.D.; Park, H. Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells. Mol. Cells 2016, 39, 195–203. [Google Scholar] [CrossRef]
- Sudhahar, V.; Das, A.; Horimatsu, T.; Ash, D.; Leanhart, S.; Antipova, O.; Vogt, S.; Singla, B.; Csanyi, G.; White, J.; et al. Copper Transporter ATP7A (Copper-Transporting P-Type ATPase/Menkes ATPase) Limits Vascular Inflammation and Aortic Aneurysm Development: Role of MicroRNA-125b. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2320–2337. [Google Scholar] [CrossRef]
- Xiao, Y.; Song, X.; Wang, T.; Meng, X.; Feng, Q.; Li, K.; Kang, Y.J. Copper Preserves Vasculature Structure and Function by Protecting Endothelial Cells from Apoptosis in Ischemic Myocardium. J. Cardiovasc. Transl. Res. 2021, 14, 1146–1155. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Y.; Gan, N.; Li, M.; Liao, W.; Zhou, Y.; Xiang, Q.; Gong, X.; Guo, Q.; Hu, P.; et al. A novel cuproptosis-related diagnostic gene signature and differential expression validation in atherosclerosis. Mol. Biomed. 2023, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B. Intestinal regulation of copper homeostasis: A developmental perspective. Am. J. Clin. Nutr. 2008, 88, 846s–850s. [Google Scholar] [CrossRef] [PubMed]
- Monty, J.F.; Llanos, R.M.; Mercer, J.F.; Kramer, D.R. Copper exposure induces trafficking of the menkes protein in intestinal epithelium of ATP7A transgenic mice. J. Nutr. 2005, 135, 2762–2766. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.A.; Sarkar, B. Liver as a key organ in the supply, storage, and excretion of copper. Am. J. Clin. Nutr. 2008, 88, 851s–854s. [Google Scholar] [CrossRef]
- Brancaccio, D.; Gallo, A.; Piccioli, M.; Novellino, E.; Ciofi-Baffoni, S.; Banci, L. [4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper. J. Am. Chem. Soc. 2017, 139, 719–730. [Google Scholar] [CrossRef]
- Bakkar, N.; Starr, A.; Rabichow, B.E.; Lorenzini, I.; McEachin, Z.T.; Kraft, R.; Chaung, M.; Macklin-Isquierdo, S.; Wingfield, T.; Carhart, B.; et al. The M1311V variant of ATP7A is associated with impaired trafficking and copper homeostasis in models of motor neuron disease. Neurobiol. Dis. 2021, 149, 105228. [Google Scholar] [CrossRef]
- Rubino, J.T.; Chenkin, M.P.; Keller, M.; Riggs-Gelasco, P.; Franz, K.J. A comparison of methionine, histidine and cysteine in copper(I)-binding peptides reveals differences relevant to copper uptake by organisms in diverse environments. Metallomics 2011, 3, 61–73. [Google Scholar] [CrossRef]
- Ramos, D.; Mar, D.; Ishida, M.; Vargas, R.; Gaite, M.; Montgomery, A.; Linder, M.C. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLoS ONE 2016, 11, e0149516. [Google Scholar] [CrossRef]
- Blockhuys, S.; Celauro, E.; Hildesjö, C.; Feizi, A.; Stål, O.; Fierro-González, J.C.; Wittung-Stafshede, P. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics 2017, 9, 112–123. [Google Scholar] [CrossRef]
- Umeji, K.; Umemoto, S.; Itoh, S.; Tanaka, M.; Kawahara, S.; Fukai, T.; Matsuzaki, M. Comparative effects of pitavastatin and probucol on oxidative stress, Cu/Zn superoxide dismutase, PPAR-gamma, and aortic stiffness in hypercholesterolemia. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2522–H2532. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, D.M.; Jennings, D. Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase. J. Bioenerg. Biomembr. 2002, 34, 389–395. [Google Scholar] [CrossRef]
- Rees, E.M.; Thiele, D.J. Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization. J. Biol. Chem. 2007, 282, 21629–21638. [Google Scholar] [CrossRef]
- Cobine, P.A.; Moore, S.A.; Leary, S.C. Getting out what you put in: Copper in mitochondria and its impacts on human disease. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118867. [Google Scholar] [CrossRef] [PubMed]
- Punter, F.A.; Adams, D.L.; Glerum, D.M. Characterization and localization of human COX17, a gene involved in mitochondrial copper transport. Hum. Genet. 2000, 107, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Dodani, S.C.; Leary, S.C.; Cobine, P.A.; Winge, D.R.; Chang, C.J. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. J. Am. Chem. Soc. 2011, 133, 8606–8616. [Google Scholar] [CrossRef]
- Casareno, R.L.; Waggoner, D.; Gitlin, J.D. The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J. Biol. Chem. 1998, 273, 23625–23628. [Google Scholar] [CrossRef]
- Chen, L.; Li, N.; Zhang, M.; Sun, M.; Bian, J.; Yang, B.; Li, Z.; Wang, J.; Li, F.; Shi, X.; et al. APEX2-based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copper-binding Protein that Regulates Autophagy Activation. Angew. Chem. Int. Ed. Engl. 2021, 60, 25346–25355. [Google Scholar] [CrossRef]
- Vlaminck, B.; Calay, D.; Genin, M.; Sauvage, A.; Ninane, N.; Zouaoui Boudjeltia, K.; Raes, M.; Michiels, C. Effects of copper sulfate-oxidized or myeloperoxidase-modified LDL on lipid loading and programmed cell death in macrophages under hypoxia. Hypoxia 2014, 2, 153–169. [Google Scholar] [CrossRef]
- Wiesner, P.; Choi, S.H.; Almazan, F.; Benner, C.; Huang, W.; Diehl, C.J.; Gonen, A.; Butler, S.; Witztum, J.L.; Glass, C.K.; et al. Low doses of lipopolysaccharide and minimally oxidized low-density lipoprotein cooperatively activate macrophages via nuclear factor kappa B and activator protein-1: Possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia. Circ. Res. 2010, 107, 56–65. [Google Scholar] [CrossRef]
- Moussa, H.; Merlin, C.; Dezanet, C.; Balan, L.; Medjahdi, G.; Ben-Attia, M.; Schneider, R. Trace amounts of Cu2+ ions influence ROS production and cytotoxicity of ZnO quantum dots. J. Hazard. Mater. 2016, 304, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.Y.; Chou, C.J.; Chen, C.F.; Chiou, W.F. Antioxidant activity of piperlactam S: Prevention of copper-induced LDL peroxidation and amelioration of free radical-induced oxidative stress of endothelial cells. Planta Med. 2003, 69, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Nunes, K.Z.; Fioresi, M.; Marques, V.B.; Vassallo, D.V. Acute copper overload induces vascular dysfunction in aortic rings due to endothelial oxidative stress and increased nitric oxide production. J. Toxicol. Environ. Health A 2018, 81, 218–228. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, W.J.; Leboeuf, R.; Frei, B. Copper induces--and copper chelation by tetrathiomolybdate inhibits--endothelial activation in vitro. Redox Rep. 2014, 19, 40–48. [Google Scholar] [CrossRef]
- Pan, Q.; Kleer, C.G.; van Golen, K.L.; Irani, J.; Bottema, K.M.; Bias, C.; De Carvalho, M.; Mesri, E.A.; Robins, D.M.; Dick, R.D.; et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 2002, 62, 4854–4859. [Google Scholar]
- Hou, M.M.; Polykretis, P.; Luchinat, E.; Wang, X.; Chen, S.N.; Zuo, H.H.; Yang, Y.; Chen, J.L.; Ye, Y.; Li, C.; et al. Solution structure and interaction with copper in vitro and in living cells of the first BIR domain of XIAP. Sci. Rep. 2017, 7, 16630. [Google Scholar] [CrossRef]
- Burstein, E.; Ganesh, L.; Dick, R.D.; van De Sluis, B.; Wilkinson, J.C.; Klomp, L.W.; Wijmenga, C.; Brewer, G.J.; Nabel, G.J.; Duckett, C.S. A novel role for XIAP in copper homeostasis through regulation of MURR1. EMBO J. 2004, 23, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Du, H.; Mao, L.; Xu, G.; Zhang, M.; Fan, Y.; Dong, X.; Zheng, L.; Wang, B.; Qin, X.; et al. Reciprocal regulation of NRF2 by autophagy and ubiquitin-proteasome modulates vascular endothelial injury induced by copper oxide nanoparticles. J. Nanobiotechnol. 2022, 20, 270. [Google Scholar] [CrossRef] [PubMed]
- Fujie, T.; Murakami, M.; Yoshida, E.; Tachinami, T.; Shinkai, Y.; Fujiwara, Y.; Yamamoto, C.; Kumagai, Y.; Naka, H.; Kaji, T. Copper diethyldithiocarbamate as an activator of Nrf2 in cultured vascular endothelial cells. J. Biol. Inorg. Chem. 2016, 21, 263–273. [Google Scholar] [CrossRef]
- Xie, H.; Kang, Y.J. Role of copper in angiogenesis and its medicinal implications. Curr. Med. Chem. 2009, 16, 1304–1314. [Google Scholar] [CrossRef]
- Qiu, L.; Ding, X.; Zhang, Z.; Kang, Y.J. Copper is required for cobalt-induced transcriptional activity of hypoxia-inducible factor-1. J. Pharmacol. Exp. Ther. 2012, 342, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Rigiracciolo, D.C.; Scarpelli, A.; Lappano, R.; Pisano, A.; Santolla, M.F.; De Marco, P.; Cirillo, F.; Cappello, A.R.; Dolce, V.; Belfiore, A.; et al. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget 2015, 6, 34158–34177. [Google Scholar] [CrossRef]
- Flemming, A. Copper boosts pro-inflammatory state of macrophages. Nat. Rev. Immunol. 2023, 23, 344. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, H.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Copper induces hepatic inflammatory responses by activation of MAPKs and NF-κB signalling pathways in the mouse. Ecotoxicol. Environ. Saf. 2020, 201, 110806. [Google Scholar] [CrossRef]
- Mazière, C.; Conte, M.A.; Mazière, J.C. Activation of JAK2 by the oxidative stress generated with oxidized low-density lipoprotein. Free Radic. Biol. Med. 2001, 31, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Liu, K.; Wang, J.; Su, X.; Shi, Y.; Zhao, L. Preparation of Ultra-Small Copper Nanoparticles-Loaded Self-Healing Hydrogels with Antibacterial, Inflammation-Suppressing and Angiogenesis-Enhancing Properties for Promoting Diabetic Wound Healing. Int. J. Nanomed. 2023, 18, 3339–3358. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, X.; Ying, Q.; Zhang, Z.; Liu, W.; Su, J. Synergistic Effects of Shed-Derived Exosomes, Cu(2+), and an Injectable Hyaluronic Acid Hydrogel on Antibacterial, Anti-inflammatory, and Osteogenic Activity for Periodontal Bone Regeneration. ACS Appl. Mater. Interfaces 2024, 16, 33053–33069. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Finley, J.C.; Ali, S.S.; Patel, H.H.; Howell, S.B. Copper influx transporter 1 is required for FGF, PDGF and EGF-induced MAPK signaling. Biochem. Pharmacol. 2012, 84, 1007–1013. [Google Scholar] [CrossRef]
- Mukherjee, S.; Tessema, M.; Wandinger-Ness, A. Vesicular trafficking of tyrosine kinase receptors and associated proteins in the regulation of signaling and vascular function. Circ. Res. 2006, 98, 743–756. [Google Scholar] [CrossRef]
- Rauch, B.H.; Millette, E.; Kenagy, R.D.; Daum, G.; Clowes, A.W. Thrombin- and factor Xa-induced DNA synthesis is mediated by transactivation of fibroblast growth factor receptor-1 in human vascular smooth muscle cells. Circ. Res. 2004, 94, 340–345. [Google Scholar] [CrossRef]
- Hamann, I.; Petroll, K.; Grimm, L.; Hartwig, A.; Klotz, L.O. Insulin-like modulation of Akt/FoxO signaling by copper ions is independent of insulin receptor. Arch. Biochem. Biophys. 2014, 558, 42–50. [Google Scholar] [CrossRef]
- Ko, D.S.; Kang, J.; Heo, H.J.; Kim, E.K.; Kim, K.; Kang, J.M.; Jung, Y.; Baek, S.E.; Kim, Y.H. Role of PCK2 in the proliferation of vascular smooth muscle cells in neointimal hyperplasia. Int. J. Biol. Sci. 2022, 18, 5154–5167. [Google Scholar] [CrossRef]
- Grasso, M.; Bond, G.J.; Kim, Y.J.; Boyd, S.; Matson Dzebo, M.; Valenzuela, S.; Tsang, T.; Schibrowsky, N.A.; Alwan, K.B.; Blackburn, N.J.; et al. The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J. Biol. Chem. 2021, 297, 101314. [Google Scholar] [CrossRef]
- Demirel, E.; Arnold, C.; Garg, J.; Jäger, M.A.; Sticht, C.; Li, R.; Kuk, H.; Wettschureck, N.; Hecker, M.; Korff, T. RGS5 Attenuates Baseline Activity of ERK1/2 and Promotes Growth Arrest of Vascular Smooth Muscle Cells. Cells 2021, 10, 1748. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Shi, Y.N.; Zhu, N.; Wang, W.; Deng, C.F.; Xie, X.J.; Liao, D.F.; Qin, L. Autophagy: A killer or guardian of vascular smooth muscle cells. J. Drug Target. 2020, 28, 449–455. [Google Scholar] [CrossRef]
- Tsang, T.; Posimo, J.M.; Gudiel, A.A.; Cicchini, M.; Feldser, D.M.; Brady, D.C. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat. Cell Biol. 2020, 22, 412–424. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, F.; Cao, X.; Cao, Z.; Li, B.; Shen, Z.; Tian, Y. PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis. Acta Biochim. Biophys. Sin. 2020, 52, 9–17. [Google Scholar] [CrossRef]
- Huang, X.; Hou, Y.; Weng, X.; Pang, W.; Hou, L.; Liang, Y.; Wang, Y.; Du, L.; Wu, T.; Yao, M.; et al. Diethyldithiocarbamate-copper complex (CuET) inhibits colorectal cancer progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis-mediated aerobic glycolysis pathway. Oncogenesis 2021, 10, 4. [Google Scholar] [CrossRef]
- Du, C.; Guan, X.; Liu, Y.; Xu, Z.; Du, X.; Li, B.; Wang, M.; Zheng, Z. Disulfiram/copper induces antitumor activity against gastric cancer cells in vitro and in vivo by inhibiting S6K1 and c-Myc. Cancer Chemother. Pharmacol. 2022, 89, 451–458. [Google Scholar] [CrossRef]
- Krishnamoorthy, L.; Cotruvo, J.A., Jr.; Chan, J.; Kaluarachchi, H.; Muchenditsi, A.; Pendyala, V.S.; Jia, S.; Aron, A.T.; Ackerman, C.M.; Wal, M.N.; et al. Copper regulates cyclic-AMP-dependent lipolysis. Nat. Chem. Biol. 2016, 12, 586–592. [Google Scholar] [CrossRef]
- Zhong, C.C.; Zhao, T.; Hogstrand, C.; Chen, F.; Song, C.C.; Luo, Z. Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways. J. Nutr. Biochem. 2022, 100, 108883. [Google Scholar] [CrossRef]
- Xie, L.; Yuan, Y.; Xu, S.; Lu, S.; Gu, J.; Wang, Y.; Wang, Y.; Zhang, X.; Chen, S.; Li, J.; et al. Downregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex. Cell Rep. 2022, 41, 111498. [Google Scholar] [CrossRef]
- Pan, M.; Cheng, Z.W.; Huang, C.G.; Ye, Z.Q.; Sun, L.J.; Chen, H.; Fu, B.B.; Zhou, K.; Fang, Z.R.; Wang, Z.J.; et al. Long-term exposure to copper induces mitochondria-mediated apoptosis in mouse hearts. Ecotoxicol. Environ. Saf. 2022, 234, 113329. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Li, J.; Yang, Z.; Zhang, J.; Qin, Z.; Wang, L.; Kong, X. Evaluation of bioaccumulation and toxic effects of copper on hepatocellular structure in mice. Biol. Trace Elem. Res. 2014, 159, 312–319. [Google Scholar] [CrossRef]
- Singh, R.P.; Kumar, S.; Nada, R.; Prasad, R. Evaluation of copper toxicity in isolated human peripheral blood mononuclear cells and it’s attenuation by zinc: Ex vivo. Mol. Cell Biochem. 2006, 282, 13–21. [Google Scholar] [CrossRef]
- Jomova, K.; Cvik, M.; Lauro, P.; Valko, M.; Cizmar, E.; Alomar, S.Y.; Alwasel, S.H.; Oleksak, P.; Chrienova, Z.; Nepovimova, E.; et al. The role of redox active copper(II) on antioxidant properties of the flavonoid baicalein: DNA protection under Cu(II)-Fenton reaction and Cu(II)-ascorbate system conditions. J. Inorg. Biochem. 2023, 245, 112244. [Google Scholar] [CrossRef]
- Lomozová, Z.; Hrubša, M.; Conte, P.F.; Papastefanaki, E.; Moravcová, M.; Catapano, M.C.; Proietti Silvestri, I.; Karlíčková, J.; Kučera, R.; Macáková, K.; et al. The effect of flavonoids on the reduction of cupric ions, the copper-driven Fenton reaction and copper-triggered haemolysis. Food Chem. 2022, 394, 133461. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Fang, W.; Rovira, C.; Shaik, S. How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners? Acc. Chem. Res. 2022, 55, 2280–2290. [Google Scholar] [CrossRef]
- Chen, K.; Wu, L.; Liu, Q.; Tan, F.; Wang, L.; Zhao, D.; Fang, X.; Liu, X.; Liu, J.; Han, H. Glutathione improves testicular spermatogenesis through inhibiting oxidative stress, mitochondrial damage, and apoptosis induced by copper deposition in mice with Wilson disease. Biomed. Pharmacother. 2023, 158, 114107. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Liu, N.; Feng, D.; Wu, W.; Gu, K.; Wu, A.; Li, C.; Wang, X. Multi-mechanism antitumor/antibacterial effects of Cu-EGCG self-assembling nanocomposite in tumor nanotherapy and drug-resistant bacterial wound infections. J. Colloid. Interface Sci. 2024, 671, 751–769. [Google Scholar] [CrossRef]
- Zhong, G.; Li, Y.; Ma, F.; Huo, Y.; Liao, J.; Han, Q.; Hu, L.; Tang, Z. Copper Exposure Induced Chicken Hepatotoxicity: Involvement of Ferroptosis Mediated by Lipid Peroxidation, Ferritinophagy, and Inhibition of FSP1-CoQ10 and Nrf2/SLC7A11/GPX4 Axis. Biol. Trace Elem. Res. 2024, 202, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk-Pecka, D.; Kowalczuk-Vasilev, E.; Puchalski, A.; Klebaniuk, R. Peroxidation and unsaturation indices as potential biomarkers of multifarious zinc and copper micro-supplementation in Helix pomatia L. Ecotoxicol. Environ. Saf. 2018, 148, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Chou, Y.T.; Yang, Y.W.; Lo, K.Y. High-dose copper activates p53-independent apoptosis through the induction of nucleolar stress in human cell lines. Apoptosis 2021, 26, 612–627. [Google Scholar] [CrossRef] [PubMed]
- Hainaut, P.; Rolley, N.; Davies, M.; Milner, J. Modulation by copper of p53 conformation and sequence-specific DNA binding: Role for Cu(II)/Cu(I) redox mechanism. Oncogene 1995, 10, 27–32. [Google Scholar]
- Maiuri, M.C.; Malik, S.A.; Morselli, E.; Kepp, O.; Criollo, A.; Mouchel, P.L.; Carnuccio, R.; Kroemer, G. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 2009, 8, 1571–1576. [Google Scholar] [CrossRef]
- Zhao, M.; Klionsky, D.J. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab. 2011, 13, 119–120. [Google Scholar] [CrossRef]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Yang, Q.; Gao, Y.; Duan, X.; Fu, Q.; Chu, C.; Pan, X.; Cui, X.; Sun, Y. Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials 2017, 146, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Linn, N.; Li, Q.; Zhang, K.; Liao, J.; Han, Q.; Zhang, H.; Guo, J.; Hu, L.; Pan, J.; et al. MitomiR-504 alleviates the copper-induced mitochondria-mediated apoptosis by suppressing Bak1 expression in porcine jejunal epithelial cells. Sci. Total Environ. 2023, 858, 160157. [Google Scholar] [CrossRef]
- Zhong, G.; Li, L.; Li, Y.; Ma, F.; Liao, J.; Li, Y.; Zhang, H.; Pan, J.; Hu, L.; Tang, Z. Cuproptosis is involved in copper-induced hepatotoxicity in chickens. Sci. Total Environ. 2023, 866, 161458. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Chen, J.; Yang, Q.; Yang, L.; Xu, D.; Zhang, P.; Wang, X.; Liu, J. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. Eur. J. Pharmacol. 2017, 815, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Huang, H.; Pan, C.; Mei, Z.; Yin, S.; Zhou, L.; Zheng, S. Disulfiram/Copper Induces Immunogenic Cell Death and Enhances CD47 Blockade in Hepatocellular Carcinoma. Cancers 2022, 14, 4715. [Google Scholar] [CrossRef]
- Stadler, N.; Lindner, R.A.; Davies, M.J. Direct detection and quantification of transition metal ions in human atherosclerotic plaques: Evidence for the presence of elevated levels of iron and copper. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, P.; Detappe, A.; Cai, K.; Keys, H.R.; Brune, Z.; Ying, W.; Thiru, P.; Reidy, M.; Kugener, G.; Rossen, J.; et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol. 2019, 15, 681–689. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Xing, Q.; Liu, X.; Hu, Y.; Li, W.; Yan, Q.; Liu, R.; Huang, N. Identification of GLS as a cuproptosis-related diagnosis gene in acute myocardial infarction. Front. Cardiovasc. Med. 2022, 9, 1016081. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Sun, S.; Chen, W.; Huang, D.; Wang, F.; Wei, W.; Wang, W. Bioinformatics analysis of the role of cuproptosis gene in acute myocardial infarction. Minerva Cardiol. Angiol. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Chen, Y.T.; Xu, X.H.; Lin, L.; Tian, S.; Wu, G.F. Identification of Three Cuproptosis-specific Expressed Genes as Diagnostic Biomarkers and Therapeutic Targets for Atherosclerosis. Int. J. Med. Sci. 2023, 20, 836–848. [Google Scholar] [CrossRef]
- Aguilar-Ballester, M.; Herrero-Cervera, A.; Vinué, Á.; Martínez-Hervás, S.; González-Navarro, H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020, 12, 2021. [Google Scholar] [CrossRef]
- Ashino, T.; Sudhahar, V.; Urao, N.; Oshikawa, J.; Chen, G.F.; Wang, H.; Huo, Y.; Finney, L.; Vogt, S.; McKinney, R.D.; et al. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration. Circ. Res. 2010, 107, 787–799. [Google Scholar] [CrossRef]
- Sudhahar, V.; Okur, M.N.; Bagi, Z.; O’Bryan, J.P.; Hay, N.; Makino, A.; Patel, V.S.; Phillips, S.A.; Stepp, D.; Ushio-Fukai, M.; et al. Akt2 (Protein Kinase B Beta) Stabilizes ATP7A, a Copper Transporter for Extracellular Superoxide Dismutase, in Vascular Smooth Muscle: Novel Mechanism to Limit Endothelial Dysfunction in Type 2 Diabetes Mellitus. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 529–541. [Google Scholar] [CrossRef]
- Sudhahar, V.; Shi, Y.; Kaplan, J.H.; Ushio-Fukai, M.; Fukai, T. Whole-Transcriptome Sequencing Analyses of Nuclear Antixoxidant-1 in Endothelial Cells: Role in Inflammation and Atherosclerosis. Cells 2022, 11, 2919. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Sudhahar, V.; Ushio-Fukai, M.; Fukai, T. Novel interaction of antioxidant-1 with TRAF4: Role in inflammatory responses in endothelial cells. Am. J. Physiol. Cell Physiol. 2019, 317, C1161–C1171. [Google Scholar] [CrossRef]
- Kohno, T.; Urao, N.; Ashino, T.; Sudhahar, V.; McKinney, R.D.; Hamakubo, T.; Iwanari, H.; Ushio-Fukai, M.; Fukai, T. Novel role of copper transport protein antioxidant-1 in neointimal formation after vascular injury. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 805–813. [Google Scholar] [CrossRef]
- Arenas de Larriva, A.P.; Alonso, A.; Norby, F.L.; Roetker, N.S.; Folsom, A.R. Circulating ceruloplasmin, ceruloplasmin-associated genes and the incidence of venous thromboembolism in the Atherosclerosis Risk in Communities study. J. Thromb. Haemost. 2019, 17, 818–826. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal 2011, 15, 1583–1606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, J.; Duan, H.; Li, R.; Peng, W.; Wu, C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021, 34, 43–63. [Google Scholar] [CrossRef]
- Finney, J.; Moon, H.J.; Ronnebaum, T.; Lantz, M.; Mure, M. Human copper-dependent amine oxidases. Arch. Biochem. Biophys. 2014, 546, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Du, G.; Tong, L.; Guo, X.; Wei, Y. Overexpression of LOX-1 in hepatocytes protects vascular smooth muscle cells from phenotype transformation and wire injury induced carotid neoatherosclerosis through ALOX15. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166805. [Google Scholar] [CrossRef]
- Manasieva, V.; Thakur, S.; Lione, L.A.; Patel, J.; Baydoun, A.; Skamarauskas, J. Semicarbazide-Sensitive Amine Oxidase (SSAO) and Lysyl Oxidase (LOX) Association in Rat Aortic Vascular Smooth Muscle Cells. Biomolecules 2022, 12, 1563. [Google Scholar] [CrossRef]
- Varona, S.; Orriols, M.; Galán, M.; Guadall, A.; Cañes, L.; Aguiló, S.; Sirvent, M.; Martínez-González, J.; Rodríguez, C. Lysyl oxidase (LOX) limits VSMC proliferation and neointimal thickening through its extracellular enzymatic activity. Sci. Rep. 2018, 8, 13258. [Google Scholar] [CrossRef]
- Ballester-Servera, C.; Alonso, J.; Cañes, L.; Vázquez-Sufuentes, P.; Puertas-Umbert, L.; Fernández-Celis, A.; Taurón, M.; Rodríguez-Sinovas, A.; López-Andrés, N.; Rodríguez, C.; et al. Lysyl oxidase-dependent extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease. Biomed. Pharmacother. 2023, 167, 115469. [Google Scholar] [CrossRef] [PubMed]
- Ballester-Servera, C.; Alonso, J.; Cañes, L.; Vázquez-Sufuentes, P.; García-Redondo, A.B.; Rodríguez, C.; Martínez-González, J. Lysyl Oxidase in Ectopic Cardiovascular Calcification: Role of Oxidative Stress. Antioxidants 2024, 13, 523. [Google Scholar] [CrossRef] [PubMed]
- Ballester-Servera, C.; Alonso, J.; Taurón, M.; Rotllán, N.; Rodríguez, C.; Martínez-González, J. Lysyl oxidase expression in smooth muscle cells determines the level of intima calcification in hypercholesterolemia-induced atherosclerosis. Clin. Investig. Arterioscler. 2024, 36, 286–298. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Hiron, T.K.; Agbaedeng, T.A.; Malhotra, Y.; Drydale, E.; Bancroft, J.; Ng, E.; Reschen, M.E.; Davison, L.J.; O’Callaghan, C.A. A Novel Macrophage Subpopulation Conveys Increased Genetic Risk of Coronary Artery Disease. Circ. Res. 2024, 135, 6–25. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Ding, Y.; Zhang, J.; Li, J.; Zhang, H.; Kang, P.; Zhang, N. [Correlation of serum ferredoxin 1 and lipoic acid levels with severity of coronary artery disease]. Nan Fang Yi Ke Da Xue Xue Bao 2024, 44, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Xu, L.; Hiller, S.; Kim, H.S.; Maeda, N. Reduced alpha-lipoic acid synthase gene expression exacerbates atherosclerosis in diabetic apolipoprotein E-deficient mice. Atherosclerosis 2012, 223, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Xu, L.; Kim, K.; Kim, H.S.; Maeda, N. Genetic reduction of lipoic acid synthase expression modestly increases atherosclerosis in male, but not in female, apolipoprotein E-deficient mice. Atherosclerosis 2010, 211, 424–430. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, J.; Liu, Z.; Tian, X.; Sun, C. Dihydrolipoyl dehydrogenase promotes white adipocytes browning by activating the RAS/ERK pathway and undergoing crotonylation modification. Int. J. Biol. Macromol. 2024, 265, 130816. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, H.; Wang, X.; Liu, Z.; Nie, T.; Li, L.; Su, J.; Zhu, Y.; Ma, C.; Huang, Y.; et al. Rg3 regulates myocardial pyruvate metabolism via P300-mediated dihydrolipoamide dehydrogenase 2-hydroxyisobutyrylation in TAC-induced cardiac hypertrophy. Cell Death Dis. 2022, 13, 1073. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Peng, C.; Tan, C.; Sun, H.; Liu, H.; Zhang, Y.; Wu, P.; Cui, C.; Liu, C.; et al. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metab. 2021, 33, 565–580.e567. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, F.; Wang, Y. Proteomic analysis reveals Xuesaitong injection attenuates myocardial ischemia/reperfusion injury by elevating pyruvate dehydrogenase-mediated aerobic metabolism. Mol. Biosyst. 2017, 13, 1504–1511. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Chen, H.; Jiang, F.; Xu, C.; Wang, Y.; Wang, H.; Li, M.; Wei, W.; Song, J.; Zhong, D.; et al. Comprehensive analysis of cuproptosis-related genes in immune infiltration in ischemic stroke. Front. Neurol. 2022, 13, 1077178. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, Y.; Li, M.; Xia, M.; Xiang, Q.; Mao, Y.; Li, H.; Chen, J.; Zeng, W.; Zheng, X.; et al. A novel mechanism of ferroptosis inhibition-enhanced atherosclerotic plaque stability: YAP1 suppresses vascular smooth muscle cell ferroptosis through GLS1. FASEB J. 2024, 38, e23850. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wu, Y.; Jiang, D.; Sun, W.; Zou, M.; Vasamsetti, S.B.; Dutta, P.; Leers, S.A.; Di, W.; Li, G. SATB2, coordinated with CUX1, regulates IL-1β-induced senescence-like phenotype in endothelial cells by fine-tuning the atherosclerosis-associated p16(INK4a) expression. Aging Cell 2023, 22, e13765. [Google Scholar] [CrossRef]
- Jiang, D.; Sun, W.; Wu, T.; Zou, M.; Vasamsetti, S.B.; Zhang, X.; Zhao, Y.; Phillippi, J.A.; Sawalha, A.H.; Tavakoli, S.; et al. Post-GWAS functional analysis identifies CUX1 as a regulator of p16(INK4a) and cellular senescence. Nat. Aging 2022, 2, 140–154. [Google Scholar] [CrossRef]
- Vinué, Á.; MartÍnez-HervÁs, S.; Herrero-Cervera, A.; SÁnchez-GarcÍa, V.; AndrÉs-Blasco, I.; Piqueras, L.; Sanz, M.J.; Real, J.T.; Ascaso, J.F.; Burks, D.J.; et al. Changes in CDKN2A/2B expression associate with T-cell phenotype modulation in atherosclerosis and type 2 diabetes mellitus. Transl. Res. 2019, 203, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Oh, S.; Koester, M.; Abramowicz, S.; Wang, N.; Tall, A.R.; Welch, C.L. Enhanced Megakaryopoiesis and Platelet Activity in Hypercholesterolemic, B6-Ldlr-/-, Cdkn2a-Deficient Mice. Circ. Cardiovasc. Genet. 2016, 9, 213–222. [Google Scholar] [CrossRef]
- Das, A.; Ash, D.; Fouda, A.Y.; Sudhahar, V.; Kim, Y.M.; Hou, Y.; Hudson, F.Z.; Stansfield, B.K.; Caldwell, R.B.; McMenamin, M.; et al. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat. Cell Biol. 2022, 24, 35–50. [Google Scholar] [CrossRef]
- Kahra, D.; Kovermann, M.; Wittung-Stafshede, P. The C-Terminus of Human Copper Importer Ctr1 Acts as a Binding Site and Transfers Copper to Atox1. Biophys. J. 2016, 110, 95–102. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, C.; Tan, X.; Chen, G.; He, Y.; Liu, S.; Luo, Z. Transcriptional Responses of Copper-Transport-Related Genes ctr1, ctr2 and atox1 and Their Roles in the Regulation of Cu Homeostasis in Yellow Catfish Pelteobagrus fulvidraco. Int. J. Mol. Sci. 2022, 23, 12243. [Google Scholar] [CrossRef]
- Yee, E.M.H.; Brandl, M.B.; Pasquier, E.; Cirillo, G.; Kimpton, K.; Kavallaris, M.; Kumar, N.; Vittorio, O. Dextran-Catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cells. Sci. Rep. 2017, 7, 7638. [Google Scholar] [CrossRef] [PubMed]
- Dadu, R.T.; Dodge, R.; Nambi, V.; Virani, S.S.; Hoogeveen, R.C.; Smith, N.L.; Chen, F.; Pankow, J.S.; Guild, C.; Tang, W.H.; et al. Ceruloplasmin and heart failure in the Atherosclerosis Risk in Communities study. Circ. Heart Fail. 2013, 6, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.M.; Yellon, D.M. Mitochondrial DNA damage, oxidative stress, and atherosclerosis: Where there is smoke there is not always fire. Circulation 2013, 128, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Wang, Q.; Chen, T.; Zhou, Z.; Li, S.; Li, Z.; Zhang, D. The possible association of mitochondrial fusion and fission in copper deficiency-induced oxidative damage and mitochondrial dysfunction of the heart. J. Trace Elem. Med. Biol. 2024, 85, 127483. [Google Scholar] [CrossRef]
- Fan, Y.; Cheng, Z.; Mao, L.; Xu, G.; Li, N.; Zhang, M.; Weng, P.; Zheng, L.; Dong, X.; Hu, S.; et al. PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles. J. Nanobiotechnol. 2022, 20, 149. [Google Scholar] [CrossRef]
- Thapa, D.; Bugga, P.; Mushala, B.A.S.; Manning, J.R.; Stoner, M.W.; McMahon, B.; Zeng, X.; Cantrell, P.S.; Yates, N.; Xie, B.; et al. GCN5L1 impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation. Physiol. Rep. 2022, 10, e15415. [Google Scholar] [CrossRef]
- Jiang, C.; Lu, Y.; Zhu, R.; Zong, Y.; Huang, Y.; Wang, D.; Da, Z.; Yu, B.; Shen, L.; Cao, Q. Pyruvate dehydrogenase beta subunit (Pdhb) promotes peripheral axon regeneration by regulating energy supply and gene expression. Exp. Neurol. 2023, 363, 114368. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, H.; Zhai, X.; Gao, L.; Yang, M.; An, B.; Xia, T.; Du, G.; Li, X.; Wang, W.; et al. MELK promotes HCC carcinogenesis through modulating cuproptosis-related gene DLAT-mediated mitochondrial function. Cell Death Dis. 2023, 14, 733. [Google Scholar] [CrossRef]
- Smolders, V.; Rodríguez, C.; Blanco, I.; Szulcek, R.; Timens, W.; Piccari, L.; Roger, Y.; Hu, X.; Morén, C.; Bonjoch, C.; et al. Metabolic profile in endothelial cells of chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension. Sci. Rep. 2022, 12, 2283. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, F.; Zhao, X.; Yuan, W.; Zhang, J.; Wang, Y. [Shenmai injection protects mitochondria from oxidative injury in myocardial cells and its mechanism]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2018, 47, 507–513. [Google Scholar] [CrossRef]
- Yumnam, S.; Kang, M.C.; Oh, S.H.; Kwon, H.C.; Kim, J.C.; Jung, E.S.; Lee, C.H.; Lee, A.Y.; Hwang, J.I.; Kim, S.Y. Downregulation of dihydrolipoyl dehydrogenase by UVA suppresses melanoma progression via triggering oxidative stress and altering energy metabolism. Free Radic. Biol. Med. 2021, 162, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Schulz, V.; Basu, S.; Freibert, S.A.; Webert, H.; Boss, L.; Mühlenhoff, U.; Pierrel, F.; Essen, L.O.; Warui, D.M.; Booker, S.J.; et al. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat. Chem. Biol. 2023, 19, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Dreishpoon, M.B.; Bick, N.R.; Petrova, B.; Warui, D.M.; Cameron, A.; Booker, S.J.; Kanarek, N.; Golub, T.R.; Tsvetkov, P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J. Biol. Chem. 2023, 299, 105046. [Google Scholar] [CrossRef]
- Grootaert, M.O.J.; Moulis, M.; Roth, L.; Martinet, W.; Vindis, C.; Bennett, M.R.; De Meyer, G.R.Y. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc. Res. 2018, 114, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhang, W.J.; McMillen, T.S.; Leboeuf, R.C.; Frei, B. Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis 2012, 223, 306–313. [Google Scholar] [CrossRef]
- Ding, F.; Li, F.; Tang, D.; Wang, B.; Liu, J.; Mao, X.; Yin, J.; Xiao, H.; Wang, J.; Liu, Z. Restoration of the Immunogenicity of Tumor Cells for Enhanced Cancer Therapy via Nanoparticle-Mediated Copper Chaperone Inhibition. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203546. [Google Scholar] [CrossRef]
- Zhang, J.; Ou, C.; Chen, M. Curcumin attenuates cadmium-induced atherosclerosis by regulating trimethylamine-N-oxide synthesis and macrophage polarization through remodeling the gut microbiota. Ecotoxicol. Environ. Saf. 2022, 244, 114057. [Google Scholar] [CrossRef]
- Zhou, P.; Qin, J.; Zhou, C.; Wan, G.; Liu, Y.; Zhang, M.; Yang, X.; Zhang, N.; Wang, Y. Multifunctional nanoparticles based on a polymeric copper chelator for combination treatment of metastatic breast cancer. Biomaterials 2019, 195, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Nurchi, V.M.; Crisponi, G.; Crespo-Alonso, M.; Lachowicz, J.I.; Szewczuk, Z.; Cooper, G.J. Complex formation equilibria of Cu(II) and Zn(II) with triethylenetetramine and its mono- and di-acetyl metabolites. Dalton Trans. 2013, 42, 6161–6170. [Google Scholar] [CrossRef]
- Inkol, J.M.; Poon, A.C.; Mutsaers, A.J. Inhibition of copper chaperones sensitizes human and canine osteosarcoma cells to carboplatin chemotherapy. Vet. Comp. Oncol. 2020, 18, 559–569. [Google Scholar] [CrossRef]
- Li, X.; Zhu, R.; Jiang, H.; Yin, Q.; Gu, J.; Chen, J.; Ji, X.; Wu, X.; Fu, H.; Wang, H.; et al. Autophagy enhanced by curcumin ameliorates inflammation in atherogenesis via the TFEB-P300-BRD4 axis. Acta Pharm. Sin. B 2022, 12, 2280–2299. [Google Scholar] [CrossRef] [PubMed]
- Dastani, M.; Rahimi, H.R.; Askari, V.R.; Jaafari, M.R.; Jarahi, L.; Yadollahi, A.; Rahimi, V.B. Three months of combination therapy with nano-curcumin reduces the inflammation and lipoprotein (a) in type 2 diabetic patients with mild to moderate coronary artery disease: Evidence of a randomized, double-blinded, placebo-controlled clinical trial. Biofactors 2023, 49, 108–118. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Zhao, L.; Song, Y.; Chen, W.; Tuo, Q. Deciphering the Role of Copper Homeostasis in Atherosclerosis: From Molecular Mechanisms to Therapeutic Targets. Int. J. Mol. Sci. 2024, 25, 11462. https://doi.org/10.3390/ijms252111462
Lv X, Zhao L, Song Y, Chen W, Tuo Q. Deciphering the Role of Copper Homeostasis in Atherosclerosis: From Molecular Mechanisms to Therapeutic Targets. International Journal of Molecular Sciences. 2024; 25(21):11462. https://doi.org/10.3390/ijms252111462
Chicago/Turabian StyleLv, Xuzhen, Liyan Zhao, Yuting Song, Wen Chen, and Qinhui Tuo. 2024. "Deciphering the Role of Copper Homeostasis in Atherosclerosis: From Molecular Mechanisms to Therapeutic Targets" International Journal of Molecular Sciences 25, no. 21: 11462. https://doi.org/10.3390/ijms252111462
APA StyleLv, X., Zhao, L., Song, Y., Chen, W., & Tuo, Q. (2024). Deciphering the Role of Copper Homeostasis in Atherosclerosis: From Molecular Mechanisms to Therapeutic Targets. International Journal of Molecular Sciences, 25(21), 11462. https://doi.org/10.3390/ijms252111462