Special Issue: Molecular Advance on Reproduction and Fertility of Aquatic Animals
1. Introduction
2. Genes, Markers and Epigenetic Modifications Involved in the Sex Differentiation of Aquatic Animals
2.1. Sex-Differentiation-Related Genes and Markers in Pelodiscus sinensis
2.2. Lysosomal Acid Lipase (LIPA) Gene Regulates Sex Hormones and Inhibits Gonadal Development in Macrobrachium nipponense
2.3. Functions of Epigenetic Modifications in the Sex Differentiation of Cyprinus carpio
3. Identification of Reproduction-Related Genes in Aquatic Animals
3.1. Dynein Intermediate Chain and Lamin B Were Involved in the Spermatogenesis of Portunus trituberculatus
3.2. Vitellogenin Gene Family Involved in Ovarian Maturation in Exopalaemon carinicauda
4. Gonad Maturation Mechanism Under Environmental Risk of Starvation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tan, K.; Yu, J.; Liao, S.; Huang, J.; Li, M.; Wang, W. Transcriptomic profiling and novel insights into the effect of AG ablation on gonad development in Macrobrachium rosenbergii. Aquaculture 2022, 556, 738224. [Google Scholar] [CrossRef]
- Paschoal, L.R.P.; Jos’e Zara, F. The androgenic gland in male morphotypes of the Amazon River prawn Macrobrachium amazonicum (Heller, 1862). Gen. Comp. Endocrinol. 2019, 275, 6–14. [Google Scholar] [CrossRef]
- Dutney, L.; Elizur, A.; Lee, P. Analysis of sexually dimorphic growth in captive reared cobia (Rachycentron canadum) and the occurrence of intersex individuals. Aquaculture 2017, 468, 348. [Google Scholar] [CrossRef]
- Mei, J.; Gui, J.F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci. China Life Sci. 2015, 58, 124. [Google Scholar] [CrossRef]
- Benetti, D.D.; Sardenberg, B.; Hoenig, R.; Welch, A.; Stieglitz, J.; Miralao, S.; Farkas, D.; Brown, P.; Jory, D. Cobia (Rachycentron canadum) hatchery-to-market aquaculture technology: Recent advances at the University of Miami Experimental Hatchery (UMEH). Rev. Bras. Zootec. 2010, 39, 60–67. [Google Scholar] [CrossRef]
- Aflalo, E.D.; Hoang, T.T.T.; Nguyen, V.H.; Lam, Q.; Nguyen, D.M.; Trinh, Q.S.; Raviv, S.; Sagi, A. A novel two-step procedure for mass production of all-male populations of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 2006, 256, 468–478. [Google Scholar] [CrossRef]
- Lind, C.E.; Safari, A.; Agyakwah, S.K.; Attipoe, F.Y.K.; El-Naggar, G.O.; Hamzah, A.; Ponzoni, R.W. Differences in sexual size dimorphism among farmed tilapia species and strains undergoing genetic improvement for body weight. Aquac. Rep. 2015, 1, 20–27. [Google Scholar] [CrossRef]
- Ma, H.Y.; Ma, C.Y.; Ma, L.B.; Xu, Z.; Feng, N.N.; Qiao, Z.G. Correlation of growth related traits and their effects on body weight of the mud crab (Scylla paramamosain). Genet. Mol. Res. 2013, 12, 4127–4136. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Zhou, Z.; Xiao, J.; Chen, B.; Huang, P.; Li, C.; Xue, Y.; Liu, R.; Bai, Y.; et al. Comparative transcriptome analysis of early sexual differentiation in the male and female gonads of common carp (Cyprinus carpio). Aquaculture 2023, 563, 738984. [Google Scholar] [CrossRef]
- Cheng, S.; Chi, M.L.; Liu, S.L.; Zheng, J.B.; Jiang, W.P.; Hang, X.Y.; Peng, M.; Li, F. Study on hormone induction of the male parent and embryonic development, gonad differentiation, and growth of “All-female No. 1” Culter alburnus. Heliyon 2024, 10, e33414. [Google Scholar] [CrossRef]
- Tessema, A.; Getahun, A.; Mengistou, S.; Fetahi, T.; Dejen, E. Reproductive biology of common carp (Cyprinus carpio Linnaeus, 1758) in Lake Hayq, Ethiopia. Fish. Aquat. Sci. 2020, 23, 16. [Google Scholar] [CrossRef]
- Zhai, G.; Shu, T.; Chen, K.; Lou, Q.; Jia, J.; Huang, J.; Shi, C.; Jin, X.; He, J.; Jiang, D.; et al. Successful production of an all-female common carp (Cyprinus carpio L.) population using cyp17a1-deficient neomale carp. Engineering 2022, 8, 181–189. [Google Scholar] [CrossRef]
- Fernandino, J.I.; Hattori, R.S. Sex determination in neotropical fish: Implications ranging from aquaculture technology to ecological assessment. Gen. Comp. Endocrinol. 2019, 273, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Wahl, M.; Levy, T.; Ventura, T.; Sagi, A. Monosex populations of the giant freshwater prawn Macrobrachium rosenbergii—From a pre-molecular start to the next generation era. Int. J. Mol. Sci. 2023, 24, 17433. [Google Scholar] [CrossRef] [PubMed]
- Basavaraju, Y. Monosex Population in Aquaculture. In Frontiers in Aquaculture Biotechnology; Academic Press: London, UK, 2023; pp. 89–101. [Google Scholar]
- Wan, G.; Zhang, H.; Wang, P.; Qin, Q.; Zhou, X.; Xiong, G.; Wang, X.; Hu, Y. Gonadal Transcriptome Analysis Reveals that SOX17 and CYP26A1 are involved in sex differentiation in the Chinese soft-shelled turtle (Pelodiscus sinensis). Biochem. Genet. 2024, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, S.; Wang, Y.; Wang, Y.; Ruan, Z.; Zhang, C.; Ren, A.; Xue, B.; Chai, X. The development of gonads and changes of gonadotropin in silver pomfret Pampus argenteus. Thalassas 2024, 40, 91–100. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, X.; Tang, Q.; Li, J.; Xia, Z.; Dong, H.; Yang, G.; Yi, S.; Gao, Q. Transcriptome analysis of the gonad reveals growth differences between large, medium and small individuals in a pure family of Macrobrachium rosenbergii. Aquaculture 2024, 586, 740739. [Google Scholar] [CrossRef]
- Jiang, S.; Xie, Y.; Gao, Z.; Niu, Y.; Ma, C.; Zhang, W.; Fu, H. Studies on the relationships between growth and gonad development during first sexual maturation of Macrobrachium nipponense and associated SNPs screening. Int. J. Mol. Sci. 2024, 25, 7071. [Google Scholar] [CrossRef]
- Yano, A.; Guyomard, R.; Nicol, B.; Jouanno, E.; Quillet, E.; Klopp, C.; Cabau, C.; Bouchez, O.; Fostier, A.; Guiguen, Y. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 2012, 22, 1423–1428. [Google Scholar] [CrossRef]
- Tao, W.; Chen, J.; Tan, D.; Yang, J.; Sun, L.; Wei, J.; Conte, M.A.; Kocher, T.D.; Wang, D. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genom. 2018, 19, 363. [Google Scholar] [CrossRef]
- Chapman, R.W.; Reading, B.J.; Sullivan, C.V. Ovary transcriptome profiling via artificial intelligence reveals a transcriptomic fingerprint predicting egg quality in striped bass, Morone saxatilis. PLoS ONE 2014, 9, e96818. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Basak, R.; Rai, U. De novo sequencing and comparative analysis of testicular transcriptome from different reproductive phases in freshwater spotted snakehead Channa punctatus. PLoS ONE 2017, 12, e0173178. [Google Scholar] [CrossRef] [PubMed]
- Bar, I.; Cummins, S.; Elizur, A. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii). BMC Genom. 2016, 17, 217. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.B.; Zhang, Y.; Dong, X.L.; Xi, Q.K.; Song, D.; Fu, H.T. Comparative transcriptome analysis of testes and ovaries for the discovery of novel genes from Amur sturgeon (Acipenser schrenckii). Genet. Mol. Res. 2015, 14, 18913–18927. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Fu, H.; Zhou, Q.; Sun, S.; Jiang, S.; Xiong, Y. Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn, Macrobrachium nipponense, using Illumina Hiseq 2000. PLoS ONE 2013, 8, e76840. [Google Scholar] [CrossRef]
- Jiang, H.; Xing, Z.; Lu, W.; Qian, Z.; Yu, H.; Li, J. Transcriptome analysis of red swamp crawfish Procambarus clarkii reveals genes involved in gonadal development. PLoS ONE 2014, 9, e105122. [Google Scholar] [CrossRef]
- Levy, T.; Zupo, V.; Mutalipassi, M.; Somma, E.; Ruocco, N.; Costantini, M.; Abehsera, S.; Manor, R.; Chalifa-Caspi, V.; Sagi, A. Protandric transcriptomes to uncover parts of the crustacean sex-differentiation puzzle. Front. Mar. Sci. 2021, 8, 745540. [Google Scholar] [CrossRef]
- Devlin, R.H.; Nagahama, Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture 2002, 208, 191–364. [Google Scholar]
- Wilhelm, D.; Palmer, S.; Koopman, P. Sex determination and gonadal development in mammals. Physiol. Rev. 2007, 87, 1–28. [Google Scholar] [CrossRef]
- Budd, A.; Banh, Q.; Domingos, J.; Jerry, D. Sex control in fish: Approaches, challenges and opportunities for aquaculture. J. Mar. Sci. Eng. 2015, 3, 329. [Google Scholar] [CrossRef]
- Godwin, J.; Luckenbach, J.A.; Borski, R.J. Ecology meets endocrinology: Environmental sex determination in fishes. Evol. Dev. 2003, 5, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Luzio, A.; Matos, M.; Santos, D.; Fontainhas-Fernandes, A.A.; Monteiro, S.M.; Coimbra, A.M. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures. Aquat. Toxicol. 2016, 177, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.R.; Owen, S.F.; Peters, J.; Zhang, Y.; Soffker, M.; Paull, G.C.; Hosken, D.J.; Wahab, M.A.; Tyler, C.R. Climate change and pollution speed declines in zebrafish populations. Proc. Natl. Acad. Sci. USA 2015, 112, E1237–E1246. [Google Scholar] [CrossRef] [PubMed]
- Abozaid, H.; Wessels, S.; Horstgen-Schwark, G. Elevated temperature applied during gonadal transformation leads to male bias in zebrafish (Danio rerio). Sex. Dev. 2012, 6, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Shang, E.H.; Yu, R.M.; Wu, R.S. Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ. Sci. Technol. 2006, 40, 3118–3122. [Google Scholar] [CrossRef]
- Robertson, C.E.; Wright, P.A.; Koblitz, L.; Bernier, N.J. Hypoxia-inducible factor-1 mediates adaptive developmental plasticity of hypoxia tolerance in zebrafish, Danio rerio. Proc. Biol. Sci. 2014, 281, 20140637. [Google Scholar] [CrossRef]
- Baroiller, J.F.; D’Cotta, H. The reversible sex of gonochoristic fish: Insights and consequences. Sex. Dev. 2016, 10, 242–266. [Google Scholar] [CrossRef]
- Caspillo, N.R.; Volkova, K.; Hallgren, S.; Olsson, P.E.; Porsch-Hallstrom, I. Shortterm treatment of adult male zebrafish (Danio rerio) with 17α-ethinylestradiol affects the transcription of genes involved in development and male sex differentiation. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2014, 164, 35–42. [Google Scholar] [CrossRef]
- Van der Ven, L.T.; van den Brandhof, E.J.; Vos, J.H.; Wester, P.W. Effects of the estrogen agonist 17β-estradiol and antagonist tamoxifen in a partial life-cycle assay with zebrafish (Danio rerio). Environ. Toxicol. Chem. 2007, 26, 92–99. [Google Scholar] [CrossRef]
- Tokumoto, T.; Tokumoto, M.; Nagahama, Y. Induction and inhibition of oocyte maturation by EDCs in zebrafish. Reprod. Biol. Endocrinol. 2005, 3, 69. [Google Scholar] [CrossRef]
- Xu, H.; Yang, J.; Wang, Y.; Jiang, Q.; Chen, H.; Song, H. Exposure to 17α-ethynylestradiol impairs reproductive functions of both male and female zebrafish (Danio rerio). Aquat. Toxicol. 2008, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Sha, H.; Chen, M.; Chen, G.; Zou, G.; Liang, H. MicroRNAs may play an important role in sexual reversal process of Chinese soft-shelled turtle, Pelodiscus sinensis. Genes 2021, 12, 1696. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.W.; Cao, L.H.; Li, X.; Tong, M.M.; Jiang, Y.L.; Li, Z.; Luo, X.Z.; Zou, G.W. Morphological differences analysis of three strains of Pelodiscus sinensis. Freshw. Fish. 2017, 47, 91–96. [Google Scholar]
- Kawagoshi, T.; Uno, Y.; Matsubara, K.; Matsuda, Y.; Nishida, C. The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet. Genome Res. 2009, 125, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Zhao, B.; Tang, W.Q.; Sun, B.J.; Zeng, Z.G.; Valenzuela, N.; Du, W.G. Temperature-dependent sex determination ruled out in the Chinese soft-shelled turtle (Pelodiscus sinensis) via molecular cytogenetics and incubation experiments across populations. Sex. Dev. 2015, 9, 111–117. [Google Scholar] [CrossRef]
- Topalovic, V.; Krstic, A.; Schwirtlich, M.; Dolfini, D.; Mantovani, R.; Stevanovic, M.; Mojsin, M. Epigenetic regulation of human SOX3 gene expression during early phases of neural differentiation of NT2/D1 cells. PLoS ONE 2017, 12, e0184099. [Google Scholar] [CrossRef]
- Wang, T.W.; Stromberg, G.P.; Whitney, J.T.; Brower, N.W.; Klymkowsky, M.W.; Parent, J.M. Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones. J. Comp. Neurol. 2006, 497, 88–100. [Google Scholar] [CrossRef]
- Oshima, Y.; Naruse, K.; Nakamura, Y.; Nakamura, M. Sox3: A transcription factor for Cyp19 expression in the frog Rana rugosa. Gene 2009, 445, 38–48. [Google Scholar] [CrossRef]
- Takehana, Y.; Matsuda, M.; Myosho, T.; Suster, M.L.; Kawakami, K.; Shin, I.T.; Kohara, Y.; Kuroki, Y.; Toyoda, A.; Fujiyama, A. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat. Commun. 2014, 5, 4157. [Google Scholar] [CrossRef]
- Yao, B.; Zhou, L.; Wang, Y.; Xia, W.; Gui, J.F. Differential expression and dynamic changes of SOX3 during gametogenesis and sexreversal in protogynous hermaphroditic fish. J. Exp. Zool. A Ecol. Genet. Physiol. 2007, 307, 207–219. [Google Scholar] [CrossRef]
- Zhou, T.; Cao, J.; Chen, G.; Wang, Y.; Zou, G.; Liang, H. Role of Sox3 in Estradiol-Induced Sex Reversal in Pelodiscus sinensis. Int. J. Mol. Sci. 2024, 25, 248. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Y.; Chen, C.; Ji, L.; Hong, X.; Liu, X.; Chen, H.; Wei, C.; Zhu, X.; Li, W. Identification of sex-specific markers and candidate genes using WGS sequencing reveals a ZW-type sex-determination system in the Chinese soft-shell turtle (Pelodiscus sinensis). Int. J. Mol. Sci. 2024, 25, 819. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Yuan, H.; Gao, Z.; Qiao, H.; Zhang, W.; Jiang, S.; Xiong, Y.; Gong, Y.; Wu, Y.; Jin, S. 17β-estradiol induced sex reversal and gonadal transcriptome analysis in the oriental river prawn (Macrobrachium nipponense): Mechanisms, pathways, and potential Harm. Int. J. Mol. Sci. 2023, 24, 8481. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.; Cronan, J. Lipoic acid metabolism in Escherichia coli: Sequencing and functional characterization of the lipA and lipB genes. J. Bacteriol. 1993, 175, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Braund, P.; Moore, J.; Samani, N.; Codd, V.; Webb, T. Coronary artery disease–associated LIPA coding variant rs1051338 reduces lysosomal acid lipase levels and activity in lysosomes. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1050–1057. [Google Scholar] [CrossRef]
- Cai, P.; Zhang, W.; Jiang, S.; Xiong, Y.; Qiao, H.; Yuan, H.; Gao, Z.; Zhou, Y.; Jin, S.; Fu, H. Role of Mn-LIPA in sex hormone regulation and gonadal development in the oriental river prawn, Macrobrachium nipponense. Int. J. Mol. Sci. 2024, 25, 1399. [Google Scholar] [CrossRef]
- Ge, C.; Ye, J.; Weber, C.; Sun, W.; Zhang, H.; Zhou, Y.; Cai, C.; Qian, G.; Capel, B. The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species. Science 2018, 360, 64–648. [Google Scholar] [CrossRef]
- Ortega-Recalde, O.; Goikoetxea, A.; Hore, T.A.; Todd, E.V.; Gemmell, N.J. The genetics and epigenetics of sex change in fish. Annu. Rev. Anim. Biosci. 2020, 8, 47–69. [Google Scholar] [CrossRef]
- Klemm, S.L.; Shipony, Z.; Greenleaf, W.J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 2019, 20, 207–220. [Google Scholar] [CrossRef]
- Feng, X.; Yu, X.; Fu, B.; Wang, X.; Liu, H.; Pang, M.; Tong, J. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus). BMC Genom. 2018, 19, 230. [Google Scholar] [CrossRef]
- Yu, S.T.; Zhao, R.; Sun, X.Q.; Hou, M.X.; Cao, Y.M.; Zhang, J.; Chen, Y.J.; Wang, K.K.; Zhang, Y.; Li, J.T. DNA methylation and chromatin accessibility impact subgenome expression dominance in the common carp (Cyprinus carpio). Int. J. Mol. Sci. 2024, 25, 1635. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Wang, Q.; Zhao, R.; Cao, Y.; Zhang, J.; Sun, X.; Yu, S.; Wang, K.; Chen, Y.; Zhang, Y. Analysis of chromatin accessibility and DNA methylation to reveal the functions of epigenetic modifications in Cyprinus carpio gonads. Int. J. Mol. Sci. 2024, 25, 321. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; L’Hernault, S.W. Spermatogenesis. Curr. Biol. 2017, 27, R988–R994. [Google Scholar] [CrossRef] [PubMed]
- Broers, J.L.; Machiels, B.M.; Kuijpers, H.J.; Smedts, F.; van den Kieboom, R.; Raymond, Y.; Ramaekers, F.C. A- and B-type lamins are differentially expressed in normal human tissues. Histochem. Cell Biol. 1997, 107, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Melcer, S.; Gruenbaum, Y.; Krohne, G. Invertebrate lamins. Exp. Cell Res. 2007, 313, 2157–2166. [Google Scholar] [CrossRef]
- Wei, C.G.; Mu, D.L.; Tang, D.J.; Zhu, J.Q.; Hou, C.C. Expression and functional analysis of cytoplasmic dynein during spermatogenesis in Portunus trituberculatus. Cell Tissue Res. 2021, 386, 191–203. [Google Scholar] [CrossRef]
- Wang, S.Y.; Xiang, Q.M.; Zhu, J.Q.; Mu, C.K.; Wang, C.L.; Hou, C.C. The functions of Pt-DIC and Pt-Lamin B in spermatogenesis of Portunus trituberculatus. Int. J. Mol. Sci. 2024, 25, 112. [Google Scholar] [CrossRef]
- Carducci, F.; Biscotti, M.A.; Canapa, A. Vitellogenin gene family in vertebrates: Evolution and functions. Eur. Zool. J. 2019, 86, 233–240. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S. Immune-relevant and antioxidant activities of vitellogenin and yolk proteins in fish. Nutrients 2015, 7, 8818–8829. [Google Scholar] [CrossRef]
- Dietrich, M.A.; Adamek, M.; Teitge, F.; Teich, L.; Jung-Schroers, V.; Malinowska, A.; Świderska, B.; Rakus, K.; Kodzik, N.; Chadzińska, M.; et al. Proteomic analysis of carp seminal plasma provides insights into the immune response to bacterial infection of the male reproductive system. Fish Shellfish Immunol. 2022, 127, 822–835. [Google Scholar] [CrossRef]
- Li, L.; Li, X.J.; Wu, Y.M.; Yang, L.; Li, W.; Wang, Q. Vitellogenin regulates antimicrobial responses in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol. 2017, 69, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, S.; Ge, Q.; Wang, Q.; He, Y.; Ren, X.; Li, J.; Li, J. Genome-wide identification of vitellogenin gene family and comparative analysis of their involvement in ovarian maturation in Exopalaemon carinicauda. Int. J. Mol. Sci. 2024, 25, 1089. [Google Scholar] [CrossRef] [PubMed]
- Donelson, J.M.; Munday, P.L.; McCormick, M.I.; Pankhurst, N.W.; Pankhurst, P.M. Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar. Ecol. Prog. Ser. 2010, 401, 233–243. [Google Scholar] [CrossRef]
- Sokolova, I.M.; Frederich, M.; Bagwe, R.; Lannig, G.; Sukhotin, A.A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 2012, 79, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, T.; Yoshimori, T. Beyond starvation: An update on the autophagic machinery and its functions. J. Mol. Cell. Cardiol. 2016, 95, 2–10. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Neufeld, T.P. Autophagy takes flight in Drosophila. FEBS Lett. 2010, 584, 1342–1349. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, F.; Wang, W.; Xu, J.; Zhao, M.; Ma, C.; Cheng, Y.; Chen, W.; Su, Z.; Lv, X. Temporal and spatial signatures of Scylla paramamosain transcriptome reveal mechanistic insights into endogenous ovarian maturation under risk of starvation. Int. J. Mol. Sci. 2024, 25, 700. [Google Scholar] [CrossRef]
- Waiho, K.; Ikhwanuddin, M.; Afiqah-Aleng, N.; Shu-Chien, A.C.; Wang, Y.; Ma, H.; Fazhan, H. Transcriptomics in advancing portunid aquaculture: A systematic review. Rev. Aquacult. 2022, 14, 2064–2088. [Google Scholar] [CrossRef]
- Ramos, L.; Antunes, A. Decoding sex: Elucidating sex determination and how high-quality genome assemblies are untangling the evolutionary dynamics of sex chromosomes. Genomics 2022, 114, 110277. [Google Scholar] [CrossRef]
- Rhie, A.; Nurk, S.; Cechova, M.; Hoyt, S.J.; Taylor, D.J. The complete sequence of a human Y chromosome. Nature 2023, 621, 344–354. [Google Scholar] [CrossRef]
- Ansai, S.; Kitano, J. Speciation and adaptation research meets genome editing. Philos. Trans. R. Soc. B 2022, 377, 20200516. [Google Scholar] [CrossRef] [PubMed]
- Kitano, J.; Ansai, S.; Takehana, Y.; Yamamoto, Y. Diversity and convergence of sex-determination mechanisms in teleost fish. Annu. Rev. Anim. Biosci. 2024, 12, 233–259. [Google Scholar] [CrossRef] [PubMed]
- Toyota, K. Crustacean endocrinology: Sexual differentiation and potential application for aquaculture. Gen. Comp. Endocr. 2024, 356, 114578. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, H.; Jiang, S.; Fu, H. Special Issue: Molecular Advance on Reproduction and Fertility of Aquatic Animals. Int. J. Mol. Sci. 2024, 25, 11610. https://doi.org/10.3390/ijms252111610
Qiao H, Jiang S, Fu H. Special Issue: Molecular Advance on Reproduction and Fertility of Aquatic Animals. International Journal of Molecular Sciences. 2024; 25(21):11610. https://doi.org/10.3390/ijms252111610
Chicago/Turabian StyleQiao, Hui, Sufei Jiang, and Hongtuo Fu. 2024. "Special Issue: Molecular Advance on Reproduction and Fertility of Aquatic Animals" International Journal of Molecular Sciences 25, no. 21: 11610. https://doi.org/10.3390/ijms252111610
APA StyleQiao, H., Jiang, S., & Fu, H. (2024). Special Issue: Molecular Advance on Reproduction and Fertility of Aquatic Animals. International Journal of Molecular Sciences, 25(21), 11610. https://doi.org/10.3390/ijms252111610