Beta-Adrenergic Activation of the Inward Rectifier K+ Current Is Mediated by the CaMKII Pathway in Canine Ventricular Cardiomyocytes
Abstract
:1. Introduction
2. Results
2.1. The Effect of β-Adrenergic Receptor Activation on IK1
2.2. Effects of PKA and CaMKII Inhibition on IK1 Without β-Adrenergic Receptor Stimulation
2.3. IKr Is Not Affected by β-Adrenergic Receptor Stimulation, PKA Inhibition, or CaMKII Inhibition
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Isolation of Cardiomyocytes
4.3. Electrophysiology
4.4. Chemicals
4.5. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | action potential |
APVC | action potential voltage clamp |
[Ca2+]i | intracellular Ca2+ concentration |
CaMKII | calcium/calmodulin-dependent protein kinase II |
EPAC | guanine nucleotide exchange protein activated by cAMP |
hERG | voltage-gated potassium channel subfamily H member 2 |
ICa,L | L-type Ca2+ current |
IK1 | inward rectifier K+ current |
IKr | rapid delayed rectifier K+ current |
IKs | slow delayed rectifier K+ current |
ISO | Isoproterenol |
KCNH2 | voltage-gated potassium channel subfamily H member 2 |
KCNJ2 | inward rectifier potassium channel subfamily J member 2 |
Kir2.1 | inward rectifier potassium channel subfamily J member 2 |
Kv11.1 | voltage-gated potassium channel subfamily H member 2 |
NO | nitric oxide |
PIP2 | phosphatidylinositol 4,5-bisphosphate |
PKA | protein kinase A |
PKC | protein kinase C |
References
- Koumi, S.; Wasserstrom, J.A.; Ten Eick, R.E. Beta-adrenergic and cholinergic modulation of inward rectifier K+ channel function and phosphorylation in guinea-pig ventricle. J. Physiol. 1995, 486 Pt 3, 661–678. [Google Scholar] [CrossRef] [PubMed]
- Tromba, C.; Cohen, I.S. A novel action of isoproterenol to inactivate a cardiac K+ current is not blocked by beta and alpha adrenergic blockers. Biophys. J. 1990, 58, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Reilly, L.; Alvarado, F.J.; Lang, D.; Abozeid, S.; Van Ert, H.; Spellman, C.; Warden, J.; Makielski, J.C.; Glukhov, A.V.; Eckhardt, L.L. Genetic Loss of I(K1) Causes Adrenergic-Induced Phase 3 Early Afterdepolariz ations and Polymorphic and Bidirectional Ventricular Tachycardia. Circ. Arrhythm. Electrophysiol. 2020, 13, e008638. [Google Scholar] [CrossRef] [PubMed]
- Fakler, B.; Brandle, U.; Glowatzki, E.; Zenner, H.P.; Ruppersberg, J.P. Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron 1994, 13, 1413–1420. [Google Scholar] [CrossRef]
- Kalscheur, M.M.; Vaidyanathan, R.; Orland, K.M.; Abozeid, S.; Fabry, N.; Maginot, K.R.; January, C.T.; Makielski, J.C.; Eckhardt, L.L. KCNJ2 mutation causes an adrenergic-dependent rectification abnormality with calcium sensitivity and ventricular arrhythmia. Heart Rhythm 2014, 11, 885–894. [Google Scholar] [CrossRef]
- Vega, A.L.; Tester, D.J.; Ackerman, M.J.; Makielski, J.C. Protein kinase A-dependent biophysical phenotype for V227F-KCNJ2 mutation in catecholaminergic polymorphic ventricular tachycardia. Circ. Arrhythm. Electrophysiol. 2009, 2, 540–547. [Google Scholar] [CrossRef]
- Wischmeyer, E.; Karschin, A. Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying K+ channels by direct protein kinase A-mediated phosphorylation. Proc. Natl. Acad. Sci. USA 1996, 93, 5819–5823. [Google Scholar] [CrossRef]
- Karle, C.A.; Zitron, E.; Zhang, W.; Wendt-Nordahl, G.; Kathofer, S.; Thomas, D.; Gut, B.; Scholz, E.; Vahl, C.F.; Katus, H.A.; et al. Human cardiac inwardly-rectifying K+ channel Kir(2.1b) is inhibited by direct protein kinase C-dependent regulation in human isolated cardiomyocytes and in an expression system. Circulation 2002, 106, 1493–1499. [Google Scholar] [CrossRef]
- Fauconnier, J.; Lacampagne, A.; Rauzier, J.M.; Vassort, G.; Richard, S. Ca2+-dependent reduction of IK1 in rat ventricular cells: A novel paradigm for arrhythmia in heart failure? Cardiovasc. Res. 2005, 68, 204–212. [Google Scholar] [CrossRef]
- Scherer, D.; Kiesecker, C.; Kulzer, M.; Gunth, M.; Scholz, E.P.; Kathofer, S.; Thomas, D.; Maurer, M.; Kreuzer, J.; Bauer, A.; et al. Activation of inwardly rectifying Kir2.x potassium channels by beta 3-adrenoceptors is mediated via different signaling pathways with a predominant role of PKC for Kir2.1 and of PKA for Kir2.2. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2007, 375, 311–322. [Google Scholar] [CrossRef]
- Harmati, G.; Banyasz, T.; Barandi, L.; Szentandrassy, N.; Horvath, B.; Szabo, G.; Szentmiklosi, J.A.; Szenasi, G.; Nanasi, P.P.; Magyar, J. Effects of beta-adrenoceptor stimulation on delayed rectifier K(+) currents in canine ventricular cardiomyocytes. Br. J. Pharmacol. 2011, 162, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Heath, B.M.; Terrar, D.A. Protein kinase C enhances the rapidly activating delayed rectifier potassium current, IKr, through a reduction in C-type inactivation in guinea-pig ventricular myocytes. J. Physiol. 2000, 522 Pt 3, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Karle, C.A.; Zitron, E.; Zhang, W.; Kathofer, S.; Schoels, W.; Kiehn, J. Rapid component I(Kr) of the guinea-pig cardiac delayed rectifier K(+) current is inhibited by beta(1)-adrenoreceptor activation, via cAMP/protein kinase A-dependent pathways. Cardiovasc. Res. 2002, 53, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Zhang, W.; Karle, C.A.; Kathofer, S.; Schols, W.; Kubler, W.; Kiehn, J. Deletion of protein kinase A phosphorylation sites in the HERG potassium channel inhibits activation shift by protein kinase A. J. Biol. Chem. 1999, 274, 27457–27462. [Google Scholar] [CrossRef]
- Matsuda, H.; Cruz Jdos, S. Voltage-dependent block by internal Ca2+ ions of inwardly rectifying K+ channels in guinea-pig ventricular cells. J. Physiol. 1993, 470, 295–311. [Google Scholar] [CrossRef]
- Zaza, A.; Rocchetti, M.; Brioschi, A.; Cantadori, A.; Ferroni, A. Dynamic Ca2+-induced inward rectification of K+ current during the ventricular action potential. Circ. Res. 1998, 82, 947–956. [Google Scholar] [CrossRef]
- Scherer, D.; Seyler, C.; Xynogalos, P.; Scholz, E.P.; Thomas, D.; Backs, J.; Andrassy, M.; Volkers, M.; Karle, C.A.; Katus, H.A.; et al. Inhibition of Cardiac Kir Current (IK1) by Protein Kinase C Critically Depends on PKCbeta and Kir2.2. PLoS ONE 2016, 11, e0156181. [Google Scholar] [CrossRef]
- Li, J.; Marionneau, C.; Zhang, R.; Shah, V.; Hell, J.W.; Nerbonne, J.M.; Anderson, M.E. Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents. Circ. Res. 2006, 99, 1092–1099. [Google Scholar] [CrossRef]
- Wagner, S.; Hacker, E.; Grandi, E.; Weber, S.L.; Dybkova, N.; Sossalla, S.; Sowa, T.; Fabritz, L.; Kirchhof, P.; Bers, D.M.; et al. Ca/calmodulin kinase II differentially modulates potassium currents. Circ. Arrhythm. Electrophysiol. 2009, 2, 285–294. [Google Scholar] [CrossRef]
- Nagy, N.; Acsai, K.; Kormos, A.; Sebok, Z.; Farkas, A.S.; Jost, N.; Nanasi, P.P.; Papp, J.G.; Varro, A.; Toth, A. [Ca(2+)] i-induced augmentation of the inward rectifier potassium current (IK1) in canine and human ventricular myocardium. Pflug. Arch. Eur. J. Physiol. 2013, 465, 1621–1635. [Google Scholar] [CrossRef]
- Ni, H.; Morotti, S.; Zhang, X.; Dobrev, D.; Grandi, E. Integrative human atrial modelling unravels interactive protein kinase A and Ca2+/calmodulin-dependent protein kinase II signalling as key determinants of atrial arrhythmogenesis. Cardiovasc. Res. 2023, 119, 2294–2311. [Google Scholar] [CrossRef] [PubMed]
- Jost, N.; Acsai, K.; Horvath, B.; Banyasz, T.; Baczko, I.; Bitay, M.; Bogats, G.; Nanasi, P.P. Contribution of I Kr and I K1 to ventricular repolarization in canine and human myocytes: Is there any influence of action potential duration? Basic Res. Cardiol. 2009, 104, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Jost, N.; Virag, L.; Comtois, P.; Ordog, B.; Szuts, V.; Seprenyi, G.; Bitay, M.; Kohajda, Z.; Koncz, I.; Nagy, N.; et al. Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs. J. Physiol. 2013, 591, 4189–4206. [Google Scholar] [CrossRef]
- Horvath, B.; Kiss, D.; Dienes, C.; Hezso, T.; Kovacs, Z.; Szentandrassy, N.; Almassy, J.; Magyar, J.; Banyasz, T.; Nanasi, P.P. Ion current profiles in canine ventricular myocytes obtained by the “onion peeling” technique. J. Mol. Cell. Cardiol. 2021, 158, 153–162. [Google Scholar] [CrossRef]
- Szabo, G.; Szentandrassy, N.; Biro, T.; Toth, B.I.; Czifra, G.; Magyar, J.; Banyasz, T.; Varro, A.; Kovacs, L.; Nanasi, P.P. Asymmetrical distribution of ion channels in canine and human left-ventricular wall: Epicardium versus midmyocardium. Pflug. Arch. Eur. J. Physiol. 2005, 450, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, D.A.; Fernandez-Tenorio, M.; Ogrodnik, J.; Niggli, E. NO-dependent CaMKII activation during beta-adrenergic stimulation of cardiac muscle. Cardiovasc. Res. 2013, 100, 392–401. [Google Scholar] [CrossRef]
- Gomez, R.; Caballero, R.; Barana, A.; Amoros, I.; Calvo, E.; Lopez, J.A.; Klein, H.; Vaquero, M.; Osuna, L.; Atienza, F.; et al. Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 channels. Circ. Res. 2009, 105, 383–392. [Google Scholar] [CrossRef]
- Power, A.S.; Asamudo, E.U.; Worthington, L.P.I.; Alim, C.C.; Parackal, R.E.; Wallace, R.S.; Ebenebe, O.V.; Heller Brown, J.; Kohr, M.J.; Bers, D.M.; et al. Nitric Oxide Modulates Ca(2+) Leak and Arrhythmias via S-Nitrosylation of CaMKII. Circ. Res. 2023, 133, 1040–1055. [Google Scholar] [CrossRef]
- Pereira, L.; Metrich, M.; Fernandez-Velasco, M.; Lucas, A.; Leroy, J.; Perrier, R.; Morel, E.; Fischmeister, R.; Richard, S.; Benitah, J.P.; et al. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J. Physiol. 2007, 583, 685–694. [Google Scholar] [CrossRef]
- Oestreich, E.A.; Wang, H.; Malik, S.; Kaproth-Joslin, K.A.; Blaxall, B.C.; Kelley, G.G.; Dirksen, R.T.; Smrcka, A.V. Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J. Biol. Chem. 2007, 282, 5488–5495. [Google Scholar] [CrossRef]
- Oestreich, E.A.; Malik, S.; Goonasekera, S.A.; Blaxall, B.C.; Kelley, G.G.; Dirksen, R.T.; Smrcka, A.V. Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II. J. Biol. Chem. 2009, 284, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Bare, D.J.; Galice, S.; Shannon, T.R.; Bers, D.M. beta-Adrenergic induced SR Ca(2+) leak is mediated by an Epac-NOS pathway. J. Mol. Cell. Cardiol. 2017, 108, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Nibley, P.C.; Shenoy, S.K. beta-adrenergic receptor signaling mediated by beta-arrestins and its potential role in heart failure. Curr Opin Physiol 2024, 37, 100723. [Google Scholar] [CrossRef] [PubMed]
- Banyasz, T.; Horvath, B.; Virag, L.; Barandi, L.; Szentandrassy, N.; Harmati, G.; Magyar, J.; Marangoni, S.; Zaza, A.; Varro, A.; et al. Reverse rate dependency is an intrinsic property of canine cardiac preparations. Cardiovasc. Res. 2009, 84, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, B.; Bossuyt, J.; Ginsburg, K.S.; Mendoza, L.M.; Talken, L.; Ferrier, W.T.; Pogwizd, S.M.; Izu, L.T.; Chen-Izu, Y.; Bers, D.M. Altered Repolarization Reserve in Failing Rabbit Ventricular Myocytes: Calcium and beta-Adrenergic Effects on Delayed- and Inward-Rectifier Potassium Currents. Circ. Arrhythm. Electrophysiol. 2018, 11, e005852. [Google Scholar] [CrossRef] [PubMed]
- Hilgemann, D.W.; Ball, R. Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2. Science 1996, 273, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Hilgemann, D.W.; Feng, S.; Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE 2001, 2001, re19. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.X.; Si, M.; Zhang, H.R.; Chen, X.J.; Zhang, X.D.; Wang, C.; Du, X.N.; Zhang, H.L. Phosphoinositide kinases play key roles in norepinephrine- and angiotensin II-induced increase in phosphatidylinositol 4,5-bisphosphate and modulation of cardiac function. J. Biol. Chem. 2014, 289, 6941–6948. [Google Scholar] [CrossRef] [PubMed]
- Penn, R.B.; Parent, J.L.; Pronin, A.N.; Panettieri, R.A., Jr.; Benovic, J.L. Pharmacological inhibition of protein kinases in intact cells: Antagonism of beta adrenergic receptor ligand binding by H-89 reveals limitations of usefulness. J. Pharmacol. Exp. Ther. 1999, 288, 428–437. [Google Scholar]
- Volders, P.G.; Stengl, M.; van Opstal, J.M.; Gerlach, U.; Spatjens, R.L.; Beekman, J.D.; Sipido, K.R.; Vos, M.A. Probing the contribution of IKs to canine ventricular repolarization: Key role for beta-adrenergic receptor stimulation. Circulation 2003, 107, 2753–2760. [Google Scholar] [CrossRef]
- Stengl, M.; Volders, P.G.; Thomsen, M.B.; Spatjens, R.L.; Sipido, K.R.; Vos, M.A. Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes. J. Physiol. 2003, 551, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Horvath, B.; Vaczi, K.; Hegyi, B.; Gonczi, M.; Dienes, B.; Kistamas, K.; Banyasz, T.; Magyar, J.; Baczko, I.; Varro, A.; et al. Sarcolemmal Ca(2+)-entry through L-type Ca(2+) channels controls the profile of Ca(2+)-activated Cl(-) current in canine ventricular myocytes. J. Mol. Cell. Cardiol. 2016, 97, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Horvath, B.; Hezso, T.; Szentandrassy, N.; Kistamas, K.; Arpadffy-Lovas, T.; Varga, R.; Gazdag, P.; Veress, R.; Dienes, C.; Baranyai, D.; et al. Late sodium current in human, canine and guinea pig ventricular myocardium. J. Mol. Cell. Cardiol. 2020, 139, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Banyasz, T.; Magyar, J.; Szentandrassy, N.; Horvath, B.; Birinyi, P.; Szentmiklosi, J.; Nanasi, P.P. Action potential clamp fingerprints of K+ currents in canine cardiomyocytes: Their role in ventricular repolarization. Acta Physiol. 2007, 190, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Bányász, T.; Fülöp, L.; Magyar, J.; Szentandrássy, N.; Varró, A.; Nánási, P.P. Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. Cardiovasc. Res. 2003, 58, 66–75. [Google Scholar] [CrossRef]
- Hegyi, B.; Chen-Izu, Y.; Jian, Z.; Shimkunas, R.; Izu, L.T.; Banyasz, T. KN-93 inhibits IKr in mammalian cardiomyocytes. J. Mol. Cell. Cardiol. 2015, 89, 173–176. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, Z.M.; Horváth, B.; Dienes, C.; Óvári, J.; Kiss, D.; Hézső, T.; Szentandrássy, N.; Magyar, J.; Bányász, T.; Nánási, P.P. Beta-Adrenergic Activation of the Inward Rectifier K+ Current Is Mediated by the CaMKII Pathway in Canine Ventricular Cardiomyocytes. Int. J. Mol. Sci. 2024, 25, 11609. https://doi.org/10.3390/ijms252111609
Kovács ZM, Horváth B, Dienes C, Óvári J, Kiss D, Hézső T, Szentandrássy N, Magyar J, Bányász T, Nánási PP. Beta-Adrenergic Activation of the Inward Rectifier K+ Current Is Mediated by the CaMKII Pathway in Canine Ventricular Cardiomyocytes. International Journal of Molecular Sciences. 2024; 25(21):11609. https://doi.org/10.3390/ijms252111609
Chicago/Turabian StyleKovács, Zsigmond Máté, Balázs Horváth, Csaba Dienes, József Óvári, Dénes Kiss, Tamás Hézső, Norbert Szentandrássy, János Magyar, Tamás Bányász, and Péter Pál Nánási. 2024. "Beta-Adrenergic Activation of the Inward Rectifier K+ Current Is Mediated by the CaMKII Pathway in Canine Ventricular Cardiomyocytes" International Journal of Molecular Sciences 25, no. 21: 11609. https://doi.org/10.3390/ijms252111609
APA StyleKovács, Z. M., Horváth, B., Dienes, C., Óvári, J., Kiss, D., Hézső, T., Szentandrássy, N., Magyar, J., Bányász, T., & Nánási, P. P. (2024). Beta-Adrenergic Activation of the Inward Rectifier K+ Current Is Mediated by the CaMKII Pathway in Canine Ventricular Cardiomyocytes. International Journal of Molecular Sciences, 25(21), 11609. https://doi.org/10.3390/ijms252111609