Loop-Mediated Isothermal Amplification Assay for the Detection of Citrus Canker Causing Bacterial Variant, Xanthomonas citri pv. citri Aw Strain
Abstract
:1. Introduction
2. Results
2.1. Detection Limit of the LAMP Assay Specific to Xcc Aw
2.2. Specificity of the LAMP-Aw Assay
2.3. Detection Efficiency of LAMP-Aw Assay
2.4. Field Applicability of LAMP-Aw Coupled with Lateral Flow Assay
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Crude DNA Extract Preparation
4.2. LAMP Primer Design
4.3. Real-Time PCR
4.4. Optimization of the LAMP Assay
4.5. Lateral Flow Immunoassay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gottwald, T.R.; Graham, J.H.; Schubert, T.S. Citrus Canker: The Pathogen and Its Impact. Plant Health Prog. 2002, 3, 15. [Google Scholar] [CrossRef]
- Skaria, M.; Da Graça, J.V. History Lessons towards Proactive Citrus Canker Efforts in Texas. Subtrop. Plant Sci. 2012, 64, 29–33. [Google Scholar]
- Rossetti, V. Citrus canker in Latin America: A review. Proc. Int. Soc. Citric. 1977, 3, 918–924. [Google Scholar]
- Doidge, E.M. The Originand Cause of Citrus Canker in South Africa. Dept. Agric. Union S. Afr. Sci. Bull. 1916, 8, 20. [Google Scholar]
- Broadbent, P.; Pitkethley, R.; Barnes, D.; Bradley, J.; Dephoff, C.; Civerolo, E.; Gillings, M.; Fahy, P. A Further Outbreak of Citrus Canker Near Darwin. Austral. Plant Pathol. 1995, 24, 90. [Google Scholar] [CrossRef]
- Dopson, R.N. The Eradication of Citrus Canker. Plant Dis. Report. 1964, 48, 30–31. [Google Scholar]
- Gottwald, T.; Graham, J.; Schubert, T. An Epidemiological Analysis of the Spread of Citrus Canker in Urban Miami, Florida, and Synergistic Interaction with the Asian Citrus Leafminer. Fruits 1997, 52, 383–390. [Google Scholar]
- Schubert, T.S.; Rizvi, S.A.; Sun, X.; Gottwald, T.R.; Graham, J.H.; Dixon, W.N. Meeting the Challenge of Eradicating Citrus Cankerin Florida—Again. Plant Dis. 2001, 85, 340–356. [Google Scholar] [CrossRef]
- Graham, J.H.; Gottwald, T.R.; Cubero, J.; Achor, D.S. Xanthomonas axonopodis Pv. Citri: Factors Affecting Successful Eradication of Citrus Canker. Mol. Plant Pathol. 2004, 5, 1–15. [Google Scholar] [CrossRef]
- Bouffard, K. Canker and Greening Reports. Live with Canker. Citrus Ind. 2006, 87, 8–9. [Google Scholar]
- Irey, M.; Gottwald, T.R.; Graham, J.H.; Riley, T.D.; Carlton, G. Post-Hurricane Analysis of Citrus Canker Spread and Progress towards the Development of a Predictive Model to Estimate Disease Spread due to Catastrophic Weather Events. Plant Health Prog. 2006, 7, 16. [Google Scholar] [CrossRef]
- Gambley, C.F.; Miles, A.K.; Ramsden, M.; Doogan, V.; Thomas, J.E.; Parmenter, K.; Whittle, P.J.L. The distribution and spread of citrus canker in Emerald, Australia. Australas. Plant Pathol. 2009, 38, 547. [Google Scholar] [CrossRef]
- Massari, C.A.; Ayres, A.J.; Belasque, J., Jr.; Bassanezi, R.B.; Barbosa, J.C. Citrus Canker Eradication Programin Sao Paulo State, Bazil. In Proceedings of the 2nd International Citrus Canker & Huanglongbing Ressearch Workshop, Orlando, FL, USA, 7–11 November 2005; Volume 12. [Google Scholar]
- Bassanezi, R.B.; Belasque, J., Jr.; Massari, C.A. Current Situation, Management and Economic Impact of Citrus Canker in São Paulo and Minas Gerais, Brazil. In Proceedings of the International Workshop on Citrus Quarantine Pests, Villahermosa, Mexico, 27–31 July 2009; pp. 1–9. [Google Scholar]
- Shahbaz, E.; Ali, M.; Shafiq, M.; Atiq, M.; Hussain, M.; Balal, R.M.; Sarkhosh, A.; Alferez, F.; Sadiq, S.; Shahid, M.A. Citrus Canker Pathogen, Its Mechanism of Infection, Eradication, and Impacts. Plants 2022, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Vernière, C.; Hartung, J.; Pruvost, O.; Civerolo, E.; Alvarez, A.; Maestri, P.; Luisetti, J. Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. Eur. J. Plant Pathol. 1998, 104, 477–487. [Google Scholar] [CrossRef]
- Sun, X.; Stall, R.E.; Jones, J.B.; Cubero, J.; Gottwald, T.R.; Graham, J.H.; Dixon, W.N.; Schubert, T.S.; Chaloux, P.H.; Stromberg, V.K.; et al. Detection and Characterization of a New Strain of Citrus Canker Bacteria from Key/Mexican Lime and Alemow in South Florida. Plant Dis. 2004, 88, 1179–1188. [Google Scholar] [CrossRef]
- da Graça, J.V.; Kunta, M.; Park, J.-W.; Gonzalez, M.; Santillana, G.; Mavrodieva, V.; Bartels, D.W.; Salas, B.; Duffel, M.N.; Dale, J. Occurrence of a Citrus Canker Strain with Limited Host Specificity in South Texas. Plant Health Prog. 2017, 18, 196–203. [Google Scholar] [CrossRef]
- Perez, E.; Kunta, M.; Ancona, V.; da Graça, J.V.; Ayin, C.; Santillana, G.; Mavrodieva, V. The Return of Asiatic Citrus Canker to Texas: Surveys and Eradication Efforts. Plant Health Prog. 2021, 22, 143–148. [Google Scholar] [CrossRef]
- Coletta-Filho, H.; Takita, M.; Souza, A.; Neto, J.; Destefano, S.; Hartung, J.; Machado, M. Primers based on the rpf gene region provide improved detection of Xanthomonas axonopodis pv. citri in naturally and artificially infected citrus plants. J. Appl. Microbiol. 2006, 100, 279–285. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, Q.; Yin, Y.; Wang, Z. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri. PLoS ONE 2016, 11, e0159004. [Google Scholar] [CrossRef]
- Li, W.; Brlansky, R.H.; Hartung, J.S. Amplification of DNA of Xanthomonas axonopodis pv. citri from historic citrus canker herbarium specimens. J. Microbiol. Methods 2006, 65, 237–246. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Cubero, J.; Peñalver, J.; Quesada, J.; López, M.; Llop, P. Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods: Diagnosis of Xanthomonas axonopodis pv. Citri. J. Appl. Microbiol. 2007, 103, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Rigano, L.A.; Marano, M.R.; Castagnaro, A.P.; Do Amaral, A.M.; Vojnov, A.A. Rapid and sensitive detection of Citrus Bacterial Canker by loop-mediated isothermal amplification combined with simple visual evaluation methods. BMC Microbiol. 2010, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.S.; Zanetti, B.F.; Santiago, A.C.; Henrique-Silva, F.; Mattoso, L.H.; Faria, R.C. QCM immunoassay for recombinant cysteine peptidase: A potential protein biomarker for diagnosis of citrus canker. Talanta 2013, 104, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Park, D.S.; Hyun, J.W.; Park, Y.J.; Kim, J.S.; Kang, H.W.; Hahn, J.H.; Go, S.J. Sensitive and specific detection of Xanthomonas axonopodis pv. citri by PCR using pathovar specific primers based on hrpW gene sequences. Microbiol. Res. 2006, 161, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Kositcharoenkul, N.; Chatchawankanphanich, O.; Bhunchoth, A.; Kositratana, W. Detection of Xanthomonas citri subsp. citri from field samples using single-tube nested PCR. Plant Pathol. 2010, 60, 436–442. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef]
- Kunta, M.; Park, J.-W.; Braswell, W.E.; da Graça, J.V.; Edwards, P. Modern Tools for Detection and Diagnosis of Plant Pathogens. In Emerging Trends in Plant Pathology; Singh, K.P., Jahagirdar, S., Sarma, B.K., Eds.; Springer: Singapore, 2021; pp. 63–96. ISBN 978-981-15-6275-4. [Google Scholar]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends Anal. Chem. 2017, 98, 19–35. [Google Scholar] [CrossRef]
- Deiman, B.; van Aarle, P.; Sillekens, P. Characteristics and Applications of Nucleic Acid Sequence-Based Amplification (NASBA). Mol. Biotechnol. 2002, 20, 163–180. [Google Scholar] [CrossRef]
- Jeong, Y.-J.; Park, K.; Kim, D.-E. Isothermal DNA amplification in vitro: The helicase-dependent amplification system. Cell. Mol. Life Sci. 2009, 66, 3325–3336. [Google Scholar] [CrossRef]
- Rybak, M.; Minsavage, G.V.; Stall, R.E.; Jones, J.B. Identification of Xanthomonas citri ssp. citri host specificity genes in a heterologous expression host. Mol. Plant Pathol. 2009, 10, 249–262. [Google Scholar] [CrossRef] [PubMed]
Sample a | Ct Value (qPCR) b | LAMP-Aw Ct Value c | CBC-LAMP Ct Value d |
---|---|---|---|
C-201-3 | 20.66 | 18.41 | 18.05 |
C-201-52 | 28.32 | 29.08 | 24.28 |
C-201-53 | 29.96 | 30.98 | 25.75 |
C-201-54 | 29.24 | 30.68 | 24.99 |
C-201-55 | 27.39 | 28.45 | 23.59 |
C-201-56 | 31.38 | 31.91 | 27.16 |
C-201-57 | 32.46 | 31.79 | 28.19 |
C-201-58 | 28.92 | 30.79 | 23.75 |
C-201-59 | 29.10 | 30.35 | 26.87 |
C-201-61 | 18.97 | 18.97 | 17.13 |
C-201-62 | 20.82 | 21.29 | 18.32 |
C-137 | 23.78 | 24.32 | 20.77 |
C-232 | 20.04 | 21.03 | 17.63 |
C-229 | 28.36 | 29.81 | 24.21 |
C-149 | N/A | N/A | N/A |
C-156 | N/A | N/A | N/A |
C-160 | N/A | N/A | N/A |
C-163 | N/A | N/A | N/A |
C-164 | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidireddi, S.H.; Park, J.-W.; Gonzalez, M.; Sétamou, M.; Kunta, M. Loop-Mediated Isothermal Amplification Assay for the Detection of Citrus Canker Causing Bacterial Variant, Xanthomonas citri pv. citri Aw Strain. Int. J. Mol. Sci. 2024, 25, 11590. https://doi.org/10.3390/ijms252111590
Sidireddi SH, Park J-W, Gonzalez M, Sétamou M, Kunta M. Loop-Mediated Isothermal Amplification Assay for the Detection of Citrus Canker Causing Bacterial Variant, Xanthomonas citri pv. citri Aw Strain. International Journal of Molecular Sciences. 2024; 25(21):11590. https://doi.org/10.3390/ijms252111590
Chicago/Turabian StyleSidireddi, Sree Harsha, Jong-Won Park, Marissa Gonzalez, Mamoudou Sétamou, and Madhurababu Kunta. 2024. "Loop-Mediated Isothermal Amplification Assay for the Detection of Citrus Canker Causing Bacterial Variant, Xanthomonas citri pv. citri Aw Strain" International Journal of Molecular Sciences 25, no. 21: 11590. https://doi.org/10.3390/ijms252111590
APA StyleSidireddi, S. H., Park, J. -W., Gonzalez, M., Sétamou, M., & Kunta, M. (2024). Loop-Mediated Isothermal Amplification Assay for the Detection of Citrus Canker Causing Bacterial Variant, Xanthomonas citri pv. citri Aw Strain. International Journal of Molecular Sciences, 25(21), 11590. https://doi.org/10.3390/ijms252111590