Curcumin Administration Routes in Breast Cancer Treatment
Abstract
:1. Introduction
2. Mechanisms of Action of Curcumin on Breast Cancer
Formulation | Model | Doses | Mechanism | Reference |
---|---|---|---|---|
Curcumin in corn oil | BALB/c mice with 4T1-luc cells | 100 mg/kg through gavage | Inhibits the Wnt/β-catenin signaling pathway, which regulates stem cell differentiation, tissue regeneration, and cell proliferation | [38] |
Curcumin in dimethyl sulfoxide (DMSO) | MCF-7 cells | 30 µM for 24 h | Blocks the PI3K/Akt pathway, preventing angiogenesis, growth, and cell proliferation while promoting senescence, autophagy and apoptosis | [39] |
Curcumin-loaded PLGA-PEG nanoparticles | MCF-7 cells BALB/c mice with MCF-7 cells | 10 µg/mL for 2 h 5 mg/kg in mice | Decreases the amount of EGFR proteins on the cell membrane, inhibiting sensitivity to its ligands, thereby preventing tumor cell proliferation | [34] |
Hyaluronic acid-tagged mesoporous silica nanoparticles loaded with curcumin (MSN-HA-C) | MDA-MB-231 cells Swiss albino mice with EAC cells | 12 μg/mL for 48 h 67.75 mg/kg in mice | Causes cell death by the induction of NF-κB and Bax-mediated pathway of apoptosis Inhibits cell migration | [42] |
Free curcumin | MCF-7 cells | 1.25 mg/mL for 24 h | Downregulates the Raf-1 oncogene and suppresses telomerase activity, alongside upregulating the TNF-α and IL-8 cytokines | [43] |
Apoferritin nanoparticles loaded with Quercetin and Curcumin (Que-Cur-HoS-Apo NPs) | MCF-7 and MCF-10A cells | 2.74 μM for 48 h | Promotes cytotoxicity, apoptosis, ROS production | [50] |
Folic acid-modified curcumin-loaded liposomes (LIP-CCM-FA) | Two-dimensional (2D) and three-dimensional (3D) cell culture models | 50 µM for 24 h | Promotes cytotoxicity and enhancing cellular and spheroid penetration | [51] |
Chitosan-coated liposomes encapsulating curcumin | MCF-7 cells | 12.5 μM for 96 h | Inhibits growth | [52] |
Curcumin-Loaded Solid Lipid Nanoparticles (Cur-SLNs) | SKBR3 cells | 20 μM for 0, 8, 16 or 48 h | Induces apoptosis, promoting the ratio of Bax/Bcl-2, and decreasing the expression of cyclin D1 and CDK4 | [53] |
3. Strategies for Effective Curcumin Delivery to Breast Cancer Cells
4. The Synergy of Curcumin and Breast Cancer Treatments in Cell Line Studies
5. Curcumin in Breast Cancer Treatment on Animal Models and Clinical Trials
5.1. Intratumoral Route
5.2. Transdermal Route
5.3. Intraperitoneal Route
5.4. Oral Route
5.5. Intravenous Route
5.6. Comparing the Oral and Intravenous Routes of Curcumin Administration
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Cosar, R.; Sut, N.; Ozen, A.; Tastekin, E.; Topaloglu, S.; Cicin, I.; Nurlu, D.; Ozler, T.; Demir, S.; Yıldız, G.; et al. Breast Cancer Subtypes and Prognosis: Answers to Subgroup Classification Questions, Identifying the Worst Subgroup in Our Single-Center Series. Breast Cancer Targets Ther. 2022, 14, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Petri, B.J.; Klinge, C.M. Regulation of Breast Cancer Metastasis Signaling by MiRNAs. Cancer Metastasis Rev. 2020, 39, 837–886. [Google Scholar] [CrossRef]
- Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef]
- Fu, Y.-S.; Chen, T.-H.; Weng, L.; Huang, L.; Lai, D.; Weng, C.-F. Pharmacological Properties and Underlying Mechanisms of Curcumin and Prospects in Medicinal Potential. Biomed. Pharmacother. 2021, 141, 111888. [Google Scholar] [CrossRef]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the Active Substance of Turmeric: Its Effects on Health and Ways to Improve Its Bioavailability. J. Sci. Food Agric. 2021, 101, 5747–5762. [Google Scholar] [CrossRef]
- Darmani, H.; Smadi, E.A.M.; Bataineh, S.M.B. Blue Light Emitting Diodes Enhance the Antivirulence Effects of Curcumin against Helicobacter Pylori. J. Med. Microbiol. 2020, 69, 617–624. [Google Scholar] [CrossRef]
- Adnan, M.; Ali, S.; Sheikh, K.; Amber, R. Review on Antibacterial Activity of Himalayan Medicinal Plants Traditionally Used to Treat Pneumonia and Tuberculosis. J. Pharm. Pharmacol. 2019, 71, 1599–1625. [Google Scholar] [CrossRef]
- Chen, J.; He, Z.-M.; Wang, F.-L.; Zhang, Z.-S.; Liu, X.; Zhai, D.-D.; Chen, W.-D. Curcumin and Its Promise as an Anticancer Drug: An Analysis of Its Anticancer and Antifungal Effects in Cancer and Associated Complications from Invasive Fungal Infections. Eur. J. Pharmacol. 2016, 772, 33–42. [Google Scholar] [CrossRef]
- Mathew, D.; Hsu, W.-L. Antiviral Potential of Curcumin. J. Funct. Foods 2018, 40, 692–699. [Google Scholar] [CrossRef]
- Dai, C.; Lin, J.; Li, H.; Shen, Z.; Wang, Y.; Velkov, T.; Shen, J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants 2022, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Kim, H.-S.; Cho, E.-K.; Kwon, B.-Y.; Phark, S.; Hwang, K.-W.; Sul, D. Curcumin Protected PC12 Cells against Beta-Amyloid-Induced Toxicity through the Inhibition of Oxidative Damage and Tau Hyperphosphorylation. Food Chem. Toxicol. 2008, 46, 2881–2887. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R.; Ułamek-Kozioł, M.; Czuczwar, S.J. Neuroprotective and Neurological/Cognitive Enhancement Effects of Curcumin after Brain Ischemia Injury with Alzheimer’s Disease Phenotype. Int. J. Mol. Sci. 2018, 19, 4002. [Google Scholar] [CrossRef] [PubMed]
- Pricci, M.; Girardi, B.; Giorgio, F.; Losurdo, G.; Ierardi, E.; Di Leo, A. Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. Int. J. Mol. Sci. 2020, 21, 2364. [Google Scholar] [CrossRef]
- Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The Role of Curcumin in Cancer Treatment. Biomedicines 2021, 9, 1086. [Google Scholar] [CrossRef]
- Chen, W.-C.; Lai, Y.-A.; Lin, Y.-C.; Ma, J.-W.; Huang, L.-F.; Yang, N.-S.; Ho, C.-T.; Kuo, S.-C.; Way, T.-D. Curcumin Suppresses Doxorubicin-Induced Epithelial–Mesenchymal Transition via the Inhibition of TGF-β and PI3K/AKT Signaling Pathways in Triple-Negative Breast Cancer Cells. J. Agric. Food Chem. 2013, 61, 11817–11824. [Google Scholar] [CrossRef]
- Sultana, S.; Munir, N.; Mahmood, Z.; Riaz, M.; Akram, M.; Rebezov, M.; Kuderinova, N.; Moldabayeva, Z.; Shariati, M.A.; Rauf, A.; et al. Molecular Targets for the Management of Cancer Using Curcuma Longa Linn. Phytoconstituents: A Review. Biomed. Pharmacother. 2021, 135, 111078. [Google Scholar] [CrossRef]
- Guneydas, G.; Topcul, M.R. Antiproliferative Effects of Curcumin Different Types of Breast Cancer. Asian Pac. J. Cancer Prev. 2022, 23, 911–917. [Google Scholar] [CrossRef]
- Barcelos, K.A.; Mendonça, C.R.; Noll, M.; Botelho, A.F.; Francischini, C.R.D.; Silva, M.A.M. Antitumor Properties of Curcumin in Breast Cancer Based on Preclinical Studies: A Systematic Review. Cancers 2022, 14, 2165. [Google Scholar] [CrossRef]
- Bayet-Robert, M.; Kwiatowski, F.; Leheurteur, M.; Gachon, F.; Planchat, E.; Abrial, C.; Mouret-Reynier, M.-A.; Durando, X.; Barthomeuf, C.; Chollet, P. Phase I Dose Escalation Trial of Docetaxel plus Curcumin in Patients with Advanced and Metastatic Breast Cancer. Cancer Biol. Ther. 2010, 9, 8–14. [Google Scholar] [CrossRef]
- Rao, S.; Hegde, S.; Baliga-Rao, M.; Lobo, J.; Palatty, P.; George, T.; Baliga, M. Sandalwood Oil and Turmeric-Based Cream Prevents Ionizing Radiation-Induced Dermatitis in Breast Cancer Patients: Clinical Study. Medicines 2017, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.L.; Heckler, C.E.; Ling, M.; Katz, A.; Williams, J.P.; Pentland, A.P.; Morrow, G.R. Curcumin for Radiation Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Thirty Breast Cancer Patients. Radiat. Res. 2013, 180, 34–43. [Google Scholar] [CrossRef]
- Mbese, Z.; Khwaza, V.; Aderibigbe, B.A. Curcumin and Its Derivatives as Potential Therapeutic Agents in Prostate, Colon and Breast Cancers. Molecules 2019, 24, 4386. [Google Scholar] [CrossRef]
- Saghatelyan, T.; Tananyan, A.; Janoyan, N.; Tadevosyan, A.; Petrosyan, H.; Hovhannisyan, A.; Hayrapetyan, L.; Arustamyan, M.; Arnhold, J.; Rotmann, A.-R.; et al. Efficacy and Safety of Curcumin in Combination with Paclitaxel in Patients with Advanced, Metastatic Breast Cancer: A Comparative, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Phytomedicine 2020, 70, 153218. [Google Scholar] [CrossRef]
- Kumar, A.; Singam, A.; Swaminathan, G.; Killi, N.; Tangudu, N.K.; Jose, J.; Gundloori VN, R.; Dinesh Kumar, L. Combinatorial Therapy Using RNAi and Curcumin Nano-Architectures Regresses Tumors in Breast and Colon Cancer Models. Nanoscale 2022, 14, 492–505. [Google Scholar] [CrossRef]
- Rahman, M.A.; Mittal, V.; Wahab, S.; Alsayari, A.; Bin Muhsinah, A.; Almaghaslah, D. Intravenous Nanocarrier for Improved Efficacy of Quercetin and Curcumin against Breast Cancer Cells: Development and Comparison of Single and Dual Drug–Loaded Formulations Using Hemolysis, Cytotoxicity and Cellular Uptake Studies. Membranes 2022, 12, 713. [Google Scholar] [CrossRef]
- Celik, H.; Aydin, T.; Solak, K.; Khalid, S.; Farooqi, A.A. Curcumin on the “Flying Carpets” to Modulate Different Signal Transduction Cascades in Cancers: Next-generation Approach to Bridge Translational Gaps. J. Cell Biochem. 2018, 119, 4293–4303. [Google Scholar] [CrossRef]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast Cancer Development and Progression: Risk Factors, Cancer Stem Cells, Signaling Pathways, Genomics, and Molecular Pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef]
- Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjomataram, I.; et al. Proportion and Number of Cancer Cases and Deaths Attributable to Potentially Modifiable Risk Factors in the United States. CA Cancer J. Clin. 2018, 68, 31–54. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef] [PubMed]
- Katsura, C.; Ogunmwonyi, I.; Kankam, H.K.; Saha, S. Breast Cancer: Presentation, Investigation and Management. Br. J. Hosp. Med. 2022, 83, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, Q.; Wu, Z.; Xu, Y.; Jiang, R. Curcumin for Treating Breast Cancer: A Review of Molecular Mechanisms, Combinations with Anticancer Drugs, and Nanosystems. Pharmaceutics 2024, 16, 79. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Pi, J.; Zhao, Y.; Jiang, J.; Li, T.; Zeng, X.; Yang, P.; Evans, C.E.; Cai, J. EGFR-Targeting PLGA-PEG Nanoparticles as a Curcumin Delivery System for Breast Cancer Therapy. Nanoscale 2017, 9, 16365–16374. [Google Scholar] [CrossRef]
- Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin Inhibits Proliferation and Promotes Apoptosis of Breast Cancer Cells. Exp. Ther. Med. 2018, 16, 1266–1272. [Google Scholar] [CrossRef]
- Tagde, P.; Tagde, P.; Islam, F.; Tagde, S.; Shah, M.; Hussain, Z.D.; Rahman, M.H.; Najda, A.; Alanazi, I.S.; Germoush, M.O.; et al. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021, 26, 7109. [Google Scholar] [CrossRef]
- Shanmugam, M.; Rane, G.; Kanchi, M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.; Alharbi, S.; Tan, B.; Kumar, A.; Sethi, G. The Multifaceted Role of Curcumin in Cancer Prevention and Treatment. Molecules 2015, 20, 2728–2769. [Google Scholar] [CrossRef]
- Guo, Y.; Su, J.; Jiang, S.; Xu, Y.; Dou, B.; Li, T.; Zhu, J.; He, K. Transcriptomics and Metabonomics Study on the Effect of Exercise Combined with Curcumin Supplementation on Breast Cancer in Mice. Heliyon 2024, 10, e28807. [Google Scholar] [CrossRef]
- Akkoç, Y.; Berrak, Ö.; Arısan, E.D.; Obakan, P.; Çoker-Gürkan, A.; Palavan-Ünsal, N. Inhibition of PI3K Signaling Triggered Apoptotic Potential of Curcumin Which Is Hindered by Bcl-2 through Activation of Autophagy in MCF-7 Cells. Biomed. Pharmacother. 2015, 71, 161–171. [Google Scholar] [CrossRef]
- Calaf, G.; Ponce-Cusi, R.; Carrion, F. Curcumin and Paclitaxel Induce Cell Death in Breast Cancer Cell Lines. Oncol. Rep. 2018, 40, 2381–2388. [Google Scholar] [CrossRef]
- Wang, W.; Nag, S.; Zhang, R. Targeting the NFkB Signaling Pathways for Breast Cancer Prevention and Therapy. Curr. Med. Chem. 2014, 22, 264–289. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Dutta, S.; Sarkar, A.; Kundu, M.; Sil, P.C. Targeted Delivery of Curcumin in Breast Cancer Cells via Hyaluronic Acid Modified Mesoporous Silica Nanoparticle to Enhance Anticancer Efficiency. Colloids Surf. B Biointerfaces 2021, 197, 111404. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, R.M.; Abdel-Aziz, A.A.; Bassiouny, K.; Fayed, A.M. Phytocompounds-Based Therapeutic Approach: Investigating Curcumin and Green Tea Extracts on MCF-7 Breast Cancer Cell Line. J. Genet. Eng. Biotechnol. 2024, 22, 100339. [Google Scholar] [CrossRef]
- Nirgude, S.; Desai, S.; Choudhary, B. Curcumin Alters Distinct Molecular Pathways in Breast Cancer Subtypes Revealed by Integrated miRNA / mRNA Expression Analysis. Cancer Rep. 2022, 5, e1596. [Google Scholar] [CrossRef]
- Norouzi, S.; Majeed, M.; Pirro, M.; Generali, D.; Sahebkar, A. Curcumin as an Adjunct Therapy and MicroRNA Modulator in Breast Cancer. Curr. Pharm. Des. 2018, 24, 171–177. [Google Scholar] [CrossRef]
- Song, X.; Zhang, M.; Dai, E.; Luo, Y. Molecular Targets of Curcumin in Breast Cancer (Review). Mol. Med. Rep. 2018, 19, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, F.; Javan, B.; Sharbatkhari, M.; Soltani, A.; Shafiee, M.; Memarian, A.; Erfani-Moghadam, V. Synergistic Anticancer Effects of Co-Delivery of Linc-RoR SiRNA and Curcumin Using Polyamidoamine Dendrimers against Breast Cancer. Biochem. Biophys. Res. Commun. 2024, 705, 149729. [Google Scholar] [CrossRef] [PubMed]
- Honarvari, B.; Karimifard, S.; Akhtari, N.; Mehrarya, M.; Moghaddam, Z.S.; Ansari, M.J.; Jalil, A.T.; Matencio, A.; Trotta, F.; Yeganeh, F.E.; et al. Folate-Targeted Curcumin-Loaded Niosomes for Site-Specific Delivery in Breast Cancer Treatment: In Silico and In Vitro Study. Molecules 2022, 27, 4634. [Google Scholar] [CrossRef]
- Li, Y.; Zang, X.; Song, J.; Xie, Y.; Chen, X. PH/ROS Dual-Responsive Nanoparticles with Curcumin Entrapment to Promote Antitumor Efficiency in Triple Negative Breast Cancer. J. Drug Deliv. Sci. Technol. 2022, 74, 103520. [Google Scholar] [CrossRef]
- Mansourizadeh, F.; Alberti, D.; Bitonto, V.; Tripepi, M.; Sepehri, H.; Khoee, S.; Geninatti Crich, S. Efficient Synergistic Combination Effect of Quercetin with Curcumin on Breast Cancer Cell Apoptosis through Their Loading into Apo Ferritin Cavity. Colloids Surf. B Biointerfaces 2020, 191, 110982. [Google Scholar] [CrossRef]
- Luiz, M.T.; Dutra, J.A.P.; Ribeiro, T.d.C.; Carvalho, G.C.; Sábio, R.M.; Marchetti, J.M.; Chorilli, M. Folic Acid-Modified Curcumin-Loaded Liposomes for Breast Cancer Therapy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128935. [Google Scholar] [CrossRef]
- Hasan, M.; Elkhoury, K.; Belhaj, N.; Kahn, C.; Tamayol, A.; Barberi-Heyob, M.; Arab-Tehrany, E.; Linder, M. Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin on MCF-7 Breast Cancer Cells. Mar. Drugs 2020, 18, 217. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; et al. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules 2018, 23, 1578. [Google Scholar] [CrossRef] [PubMed]
- Dei Cas, M.; Ghidoni, R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients 2019, 11, 2147. [Google Scholar] [CrossRef]
- Silvestre, F.; Santos, C.; Silva, V.; Ombredane, A.; Pinheiro, W.; Andrade, L.; Garcia, M.; Pacheco, T.; Joanitti, G.; Luz, G.; et al. Pharmacokinetics of Curcumin Delivered by Nanoparticles and the Relationship with Antitumor Efficacy: A Systematic Review. Pharmaceuticals 2023, 16, 943. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Ospina-Muñoz, N.; Noe-Kim, V.; Yang, Y.; Elzey, B.D.; Konieczny, S.F.; Han, B. Subtype-Specific Characterization of Breast Cancer Invasion Using a Microfluidic Tumor Platform. PLoS ONE 2020, 15, e0234012. [Google Scholar] [CrossRef] [PubMed]
- Khazaei Koohpar, Z.; Entezari, M.; Movafagh, A.; Hashemi, M. Anticancer Activity of Curcumin on Human Breast Adenocarcinoma: Role of Mcl-1 Gene. Iran. J. Cancer Prev. 2015, 8, e2331. [Google Scholar] [CrossRef]
- Hosseini, S.; Chamani, J.; Hadipanah, M.R.; Ebadpour, N.; Hojjati, A.S.; Mohammadzadeh, M.; Rahimi, H.R. Nano-Curcumin’s Suppression of Breast Cancer Cells (MCF7) through the Inhibition of CyclinD1 Expression. Breast Cancer Targets Ther. 2019, 11, 137–142. [Google Scholar] [CrossRef]
- Tilawat, M.; Bonde, S. Curcumin and Quercetin Loaded Nanocochleates Gel Formulation for Localized Application in Breast Cancer Therapy. Heliyon 2023, 9, e22892. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Tajiki, A.; Abdouss, M. A Green Approach for Preparation of Polyacrylic Acid/Starch Incorporated with Titanium Dioxide Nanocomposite as a Biocompatible Platform for Curcumin Delivery to Breast Cancer Cells. Int. J. Biol. Macromol. 2023, 242, 124785. [Google Scholar] [CrossRef]
- Omrani, Z.; Pourmadadi, M.; Yazdian, F.; Rashedi, H. Preparation and Characterization of PH-Sensitive Chitosan/Starch/MoS2 Nanocomposite for Control Release of Curcumin Macromolecules Drug Delivery; Application in the Breast Cancer Treatment. Int. J. Biol. Macromol. 2023, 250, 125897. [Google Scholar] [CrossRef] [PubMed]
- Ganie, S.A.; Naik, R.A.; Dar, O.A.; Rather, L.J.; Assiri, M.A.; Li, Q. Design and Fabrication of Functionalized Curdlan-Curcumin Delivery System to Facilitate the Therapeutic Effects of Curcumin on Breast Cancer. Int. J. Biol. Macromol. 2024, 267, 131388. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.C.; Quijia, C.R.; Bento da Silva, P.; Faria, R.S.; Cabral Morais, A.A.; Vasconcelos Morais, J.A.; de Araújo, H.L.L.; Frem, R.C.G.; de Azevedo, R.B.; Chorilli, M. Folic Acid-Conjugated Curcumin-Loaded BioMOF-101 for Breast Cancer Therapy. J. Drug Deliv. Sci. Technol. 2023, 86, 104702. [Google Scholar] [CrossRef]
- Zoghi, M.; Pourmadadi, M.; Yazdian, F.; Nigjeh, M.N.; Rashedi, H.; Sahraeian, R. Synthesis and Characterization of Chitosan/Carbon Quantum Dots/Fe2O3 Nanocomposite Comprising Curcumin for Targeted Drug Delivery in Breast Cancer Therapy. Int. J. Biol. Macromol. 2023, 249, 125788. [Google Scholar] [CrossRef]
- Ghalehkhondabi, V.; Fazlali, A.; Soleymani, M. Preparation of Hyaluronic Acid-Decorated Hollow Meso-Organosilica/Poly(Methacrylic Acid) Nanospheres with Redox/PH Dual Responsivity for Delivery of Curcumin to Breast Cancer Cells. Mater. Today Chem. 2023, 34, 101780. [Google Scholar] [CrossRef]
- Jafari, H.; Namazi, H. PH-Sensitive Biosystem Based on Laponite RD/Chitosan/Polyvinyl Alcohol Hydrogels for Controlled Delivery of Curcumin to Breast Cancer Cells. Colloids Surf. B Biointerfaces 2023, 231, 113585. [Google Scholar] [CrossRef] [PubMed]
- Quispe-Soto, E.T.; Calaf, G.M. Effect of Curcumin and Paclitaxel on Breast Carcinogenesis. Int. J. Oncol. 2016, 49, 2569–2577. [Google Scholar] [CrossRef]
- Alemi, A.; Zavar Reza, J.; Haghiralsadat, F.; Zarei Jaliani, H.; Haghi Karamallah, M.; Hosseini, S.A.; Haghi Karamallah, S. Paclitaxel and Curcumin Coadministration in Novel Cationic PEGylated Niosomal Formulations Exhibit Enhanced Synergistic Antitumor Efficacy. J. Nanobiotechnol. 2018, 16, 28. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Q.; Du, S.; Guan, Y.; Qiu, J.; Chen, X.; Yuan, D.; Chen, T. Nanoparticles for Co-Delivery of Paclitaxel and Curcumin to Overcome Chemoresistance against Breast Cancer. J. Drug Deliv. Sci. Technol. 2023, 79, 104050. [Google Scholar] [CrossRef]
- Wen, C.; Fu, L.; Huang, J.; Dai, Y.; Wang, B.; Xu, G.; Wu, L.; Zhou, H. Curcumin Reverses Doxorubicin Resistance via Inhibition the Efflux Function of ABCB4 in Doxorubicin-resistant Breast Cancer Cells. Mol. Med. Rep. 2019, 19, 5162–5168. [Google Scholar] [CrossRef]
- Moghadam, M.R.; Karimi, S.; Namazi, H. A Targeted Biosystem Based on L-Lysine Coated GO@rod-Cu(II) Metal-Organic Frameworks for PH-Controlled Co-Delivery of Doxorubicin and Curcumin. Food Biosci. 2024, 58, 103578. [Google Scholar] [CrossRef]
- Saharkhiz, S.; Zarepour, A.; Nasri, N.; Cordani, M.; Zarrabi, A. A Comparison Study between Doxorubicin and Curcumin Co-Administration and Co-Loading in a Smart Niosomal Formulation for MCF-7 Breast Cancer Therapy. Eur. J. Pharm. Sci. 2023, 191, 106600. [Google Scholar] [CrossRef] [PubMed]
- Jalaladdiny, S.; Badoei-dalfard, A.; Karami, Z.; Sargazi, G. Co-Delivery of Doxorubicin and Curcumin to Breast Cancer Cells by a Targeted Delivery System Based on Ni/Ta Core-Shell Metal-Organic Framework Coated with Folic Acid-Activated Chitosan Nanoparticles. J. Iran. Chem. Soc. 2022, 19, 4287–4298. [Google Scholar] [CrossRef]
- Wang, G.; Duan, P.; Wei, Z.; Liu, F. Curcumin Sensitizes Carboplatin Treatment in Triple Negative Breast Cancer through Reactive Oxygen Species Induced DNA Repair Pathway. Mol. Biol. Rep. 2022, 49, 3259–3270. [Google Scholar] [CrossRef]
- Ferguson, J.E.; Orlando, R.A. Curcumin Reduces Cytotoxicity of 5-Fluorouracil Treatment in Human Breast Cancer Cells. J. Med. Food 2015, 18, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Vinod, B.S.; Antony, J.; Nair, H.H.; Puliyappadamba, V.T.; Saikia, M.; Shyam Narayanan, S.; Bevin, A.; John Anto, R. Mechanistic Evaluation of the Signaling Events Regulating Curcumin-Mediated Chemosensitization of Breast Cancer Cells to 5-Fluorouracil. Cell Death Dis. 2013, 4, e505. [Google Scholar] [CrossRef]
- Fatemizadeh, M.; Tafvizi, F.; Shamsi, F.; Amiri, S.; Farajzadeh, A.; Akbarzadeh, I. Apoptosis Induction, Cell Cycle Arrest and Anti-Cancer Potential of Tamoxifen-Curcumin Loaded Niosomes Against MCF-7 Cancer Cells. Iran. J. Pathol. 2022, 17, 183–190. [Google Scholar] [CrossRef]
- Danafar, H.; Hossein Taromchi, A.; Rakhshbahar, A.; Sharafi, A.; Hasani, V.; Tafvizi, S.; Rostami, M. Co-Delivery of Methotrexate and Curcumin with MPEG-PCL Polymeric Nanoparticles and Evaluation of Toxicity Effect on MCF7 Breast Cancer Cell Line. Inorg. Chem. Commun. 2022, 142, 109715. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Hassandokht, F.; Ardakani, M.T.; Karimi, B.; Roustazadeh, A.; Tarvirdipour, S.; Barmak, M.J.; Nikseresht, M.; Baneshi, M.; Mousavizadeh, A.; et al. Intercalation of Curcumin into Liposomal Chemotherapeutic Agent Augments Apoptosis in Breast Cancer Cells. J. Biomater. Appl. 2021, 35, 1005–1018. [Google Scholar] [CrossRef]
- Tiwari, P.; Nadeem, M.; Dua, S.; Rizvi, M. MoshahidA.; Arfin, N. Zein-Laponite Coacervate Aided Co-Delivery of Curcumin and Cisplatin towards MDA-MB-231 Breast Cancer Cells: Validating the Concept. Food Hydrocoll. Health 2023, 4, 100164. [Google Scholar] [CrossRef]
- Ombredane, A.S.; Silva, V.R.P.; Andrade, L.R.; Pinheiro, W.O.; Simonelly, M.; Oliveira, J.V.; Pinheiro, A.C.; Gonçalves, G.F.; Felice, G.J.; Garcia, M.P.; et al. In Vivo Efficacy and Toxicity of Curcumin Nanoparticles in Breast Cancer Treatment: A Systematic Review. Front. Oncol. 2021, 11, 612903. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Gálvez, M.Á.; González-Sarrías, A.; Martínez-Díaz, F.; Abellán, B.; Martínez-Torrano, A.J.; Fernández-López, A.J.; Giménez-Bastida, J.A.; Espín, J.C. Disposition of Dietary Polyphenols in Breast Cancer Patients’ Tumors, and Their Associated Anticancer Activity: The Particular Case of Curcumin. Mol. Nutr. Food Res. 2021, 65, e2100163. [Google Scholar] [CrossRef] [PubMed]
- Momin, N.; Palmeri, J.R.; Lutz, E.A.; Jailkhani, N.; Mak, H.; Tabet, A.; Chinn, M.M.; Kang, B.H.; Spanoudaki, V.; Hynes, R.O.; et al. Maximizing Response to Intratumoral Immunotherapy in Mice by Tuning Local Retention. Nat. Commun. 2022, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Mahalunkar, S.; Yadav, A.S.; Gorain, M.; Pawar, V.; Braathen, R.; Weiss, S.; Bogen, B.; Gosavi, S.W.; Kundu, G.C. Functional Design of PH-Responsive Folate-Targeted Polymer-Coated Gold Nanoparticles for Drug Delivery and in Vivo Therapy in Breast Cancer. Int. J. Nanomed. 2019, 14, 8285–8302. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, L.; Zhang, X.; Liang, Y.; Pu, Z.; Wang, L.; Mo, J. Curcumin: A Calixarene Derivative Micelle Potentiates Anti-Breast Cancer Stem Cells Effects in Xenografted, Triple-Negative Breast Cancer Mouse Models. Drug Deliv. 2017, 24, 1470–1481. [Google Scholar] [CrossRef]
- Li, R.; Lin, Z.; Zhang, Q.; Zhang, Y.; Liu, Y.; Lyu, Y.; Li, X.; Zhou, C.; Wu, G.; Ao, N.; et al. Injectable and In Situ -Formable Thiolated Chitosan-Coated Liposomal Hydrogels as Curcumin Carriers for Prevention of In Vivo Breast Cancer Recurrence. ACS Appl. Mater. Interfaces 2020, 12, 17936–17948. [Google Scholar] [CrossRef]
- Atlan, M.; Neman, J. Targeted Transdermal Delivery of Curcumin for Breast Cancer Prevention. Int. J. Environ. Res. Public Health 2019, 16, 4949. [Google Scholar] [CrossRef]
- Abdel-Hafez, S.M.; Hathout, R.M.; Sammour, O.A. Curcumin-Loaded Ultradeformable Nanovesicles as a Potential Delivery System for Breast Cancer Therapy. Colloids Surf. B Biointerfaces 2018, 167, 63–72. [Google Scholar] [CrossRef]
- Truong, T.H.; Alcantara, K.P.; Bulatao, B.P.I.; Sorasitthiyanukarn, F.N.; Muangnoi, C.; Nalinratana, N.; Vajragupta, O.; Rojsitthisak, P.; Rojsitthisak, P. Chitosan-Coated Nanostructured Lipid Carriers for Transdermal Delivery of Tetrahydrocurcumin for Breast Cancer Therapy. Carbohydr. Polym. 2022, 288, 119401. [Google Scholar] [CrossRef]
- Al Shoyaib, A.; Archie, S.R.; Karamyan, V.T. Intraperitoneal Route of Drug Administration: Should It Be Used in Experimental Animal Studies? Pharm. Res. 2020, 37, 12. [Google Scholar] [CrossRef]
- Lv, Z.-D.; Liu, X.-P.; Zhao, W.-J.; Dong, Q.; Li, F.-N.; Wang, H.-B.; Kong, B. Curcumin Induces Apoptosis in Breast Cancer Cells and Inhibits Tumor Growth in Vitro and in Vivo. Int. J. Clin. Exp. Pathol. 2014, 7, 2818–2824. [Google Scholar] [PubMed]
- Jung, K.; Lee, J.; Park, J.; Kim, D.; Moon, S.; Cho, Y.; Lee, K. Targeted Therapy of Triple Negative MDA-MB-468 Breast Cancer with Curcumin Delivered by Epidermal Growth Factor-conjugated Phospholipid Nanoparticles. Oncol. Lett. 2018, 15, 9093–9100. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Arbab, A.; Jardim-Perassi, B.; Borin, T.; Varma, N.; Iskander, A.; Shankar, A.; Ali, M.; de Campos Zuccari, D. Effect of Curcumin on Pro-Angiogenic Factors in the Xenograft Model of Breast Cancer. Anticancer Agents Med. Chem. 2015, 15, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Zhu, L.; Jiang, X.; Wang, Y.; Wang, Y.; Wang, X.; Chen, B. Curcumin Increases Breast Cancer Cell Sensitivity to Cisplatin by Decreasing FEN1 Expression. Oncotarget 2018, 9, 11268–11278. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Wu, J.; Han, S.; Liu, Y.; Su, Z.; Zhu, H.-L.; Liu, H.-K.; Qian, Y. Biotinylated Curcumin as a Novel Chemosensitizer Enhances Naphthalimide-Induced Autophagic Cell Death in Breast Cancer Cells. Eur. J. Med. Chem. 2022, 228, 114029. [Google Scholar] [CrossRef]
- Shukla, M.; Jaiswal, S.; Sharma, A.; Srivastava, P.K.; Arya, A.; Dwivedi, A.K.; Lal, J. A Combination of Complexation and Self-Nanoemulsifying Drug Delivery System for Enhancing Oral Bioavailability and Anticancer Efficacy of Curcumin. Drug Dev. Ind. Pharm. 2017, 43, 847–861. [Google Scholar] [CrossRef]
- Hegazy, H.; Amin, M.M.; Fayad, W.; Zakaria, M.Y. TPGS Surface Modified Bilosomes as Boosting Cytotoxic Oral Delivery Systems of Curcumin against Doxorubicin Resistant MCF-7 Breast Cancer Cells. Int. J. Pharm. 2022, 619, 121717. [Google Scholar] [CrossRef]
- Eskandari, Z.; Bahadori, F.; Yenigun, V.B.; Demiray, M.; Eroğlu, M.S.; Kocyigit, A.; Oner, E.T. Levan Enhanced the NF-ΚB Suppression Activity of an Oral Nano PLGA-Curcumin Formulation in Breast Cancer Treatment. Int. J. Biol. Macromol. 2021, 189, 223–231. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, P.; Hou, X.; Yan, F.; Jiang, Z.; Shi, J.; Xie, X.; Shen, J.; Fan, Q.; Wang, Z.; et al. Hybrid Curcumin–Phospholipid Complex-near-Infrared Dye Oral Drug Delivery System to Inhibit Lung Metastasis of Breast Cancer. Int. J. Nanomed. 2019, 14, 3311–3330. [Google Scholar] [CrossRef]
- Attia, Y.M.; El-Kersh, D.M.; Ammar, R.A.; Adel, A.; Khalil, A.; Walid, H.; Eskander, K.; Hamdy, M.; Reda, N.; Mohsen, N.E.; et al. Inhibition of Aldehyde Dehydrogenase-1 and p-Glycoprotein-Mediated Multidrug Resistance by Curcumin and Vitamin D3 Increases Sensitivity to Paclitaxel in Breast Cancer. Chem. Biol. Interact. 2020, 315, 108865. [Google Scholar] [CrossRef]
- Sahu, B.P.; Hazarika, H.; Bharadwaj, R.; Loying, P.; Baishya, R.; Dash, S.; Das, M.K. Curcumin-Docetaxel Co-Loaded Nanosuspension for Enhanced Anti-Breast Cancer Activity. Expert Opin. Drug Deliv. 2016, 13, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Thadakapally, R.; Aafreen, A.; Aukunuru, J.; Habibuddin, M.; Jogala, S. Preparation and Characterization of PEG-Albumin-Curcumin Nanoparticles Intended to Treat Breast Cancer. Indian J. Pharm. Sci. 2016, 78, 65. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Fu, Q.; Jin, C.; Ji, X.; Yan, Q.; Yang, Q.; Wu, D.; Gao, Y.; Hong, W.; Li, A.; et al. Dual Functional Matrix Metalloproteinase-Responsive Curcumin-Loaded Nanoparticles for Tumor-Targeted Treatment. Drug Deliv. 2019, 26, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Sahne, F.; Mohammadi, M.; Najafpour, G.D. Single-Layer Assembly of Multifunctional Carboxymethylcellulose on Graphene Oxide Nanoparticles for Improving in Vivo Curcumin Delivery into Tumor Cells. ACS Biomater. Sci. Eng. 2019, 5, 2595–2609. [Google Scholar] [CrossRef]
- Li, N.; Wang, Z.; Zhang, Y.; Zhang, K.; Xie, J.; Liu, Y.; Li, W.; Feng, N. Curcumin-Loaded Redox-Responsive Mesoporous Silica Nanoparticles for Targeted Breast Cancer Therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 921–935. [Google Scholar] [CrossRef]
- Kundu, M.; Sadhukhan, P.; Ghosh, N.; Chatterjee, S.; Manna, P.; Das, J.; Sil, P.C. PH-Responsive and Targeted Delivery of Curcumin via Phenylboronic Acid-Functionalized ZnO Nanoparticles for Breast Cancer Therapy. J. Adv. Res. 2019, 18, 161–172. [Google Scholar] [CrossRef]
- Karabasz, A.; Lachowicz, D.; Karewicz, A.; Mezyk-Kopec, R.; Stalińska, K.; Werner, E.; Cierniak, A.; Dyduch, G.; Bereta, J.; Bzowska, M. Analysis of Toxicity and Anticancer Activity of Micelles of Sodium Alginate-Curcumin. Int. J. Nanomed. 2019, 14, 7249–7262. [Google Scholar] [CrossRef]
- Ji, P.; Wang, L.; Chen, Y.; Wang, S.; Wu, Z.; Qi, X. Hyaluronic Acid Hydrophilic Surface Rehabilitating Curcumin Nanocrystals for Targeted Breast Cancer Treatment with Prolonged Biodistribution. Biomater. Sci. 2020, 8, 462–472. [Google Scholar] [CrossRef]
- Sun, M.; Wu, J.; Lian, B.; Cui, J.; Xu, N.; Xu, Z.; Nie, Y.; Yu, G.; Liu, S. Hyaluronic Acid-Modified Liposomes Co-Encapsulating Curcumin and Mifepristone to Enhance Anti-Breast Cancer Efficacy. J. Drug Deliv. Sci. Technol. 2023, 88, 104956. [Google Scholar] [CrossRef]
- Yu, S.; Wang, S.; Xie, Z.; Yu, S.; Li, L.; Xiao, H.; Song, Y. Hyaluronic Acid Coating on the Surface of Curcumin-Loaded ZIF-8 Nanoparticles for Improved Breast Cancer Therapy: An in Vitro and in Vivo Study. Colloids Surf. B Biointerfaces 2021, 203, 111759. [Google Scholar] [CrossRef]
- He, H.; Zhuang, W.; Ma, B.; Su, X.; Yu, T.; Hu, J.; Chen, L.; Peng, R.; Li, G.; Wang, Y. Oxidation-Responsive and Aggregation-Induced Emission Polymeric Micelles with Two-Photon Excitation for Cancer Therapy and Bioimaging. ACS Biomater. Sci. Eng. 2019, 5, 2577–2586. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, F.; Zhang, L.; Yang, Y.; Yang, X.; Pan, W. 99mTc Radiolabeled HA/TPGS-Based Curcumin-Loaded Nanoparticle for Breast Cancer Synergistic Theranostics: Design, in Vitro and in Vivo Evaluation. Int. J. Nanomed. 2020, 15, 2987–2998. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Sen, R.; Paul, B.; Kazi, J.; Ganguly, S.; Debnath, M.C. Gemcitabine Co-Encapsulated with Curcumin in Folate Decorated PLGA Nanoparticles; a Novel Approach to Treat Breast Adenocarcinoma. Pharm. Res. 2020, 37, 56. [Google Scholar] [CrossRef]
- Vakilinezhad, M.A.; Amini, A.; Dara, T.; Alipour, S. Methotrexate and Curcumin Co-Encapsulated PLGA Nanoparticles as a Potential Breast Cancer Therapeutic System: In Vitro and in Vivo Evaluation. Colloids Surf. B Biointerfaces 2019, 184, 110515. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Bui, Q.A.; Nguyen, H.H.N.; Nguyen, T.T.; Ly, K.L.; Tran, H.L.B.; Doan, V.N.; Nhi, T.T.Y.; Nguyen, N.H.; Nguyen, N.H.; et al. Curcuminoid Co-Loading Platinum Heparin-Poloxamer P403 Nanogel Increasing Effectiveness in Antitumor Activity. Gels 2022, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Fathy Abd-Ellatef, G.-E.; Gazzano, E.; Chirio, D.; Ragab Hamed, A.; Belisario, D.C.; Zuddas, C.; Peira, E.; Rolando, B.; Kopecka, J.; Assem Said Marie, M.; et al. Curcumin-Loaded Solid Lipid Nanoparticles Bypass P-Glycoprotein Mediated Doxorubicin Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics 2020, 12, 96. [Google Scholar] [CrossRef]
- Xiong, K.; Zhang, Y.; Wen, Q.; Luo, J.; Lu, Y.; Wu, Z.; Wang, B.; Chen, Y.; Zhao, L.; Fu, S. Co-Delivery of Paclitaxel and Curcumin by Biodegradable Polymeric Nanoparticles for Breast Cancer Chemotherapy. Int. J. Pharm. 2020, 589, 119875. [Google Scholar] [CrossRef]
- Bertoncini-Silva, C.; Vlad, A.; Ricciarelli, R.; Giacomo Fassini, P.; Suen, V.M.M.; Zingg, J.-M. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants 2024, 13, 331. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; El Rayess, Y.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef]
- NCI NIH US Curcumin (Curcuma, Turmeric) and Cancer (PDQ®)–Health Professional Version Was Originally Published by the National Cancer Institute. Available online: https://www.cancer.gov/about-cancer/treatment/cam/hp/curcumin-pdq (accessed on 11 October 2024).
Clinical Trial | Study Design | Population | Treatment | Results | Reference |
---|---|---|---|---|---|
Curcumin + Docetaxel | Phase I | Patients with advanced breast cancer | Curcumin (From 500 mg/day) + Docetaxel (100 mg/m2 IV) | Enhanced therapeutic outcomes, safe dose determined | [21] |
Curcumin + Radiotherapy (RT) | Randomized, double-blind, placebo-controlled clinical trial | Women with non-inflammatory breast cancer or carcinoma in situ prescribed radiation therapy (RT) | Curcumin (6 g/day) | Reduction in severity of radiation dermatitis | [23] |
Curcumin + Polyphenols in Breast Cancer Surgery | Controlled trial with two groups | 26 patients with diagnosed breast cancer; and 11 patients in the control group, completed the trial | Curcumin and polyphenols (three capsules/day) from diagnosis to surgery; two capsules 2–6 h before surgery | Metabolites of curcuminoids detected in mammary tissues, suggesting anti-cancer effects with long-term exposure | [82] |
Curcumin + Paclitaxel | Randomized, double-blind, placebo-controlled | Patients with advanced and metastatic breast cancer | Curcumin (300 mg) + Paclitaxel (80 mg/m2) | Improved objective response rates and reduced side effects | [25] |
Criteria | Oral Route Administration | Intravenous Route Administration |
---|---|---|
Cost | More economical | More expensive |
Adherence to treatment | Easier adherence, enhanced tolerability, and suitability for an extended duration | Less adherence, reduced tolerability, and temporary use |
Improved formulations | Curcumin into self-nano emulsifying drug delivery system (CPCSNEDDS) [96]. Curcumin solution dissolved in corn oil [38]. D-alpha-tocopheryl polyethylene glycol succinate -coated bilosomes were successfully formulated and loaded with curcumin (TPGS-CUR-Bil) [97]. PLGA-Levan Nanomicelle Loaded with Curcumin 1 mL/day [98]. CUR/IR780@SMEDDS 75 mg/kg (Self-Microemulsifying Drug Delivery System) [99]. Curcumin extracted (Powdered Turmeric rhizomes (500 gm)) with 100% methanol [100]. Curcumin–docetaxel co-loaded nanosuspension 40 mg/kg [101]. Curcumin capsule 500 mg [21]. Capsule of 505 mg of blend (190 mg curcumin extract, 65 mg trans-resveratrol, 125 mg flaxseed extract, and 125 mg red clover extract) [82]. Curcumin (Curcumin C3 Complex®) [23]. | PEG–albumin–curcumin Nanoparticles 10 mg/mL [102]. Curcumin loaded with an amphiphilic block copolymer (MePEG-peptide-PET-PCL) nanoparticles (Cur-P-NPs) [103]. Cur-FA-CMC/PVP GO NPs [104]. Curcumin-loaded redox-responsive mesoporous silica nanoparticles (MSN/CUR-PEI-FA) [105]. Curcumin-loaded ZnO nanoparticles (ZnO-PBA-Curcumin) 10 mg/kg [106]. PLGA-PEG nanoparticles curcumin delivery system 5 mg/kg [34]. pH/redox nanocarrier CUR@PCPP [49]. Alginate–curcumin conjugate (AA-Cur) [107]. Curcumin nanocrystals (Cur-NC) modified with Hyaluronic Acid (HA@Cur-NC) [108]. Mifepristone and curcumin encapsulated in Hyaluronic Acid-modified liposomes (CUR&RU486/HA-LIPs) [109]. Curcumin-loaded and Hyaluronic Acid-coated ZIF-8 (Cur@ZIF-8@HA) [110]. Curcumin delivered Conjugating Hyaluronic Acid (HA) on the surface of Mesoporous silica nanoparticle (MSN-HA-C) [42]. Curcumin-loaded oxidation-responsive mPEG-b-PLG (Se)-TP polymeric micelle (Cur-loaded micelles) [111]. HA-CHEMS conjugates and TPGS self-assembled into Curcumine-loaded nanoparticles (HA-CHEMS-Cur-TPGS NPs) [112]. Folate-conjugated curcumin and gemcitabine-loaded nanoparticles (FCGNPs) [113]. Methotrexate and Curcumin co-encapsulated in Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (MTX-CUR-NPs) [114]. Heparin-poloxamer P403 (HP403) co-load curcuminoid (Cur) and cisplatin hydrate (CisOH) (HP403@CisOH@Cur) [115]. Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles (PTX-CUR-NPs) [117]. PEG-PLGA encapsulated paclitaxel and curcumin (PC-NPs) nanoparticles [69]. Curcumin® (CUC-01) 300 mg/week [25]. |
Combination with other therapies | Gemcitabine [98]. Paclitaxel [100]. Docetaxel [21,101]. IR780 [99]. Radiotherapy [23]. | Gemcitabine [113]. Paclitaxel [25,69,117]. Methotrexate [114]. Cisplatin [115]. Doxorubicin [116]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayo, B.; Penroz, S.; Torres, K.; Simón, L. Curcumin Administration Routes in Breast Cancer Treatment. Int. J. Mol. Sci. 2024, 25, 11492. https://doi.org/10.3390/ijms252111492
Mayo B, Penroz S, Torres K, Simón L. Curcumin Administration Routes in Breast Cancer Treatment. International Journal of Molecular Sciences. 2024; 25(21):11492. https://doi.org/10.3390/ijms252111492
Chicago/Turabian StyleMayo, Bianca, Silvana Penroz, Keila Torres, and Layla Simón. 2024. "Curcumin Administration Routes in Breast Cancer Treatment" International Journal of Molecular Sciences 25, no. 21: 11492. https://doi.org/10.3390/ijms252111492
APA StyleMayo, B., Penroz, S., Torres, K., & Simón, L. (2024). Curcumin Administration Routes in Breast Cancer Treatment. International Journal of Molecular Sciences, 25(21), 11492. https://doi.org/10.3390/ijms252111492