Regulation of HTT mRNA Biogenesis: The Norm and Pathology
Abstract
:1. Introduction
2. Regulation of HTT Gene Transcription
2.1. Functional Features of the HTT Promoter
2.2. Transcriptional Regulators of HTT: In the Norm and in HD
2.2.1. CTCF
- Norm
- HD
2.2.2. SP1
- Norm
- HD
2.2.3. HDBP1 and HDBP2
- Norm
- HD
2.2.4. NF-kB
- Norm
- HD
2.2.5. STAT1
- Norm
- HD
2.2.6. MicroRNAs
- Norm
- HD
2.2.7. Antisense Transcript
- Norm
- HD
3. HTT mRNA Processing
3.1. Diversity of HTT Transcripts Due to Alternative Polyadenylation Signals
- Norm
- HD
3.2. Diversity of HTT Transcripts Due to Alternative Splicing
- Norm
- HD
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Medina, A.; Mahjoub, Y.; Shaver, L.; Pringsheim, T. Prevalence and incidence of Huntington’s disease: An updated systematic review and meta-analysis. Mov. Disord. 2022, 37, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Exuzides, A.; Reddy, S.R.; Chang, E.; Ta, J.T.; Patel, A.M.; Paydar, C.; Yohrling, G.J. Epidemiology of Huntington’s disease in the United States medicare and medicaid populations. Neuroepidemiology 2022, 56, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.; Handley, R.R.; Lehnert, K.; Snell, R.G. From pathogenesis to therapeutics: A review of 150 years of Huntington’s disease research. Int. J. Mol. Sci. 2023, 24, 13021. [Google Scholar] [CrossRef] [PubMed]
- Oosterloo, M.; Touze, A.; Byrne, L.M.; Achenbach, J.; Aksoy, H.; Coleman, A.; Lammert, D.; Nance, M.; Nopoulos, P.; Reilmann, R.; et al. Clinical review of juvenile Huntington’s disease. J. Huntington’s Dis. 2024, 13, 149–161. [Google Scholar] [CrossRef]
- Urrutia, N.L. Adult-onset Huntington disease: An update. Nursing 2019, 49, 36–43. [Google Scholar] [CrossRef]
- Saft, C.; Burgunder, J.M.; Dose, M.; Jung, H.H.; Katzenschlager, R.; Priller, J.; Nguyen, H.P.; Reetz, K.; Reilmann, R.; Seppi, K.; et al. Symptomatic treatment options for Huntington’s disease (guidelines of the German Neurological Society). Neurol. Res. Pract. 2023, 5, 61. [Google Scholar] [CrossRef]
- Ambrose, C.M.; Duyao, M.P.; Barnes, G.; Bates, G.P.; Lin, C.S.; Srinidhi, J.; Baxendale, S.; Hummerich, H.; Lehrach, H.; Altherr, M.; et al. Structure and expression of the Huntington’s disease gene: Evidence against simple inactivation due to an expanded CAG repeat. Somat. Cell Mol. Genet. 1994, 20, 27–38. [Google Scholar] [CrossRef]
- Jurcau, A. Molecular pathophysiological mechanisms in Huntington’s disease. Biomedicines 2022, 10, 1432. [Google Scholar] [CrossRef]
- Marques Sousa, C.; Humbert, S. Huntingtin: Here, there, everywhere! J. Huntington’s Dis. 2013, 2, 395–403. [Google Scholar] [CrossRef]
- Zeitlin, S.; Liu, J.P.; Chapman, D.L.; Papaioannou, V.E.; Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat. Genet. 1995, 11, 155–163. [Google Scholar] [CrossRef]
- Semaka, A.; Kay, C.; Doty, C.; Collins, J.A.; Bijlsma, E.K.; Richards, F.; Goldberg, Y.P.; Hayden, M.R. CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J. Med. Genet. 2013, 50, 696–703. [Google Scholar] [CrossRef]
- Aziz, N.A.; van Belzen, M.J.; Coops, I.D.; Belfroid, R.D.; Roos, R.A. Parent-of-origin differences of mutant HTT CAG repeat instability in Huntington’s disease. Eur. J. Med. Genet. 2011, 54, e413–e418. [Google Scholar] [CrossRef]
- Trottier, Y.; Biancalana, V.; Mandel, J.L. Instability of CAG repeats in Huntington’s disease: Relation to parental transmission and age of onset. J. Med. Genet. 1994, 31, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Swami, M.; Hendricks, A.E.; Gillis, T.; Massood, T.; Mysore, J.; Myers, R.H.; Wheeler, V.C. Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet. 2009, 18, 3039–3047. [Google Scholar] [CrossRef]
- Aldous, S.G.; Smith, E.J.; Landles, C.; Osborne, G.F.; Cañibano-Pico, M.; Nita, I.M.; Phillips, J.; Zhang, Y.; Jin, B.; Hirst, M.B.; et al. A CAG repeat threshold for therapeutics targeting somatic instability in Huntington’s disease. Brain 2024, 147, 1784–1798. [Google Scholar] [CrossRef] [PubMed]
- Harding, R.J.; Tong, Y.F. Proteostasis in Huntington’s disease: Disease mechanisms and therapeutic opportunities. Acta Pharmacol. Sin. 2018, 39, 754–769. [Google Scholar] [CrossRef] [PubMed]
- Malla, B.; Guo, X.; Senger, G.; Chasapopoulou, Z.; Yildirim, F. A systematic review of transcriptional dysregulation in Huntington’s disease studied by RNA sequencing. Front. Genet. 2021, 12, 751033. [Google Scholar] [CrossRef]
- Han, R.; Liang, J.; Zhou, B. Glucose metabolic dysfunction in neurodegenerative diseases—New mechanistic insights and the potential of hypoxia as a prospective therapy targeting metabolic reprogramming. Int. J. Mol. Sci. 2021, 22, 5887. [Google Scholar] [CrossRef]
- Matlahov, I.; van der Wel, P.C. Conformational studies of pathogenic expanded polyglutamine protein deposits from Huntington’s disease. Exp. Biol. Med. 2019, 244, 1584–1595. [Google Scholar] [CrossRef]
- Korsten, G.; Osinga, M.; Pelle, R.A.; Serweta, A.K.; Hoogenberg, B.; Kampinga, H.H.; Kapitein, L.C. Nuclear poly-glutamine aggregates rupture the nuclear envelope and hinder its repair. J. Cell Biol. 2024, 223, e202307142. [Google Scholar] [CrossRef]
- van der Bent, M.L.; Evers, M.M.; Valles, A. Emerging therapies for Huntington’s disease—Focus on N-terminal huntingtin and huntingtin exon 1. Biologics 2022, 30, 141–160. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Lu, J.; Feng, X.; Lu, S.; Yang, Y.; Yang, G.; Tan, S.; Wang, L.; Li, P.; Luo, S.; et al. Gelation of cytoplasmic expanded CAG RNA repeats suppresses global protein synthesis. Nat. Chem. Biol. 2023, 19, 1372–1383. [Google Scholar] [CrossRef]
- Schilling, J.; Broemer, M.; Atanassov, I.; Duernberger, Y.; Vorberg, I.; Dieterich, C.; Dagane, A.; Dittmar, G.; Wanker, E.; van Roon-Mom, W.; et al. Deregulated splicing is a major mechanism of RNA-induced toxicity in Huntington’s disease. J. Mol. Biol. 2019, 431, 1869–1877. [Google Scholar] [CrossRef]
- Lee, J.M.; Correia, K.; Loupe, J.; Kim, K.H.; Barker, D.; Hong, E.P.; Chao, M.J.; Long, J.D.; Lucente, D.; Vonsattel, J.P.G.; et al. CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell 2019, 178, 887–900. [Google Scholar] [CrossRef]
- Thomson, S.B.; Leavitt, B.R. Transcriptional regulation of the huntingtin gene. J. Huntington’s Dis. 2018, 7, 289–296. [Google Scholar] [CrossRef]
- Lin, B.; Nasir, J.; Kalchman, M.A.; Mcdonald, H.; Zeisler, J.; Goldberg, Y.P.; Hayden, M.R. Structural analysis of the 5′ region of mouse and human Huntington disease genes reveals conservation of putative promoter region and di-and trinucleotide polymorphisms. Genomics 1995, 25, 707–715. [Google Scholar] [CrossRef]
- Coles, R.; Caswell, R.; Rubinsztein, D.C. Functional analysis of the Huntington’s disease (HD) gene promoter. Hum. Mol. Genet. 1998, 7, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Ghose, J.; Bhattarcharyya, N.P. Micro RNA-214,-150,-146a and-125b target Huntingtin gene. RNA Biol. 2011, 8, 1005–1021. [Google Scholar] [CrossRef]
- Kozlowska, E.; Krzyzosiak, W.J.; Koscianska, E. Regulation of huntingtin gene expression by miRNA-137,-214,-148a, and their respective isomiRs. Int. J. Mol. Sci. 2013, 14, 16999–17016. [Google Scholar] [CrossRef]
- Chung, D.W.; Rudnicki, D.D.; Yu, L.; Margolis, R.L. A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Hum. Mol. Genet. 2011, 20, 3467–3477. [Google Scholar] [CrossRef]
- De Souza, R.A.; Islam, S.A.; McEwen, L.M.; Mathelier, A.; Hill, A.; Mah, S.M.; Wasserman, W.W.; Kobor, M.S.; Leavitt, B.R. DNA methylation profiling in human Huntington’s disease brain. Hum. Mol. Genet. 2016, 25, 2013–2030. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Shouguchi-Miyata, J.; Miyamoto, N.; Ikeda, J.E. Novel nuclear shuttle proteins, HDBP1 and HDBP2, bind to neuronal cell-specific cis-regulatory element in the promoter for the human Huntington’s disease gene. J. Biol. Chem. 2004, 279, 7275–7286. [Google Scholar] [CrossRef] [PubMed]
- Jordanovski, D.; Koehler, C.; Steger, G. ZNF395 (HDBP2/PBF) is a target gene of HIF1alpha. In Huntington′s Disease—Core Concepts and Current Advances; InTech: Rijeka, Croatia, 2012; pp. 287–294. ISBN 978-953-307-953-0. [Google Scholar]
- De Souza, R.A.; Kosior, N.; Thomson, S.B.; Mathelier, A.; Zhang, A.W.; Becanovic, K.; Wasserman, W.W.; Leavitt, B.R. Computational analysis of transcriptional regulation sites at the HTT gene locus. J. Huntington’s Dis. 2018, 7, 223–237. [Google Scholar] [CrossRef]
- Wang, R.; Luo, Y.; Ly, P.T.; Cai, F.; Zhou, W.; Zou, H.; Song, W. Sp1 regulates human huntingtin gene expression. J. Mol. Neurosci. 2012, 47, 311–321. [Google Scholar] [CrossRef]
- Qiu, Z.; Norflus, F.; Singh, B.; Swindell, M.K.; Buzescu, R.; Bejarano, M.; Chopra, R.; Zucker, B.; Benn, C.L.; DiRocco, D.P.; et al. Sp1 is up-regulated in cellular and transgenic models of Huntington disease, and its reduction is neuroprotective. J. Biol. Chem. 2006, 281, 16672–16680. [Google Scholar] [CrossRef]
- Becanovic, K.; Norremolle, A.; Neal, S.J.; Kay, C.; Collins, J.A.; Arenillas, D.; Lilja, T.; Gaudenzi, G.; Manoharan, S.; Doty, C.N.; et al. A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease. Nat. Neurosci. 2015, 18, 807–816. [Google Scholar] [CrossRef]
- Li, S.H.; Cheng, A.L.; Zhou, H.; Lam, S.; Rao, M.; Li, H.; Li, X.J. Interaction of Huntington disease protein with transcriptional activator Sp1. Mol. Cell. Biol. 2002, 22, 1277–1287. [Google Scholar] [CrossRef]
- Levantini, E.; Rizzo, M. miRNAs: From master regulators of gene expression to biomarkers involved in intercellular communication. Biomedicines 2024, 12, 721. [Google Scholar] [CrossRef]
- Trettel, F.; Rigamonti, D.; Hilditch-Maguire, P.; Wheeler, V.C.; Sharp, A.H.; Persichetti, F.; Cattaneo, E.; MacDonald, M.E. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum. Mol. Genet. 2000, 9, 2799–2809. [Google Scholar] [CrossRef]
- Marti, E.; Pantano, L.; Banez-Coronel, M.; Llorens, F.; Minones-Moyano, E.; Porta, S.; Sumoy, L.; Ferrer, I.; Estivill, X. A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010, 38, 7219–7235. [Google Scholar] [CrossRef]
- Saleem, A.; Javed, M.; Furqan Akhtar, M.; Sharif, A.; Akhtar, B.; Naveed, M.; Saleem, U.; Baig, M.M.F.A.; Zubair, H.M.; Bin Emran, T.; et al. Current updates on the role of microRNA in the diagnosis and treatment of neurodegenerative diseases. Curr. Gene Ther. 2024, 24, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Khaled, H.G.; Feng, H.; Hu, X.; Sun, X.; Zheng, W.; Li, P.P.; Rudnicki, D.D.; Ye, W.; Chen, Y.C.; Southall, N.; et al. A high-throughput screening to identify small molecules that suppress huntingtin promoter activity or activate huntingtin-antisense promoter activity. Sci. Rep. 2021, 11, 6157. [Google Scholar] [CrossRef] [PubMed]
- Romo, L.; Ashar-Patel, A.; Pfister, E.; Aronin, N. Alterations in mRNA 3′ UTR isoform abundance accompany gene expression changes in human Huntington’s disease brains. Cell Rep. 2017, 20, 3057–3070. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Rommens, J.M.; Graham, R.K.; Kalchman, M.; MacDonald, H.; Nasir, J.; Delaney, A.; Goldberg, Y.P.; Hayden, M.R. Differential 3′ polyadenylation of the Huntington disease gene results in two mRNA species with variable tissue expression. Hum. Mol. Genet. 1993, 2, 1541–1545. [Google Scholar] [CrossRef]
- Xu, H.; An, J.J.; Xu, B. Distinct cellular toxicity of two mutant huntingtin mRNA variants due to translation regulation. PLoS ONE 2017, 12, e0177610. [Google Scholar] [CrossRef]
- Fienko, S.; Landles, C.; Sathasivam, K.; McAteer, S.J.; Milton, R.E.; Osborne, G.F.; Smith, E.J.; Jones, S.T.; Bondulich, M.K.; Danby, E.C.E.; et al. Alternative processing of human HTT mRNA with implications for Huntington’s disease therapeutics. Brain 2022, 145, 4409–4424. [Google Scholar] [CrossRef]
- Hughes, A.C.; Mort, M.; Elliston, L.; Thomas, R.M.; Brooks, S.P.; Dunnett, S.B.; Jones, L. Identification of novel alternative splicing events in the huntingtin gene and assessment of the functional consequences using structural protein homology modelling. J. Mol. Biol. 2014, 426, 1428–1438. [Google Scholar] [CrossRef]
- Lin, B.; Nasir, J.; MacDonald, H.; Hutchinson, G.; Graham, R.K.; Rommesns, J.M.; Hayden, M.R. Sequence of the murine Huntington disease gene: Evidence for conservation, and polymorphism in a triplet (CCG) repeat alternate splicing. Hum. Mol. Genet. 1994, 3, 85–92. [Google Scholar] [CrossRef]
- Ruzo, A.; Ismailoglu, I.; Popowski, M.; Haremaki, T.; Croft, G.F.; Deglincerti, A.; Brivanlou, A.H. Discovery of novel isoforms of huntingtin reveals a new hominid-specific exon. PLoS ONE 2015, 10, e0127687. [Google Scholar] [CrossRef]
- Neueder, A.; Landles, C.; Ghosh, R.; Howland, D.; Myers, R.H.; Faull, R.L.; Tabrizi, S.J.; Bates, G.P. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci. Rep. 2017, 7, 1307. [Google Scholar] [CrossRef]
- Truant, R.; Kang, Y.; Cullen, B.R. The human tap nuclear RNA export factor contains a novel transportin-dependent nuclear localization signal that lacks nuclear export signal function. J. Biol. Chem. 1999, 274, 32167–32171. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Vacher, C.; Davies, J.E.; Rubinsztein, D.C. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: Implications for mutant huntingtin toxicity. J. Cell Biol. 2005, 169, 647–656. [Google Scholar] [CrossRef]
- Wellington, C.L.; Ellerby, L.M.; Gutekunst, C.A.; Rogers, D.; Warby, S.; Graham, R.K.; Loubser, O.; van Raamsdonk, J.; Singaraja, R.; Yang, Y.Z.; et al. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J. Neurosci. 2002, 22, 7862–7872. [Google Scholar] [CrossRef]
- Gill, B.J.; Pisapia, D.J.; Malone, H.R.; Goldstein, H.; Lei, L.; Sonabend, A.; Yun, J.; Samanamud, J.; Sims, J.S.; Banu, M.; et al. MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma. PNAS 2014, 111, 12550–12555. [Google Scholar] [CrossRef]
- Sathasivam, K.; Neueder, A.; Gipson, T.A.; Landles, C.; Benjamin, A.C.; Bondulich, M.K.; Smith, D.L.; Faull, R.L.; Roos, R.A.; Howland, D.; et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. PNAS 2013, 110, 2366–2370. [Google Scholar] [CrossRef]
- Han, B.; Liang, W.; Li, X.J.; Li, S.; Yan, S.; Tu, Z. Large animal models for Huntington’s disease research. Zool. Res. 2024, 45, 275. [Google Scholar] [CrossRef]
- Neueder, A.; Dumas, A.A.; Benjamin, A.C.; Bates, G.P. Regulatory mechanisms of incomplete huntingtin mRNA splicing. Nat. Commun. 2018, 9, 3955. [Google Scholar] [CrossRef] [PubMed]
- Saldi, T.; Cortazar, M.A.; Sheridan, R.M.; Bentley, D.L. Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing. J. Mol. Biol. 2016, 428, 2623–2635. [Google Scholar] [CrossRef]
- Heinz, A.; Nabariya, D.K.; Krauss, S. Huntingtin and its role in mechanisms of RNA-mediated toxicity. Toxins 2021, 13, 487. [Google Scholar] [CrossRef]
- Mason, M.A.; Gomez-Paredes, C.; Sathasivam, K.; Neueder, A.; Papadopoulou, A.S.; Bates, G.P. Silencing Srsf6 does not modulate incomplete splicing of the huntingtin gene in Huntington’s disease models. Sci. Rep. 2020, 10, 14057. [Google Scholar] [CrossRef]
- Xiang, C.; Zhang, S.; Dong, X.; Ma, S.; Cong, S. Transcriptional dysregulation and post-translational modifications in polyglutamine diseases: From pathogenesis to potential therapeutic strategies. Front. Mol. Neurosci. 2018, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Krach, F.; Stemick, J.; Boerstler, T.; Weiss, A.; Lingos, I.; Reischl, S.; Meixner, H.; Ploetz, S.; Farrell, M.; Hehr, U.; et al. An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington’s disease patient neurons. Nat. Commun. 2022, 13, 6797. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, C. Huntington disease—Update on ongoing therapeutic developments and a look toward the future. Parkinsonism Relat. Disord. 2024, 122, 106049. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Moreno, J.F.; Romao, L. Perspective in alternative splicing coupled to nonsense-mediated mRNA decay. Int. J. Mol. Sci. 2020, 21, 9424. [Google Scholar] [CrossRef]
Transcriptional Regulators | Expected Effect on HTT Expression | |
---|---|---|
In the Norm | In HD | |
CTCF | Positive [31] | Unknown |
HDBP1/2 | Ambiguous [32,33] | Unknown |
SP1 | Ambiguous [27,34] | Negative [35,36] |
NF-kB | Negative [34] | Negative * [37] |
STAT1 | Negative [34] | Unknown |
miRNA | Negative [28,29] | Ambiguous [28,29] |
HTTAS | Negative [30] | Negative [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubkova, A.E.; Yudkin, D.V. Regulation of HTT mRNA Biogenesis: The Norm and Pathology. Int. J. Mol. Sci. 2024, 25, 11493. https://doi.org/10.3390/ijms252111493
Zubkova AE, Yudkin DV. Regulation of HTT mRNA Biogenesis: The Norm and Pathology. International Journal of Molecular Sciences. 2024; 25(21):11493. https://doi.org/10.3390/ijms252111493
Chicago/Turabian StyleZubkova, Alexandra E., and Dmitry V. Yudkin. 2024. "Regulation of HTT mRNA Biogenesis: The Norm and Pathology" International Journal of Molecular Sciences 25, no. 21: 11493. https://doi.org/10.3390/ijms252111493
APA StyleZubkova, A. E., & Yudkin, D. V. (2024). Regulation of HTT mRNA Biogenesis: The Norm and Pathology. International Journal of Molecular Sciences, 25(21), 11493. https://doi.org/10.3390/ijms252111493