The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue
Abstract
:1. Introduction—The Complement Proteins’ Origin, Activation, and Regulation
2. Functions of Individual Components and Their Cellular Receptor Interactions
3. Possible Molecular Mechanisms of Complement Activation and Its Effects on Muscle and Adipose Tissues in Active and Sedentary States
3.1. Skeletal Muscle Strain, Injury, and the Complement’s Regulatory Role in Regeneration
3.2. Regulation of Metabolic Processes Within the Adipose Tissue
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kostrzewa-Nowak, D.; Kubaszewska, J.; Nowakowska, A.; Nowak, R. Effect of Aerobic and Anaerobic Exercise on the Complement System of Proteins in Healthy Young Males. J. Clin. Med. 2020, 9, 2357. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Peng, Q.; Song, S.; Shi, D.; Zhang, X.; Guo, W.; Li, Y.; Zhou, J.; Zhu, X.; Zhao, Y.; et al. Nonstructural Protein 1 of Variant PEDV Plays a Key Role in Escaping Replication Restriction by Complement C3. J. Virol. 2022, 96, e01024-22. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.; Noursadeghi, M.; Brown, J.S. Streptococcus Pneumoniae Interactions with the Complement System. Front. Cell Infect. Microbiol. 2022, 12, 929483. [Google Scholar] [CrossRef]
- Kardol-Hoefnagel, T.; Michielsen, L.A.; Ehlers, A.M.; van Zuilen, A.D.; Luijk, B.; Otten, H.G. Complement Component C3 and C5b-9 Deposition on Hypoxia Reperfused Endothelial Cells by Non-HLA Antibodies against RhoGDI2: A Player Involved in Graft Failure? HLA 2023, 101, 103–114. [Google Scholar] [CrossRef]
- Nonaka, M.; Kimura, A. Genomic View of the Evolution of the Complement System. Immunogenetics 2006, 58, 701–713. [Google Scholar] [CrossRef]
- Dodds, A.W.; Matsushita, M. The Phylogeny of the Complement System and the Origins of the Classical Pathway. Immunobiology 2007, 212, 233–243. [Google Scholar] [CrossRef]
- Hamada, K.; Vannier, E.; Sacheck, J.M.; Witsell, A.L.; Roubenoff, R. Senescence of Human Skeletal Muscle Impairs the Local Inflammatory Cytokine Response to Acute Eccentric Exercise. FASEB J. 2005, 19, 1–19. [Google Scholar] [CrossRef]
- Peake, J.M.; Suzuki, K.; Wilson, G.; Hordern, M.; Nosaka, K.; MacKinnon, L.; Coombes, J.S. Exercise-Induced Muscle Damage, Plasma Cytokines, and Markers of Neutrophil Activation. Med. Sci. Sports Exerc. 2005, 37, 737–745. [Google Scholar] [CrossRef]
- Peake, J.; Nosaka, K.; Suzuki, K. Characterization of Inflammatory Responses to Eccentric Exercise in Humans. Exerc. Immunol. Rev. 2005, 11, 64–85. [Google Scholar]
- Proske, U.; Allen, T.J. Damage to Skeletal Muscle from Eccentric Exercise. Exerc. Sport Sci. Rev. 2005, 33, 98–104. [Google Scholar] [CrossRef]
- Cury-Boaventura, M.F.; Gorjão, R.; de Moura, N.R.; Santos, V.C.; Bortolon, J.R.; Murata, G.M.; Borges, L.d.S.; Momesso, C.M.; Dermargos, A.; Pithon-Curi, T.C.; et al. The Effect of a Competitive Futsal Match on T Lymphocyte Surface Receptor Signaling and Functions. Front. Physiol. 2018, 9, 317986. [Google Scholar] [CrossRef] [PubMed]
- Windsor, M.T.; Bailey, T.G.; Perissiou, M.; Meital, L.; Golledge, J.; Russell, F.D.; Askew, C.D. Cytokine Responses to Acute Exercise in Healthy Older Adults: The Effect of Cardiorespiratory Fitness. Front. Physiol. 2018, 9, 309611. [Google Scholar] [CrossRef] [PubMed]
- Tidball, J.G.; Villalta, S.A. Regulatory Interactions between Muscle and the Immune System during Muscle Regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, 1173–1187. [Google Scholar] [CrossRef] [PubMed]
- Chazaud, B. Inflammation during Skeletal Muscle Regeneration and Tissue Remodeling: Application to Exercise-Induced Muscle Damage Management. Immunol. Cell Biol. 2016, 94, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle Damage and Inflammation during Recovery from Exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef]
- Dragoş, D.; Tǎnǎsescu, M.D. The Effect of Stress on the Defense Systems. J. Med. Life 2010, 3, 10. [Google Scholar]
- Segerstrom, S.C. Resources, Stress, and Immunity: An Ecological Perspective on Human Psychoneuroimmunology. Ann. Behav. Med. 2010, 40, 114–125. [Google Scholar] [CrossRef]
- Föcking, M.; Sabherwal, S.; Cates, H.M.; Scaife, C.; Dicker, P.; Hryniewiecka, M.; Wynne, K.; Rutten, B.P.F.; Lewis, G.; Cannon, M.; et al. Complement Pathway Changes at Age 12 Are Associated with Psychotic Experiences at Age 18 in a Longitudinal Population-Based Study: Evidence for a Role of Stress. Mol. Psychiatry 2019, 26, 524. [Google Scholar] [CrossRef]
- Tripathi, A.; Whitehead, C.; Surrao, K.; Pillai, A.; Madeshiya, A.; Li, Y.; Khodadadi, H.; Ahmed, A.O.; Turecki, G.; Baban, B.; et al. Type 1 Interferon Mediates Chronic Stress-Induced Neuroinflammation and Behavioral Deficits via Complement Component 3-Dependent Pathway. Mol. Psychiatry 2021, 26, 3043–3059. [Google Scholar] [CrossRef]
- Burns, V.E.; Edwards, K.M.; Ring, C.; Drayson, M.; Carroll, D. Complement Cascade Activation after an Acute Psychological Stress Task. Psychosom. Med. 2008, 70, 387–396. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nuñez, G. Sterile Inflammation: Sensing and Reacting to Damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Fleshner, M.; Frank, M.; Maier, S.F. Danger Signals and Inflammasomes: Stress-Evoked Sterile Inflammation in Mood Disorders. Neuropsychopharmacology 2016, 42, 36–45. [Google Scholar] [CrossRef]
- Franklin, T.C.; Xu, C.; Duman, R.S. Depression and Sterile Inflammation: Essential Role of Danger Associated Molecular Patterns. Brain Behav. Immun. 2018, 72, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Enayati, M.; Solati, J.; Hosseini, M.H.; Shahi, H.R.; Saki, G.; Salari, A.A. Maternal Infection during Late Pregnancy Increases Anxiety- and Depression-like Behaviors with Increasing Age in Male Offspring. Brain Res. Bull. 2012, 87, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Maslanik, T.; Mahaffey, L.; Tannura, K.; Beninson, L.; Greenwood, B.N.; Fleshner, M. The Inflammasome and Danger Associated Molecular Patterns (DAMPs) Are Implicated in Cytokine and Chemokine Responses Following Stressor Exposure. Brain Behav. Immun. 2013, 28, 54–62. [Google Scholar] [CrossRef]
- Voisin, S.; Eynon, N.; Yan, X.; Bishop, D.J. Exercise Training and DNA Methylation in Humans. Acta Physiol. 2015, 213, 39–59. [Google Scholar] [CrossRef]
- Maqueda, M.; Roca, E.; Brotons, D.; Soria, J.M.; Perera, A. Affected Pathways and Transcriptional Regulators in Gene Expression Response to an Ultra-Marathon Trail: Global and Independent Activity Approaches. PLoS ONE 2017, 12, e0180322. [Google Scholar] [CrossRef]
- Mayilyan, K.R. Complement Genetics, Deficiencies, and Disease Associations. Protein Cell 2012, 3, 487–496. [Google Scholar] [CrossRef]
- Walport, M.J. Complement. First of Two Parts. N. Engl. J. Med. 2001, 344, 1058–1066. [Google Scholar] [CrossRef]
- Walport, M.J. Complement. Second of Two Parts. N. Engl. J. Med. 2001, 344, 1140–1144. [Google Scholar] [CrossRef]
- Ueda, Y.; Nagasawa, K.; Tsukamoto, H.; Horiuchi, T.; Nishizaka, H.; Ikeda, K.; Niho, Y. Production of the Third and Fourth Component of Complement (C3, C4) by Smooth Muscle Cells. Immunology 1996, 89, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Thorgersen, E.B.; Barratt-Due, A.; Haugaa, H.; Harboe, M.; Pischke, S.E.; Nilsson, P.H.; Mollnes, T.E. The Role of Complement in Liver Injury, Regeneration, and Transplantation. Hepatology 2019, 70, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Elieh Ali Komi, D.; Shafaghat, F.; Kovanen, P.T.; Meri, S. Mast Cells and Complement System: Ancient Interactions between Components of Innate Immunity. Allergy 2020, 75, 2818–2828. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, R.; van Essen, M.F.; van Kooten, C.; Trouw, L.A. Production of Complement Components by Cells of the Immune System. Clin. Exp. Immunol. 2017, 188, 183–194. [Google Scholar] [CrossRef]
- Chaudhary, N.; Jayaraman, A.; Reinhardt, C.; Campbell, J.D.; Bosmann, M. A Single-Cell Lung Atlas of Complement Genes Identifies the Mesothelium and Epithelium as Prominent Sources of Extrahepatic Complement Proteins. Mucosal Immunol. 2022, 15, 927–939. [Google Scholar] [CrossRef]
- Gerritsma, J.S.J.; Gerritsen, A.F.; Van Kooten, C.; Van Es, L.A.; Daha, M.R. Interleukin-1α Enhances the Biosynthesis of Complement C3 and Factor B by Human Kidney Proximal Tubular Epithelial Cells in Vitro. Mol. Immunol. 1996, 33, 847–854. [Google Scholar] [CrossRef]
- Gerritsma, J.S.J.; Gerritsen, A.F.; Van Es, L.A.; Daha, M.R. Transforming Growth Factor-Β1 Regulates Chemokine and Complement Production by Human Proximal Tubular Epithelial Cells. Kidney Int. 1998, 53, 609–616. [Google Scholar] [CrossRef]
- Gaarkeuken, H.; Siezenga, M.A.; Zuidwijk, K.; Van Kooten, C.; Rabelink, T.J.; Daha, M.R.; Berger, S.P. Complement Activation by Tubular Cells Is Mediated by Properdin Binding. Am. J. Physiol. Renal Physiol. 2008, 295, 1397–1403. [Google Scholar] [CrossRef]
- Li, D.; Zou, L.; Feng, Y.; Xu, G.; Gong, Y.; Zhao, G.; Ouyang, W.; Thurman, J.M.; Chao, W. Complement Factor B Production in Renal Tubular Cells and Its Role in Sodium Transporter Expression during Polymicrobial Sepsis. Crit. Care Med. 2016, 44, e289–e299. [Google Scholar] [CrossRef]
- Llorián-Salvador, M.; Byrne, E.M.; Szczepan, M.; Little, K.; Chen, M.; Xu, H. Complement Activation Contributes to Subretinal Fibrosis through the Induction of Epithelial-to-Mesenchymal Transition (EMT) in Retinal Pigment Epithelial Cells. J. Neuroinflamm. 2022, 19, 182. [Google Scholar] [CrossRef]
- Schwanhüusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global Quantification of Mammalian Gene Expression Control. Nature 2011, 473, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Dunkelberger, J.R.; Song, W.C. Complement and Its Role in Innate and Adaptive Immune Responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef]
- Wallis, R.; Mitchell, D.A.; Schmid, R.; Schwaeble, W.J.; Keeble, A.H. Paths Reunited: Initiation of the Classical and Lectin Pathways of Complement Activation. Immunobiology 2010, 215, 1–11. [Google Scholar] [CrossRef]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A Key System for Immune Surveillance and Homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef]
- Gupta, P.; Tripathy, A.S. Alternative Pathway of Complement Activation Has a Beneficial Role against Chandipura Virus Infection. Med. Microbiol. Immunol. 2020, 209, 109–124. [Google Scholar] [CrossRef]
- Harboe, M.; Mollnes, T.E. The Alternative Complement Pathway Revisited. J. Cell Mol. Med. 2008, 12, 1074–1084. [Google Scholar] [CrossRef]
- Gaboriaud, C.; Juanhuix, J.; Gruez, A.; Lacroix, M.; Darnault, C.; Pignol, D.; Verger, D.; Fontecilla-Camps, J.C.; Arlaud, G.J. The Crystal Structure of the Globular Head of Complement Protein C1q Provides a Basis for Its Versatile Recognition Properties. J. Biol. Chem. 2003, 278, 46974–46982. [Google Scholar] [CrossRef] [PubMed]
- Shahini, N.; Michelsen, A.E.; Nilsson, P.H.; Ekholt, K.; Gullestad, L.; Broch, K.; Dahl, C.P.; Aukrust, P.; Ueland, T.; Mollnes, T.E.; et al. The Alternative Complement Pathway Is Dysregulated in Patients with Chronic Heart Failure. Sci. Rep. 2017, 7, 42532. [Google Scholar] [CrossRef]
- Caballero, T. Treatment of Hereditary Angioedema. J. Investig. Allergol. Clin. Immunol. 2021, 31, 1–16. [Google Scholar] [CrossRef]
- Palarasah, Y.; Henriksen, A.S.L.; Thiel, S.; Henriksen, M.; Hansen, S.W.K. Potency Measurements of the Complement System Facilitated by Antibodies Targeting the Zymogen Form of Complement Factor D (Adipsin). Mol. Immunol. 2022, 146, 46–49. [Google Scholar] [CrossRef]
- Gershov, D.; Kim, S.J.; Brot, N.; Elkon, K.B. C-Reactive Protein Binds to Apoptotic Cells, Protects the Cells from Assembly of the Terminal Complement Components, and Sustains an Antiinflammatory Innate Immune ResponseImplications for Systemic Autoimmunity. J. Exp. Med. 2000, 192, 1353–1364. [Google Scholar] [CrossRef]
- Deban, L.; Jarva, H.; Lehtinen, M.J.; Bottazzi, B.; Bastone, A.; Doni, A.; Jokiranta, T.S.; Mantovani, A.; Meri, S. Binding of the Long Pentraxin PTX3 to Factor H: Interacting Domains and Function in the Regulation of Complement Activation. J. Immunol. 2008, 181, 8433–8440. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, K.; Meri, S. Regulation of the Complement System by Pentraxins. Front. Immunol. 2019, 10, 1750. [Google Scholar] [CrossRef] [PubMed]
- Hakobyan, S.; Harris, C.L.; Van Den Berg, C.W.; Fernandez-Alonso, M.C.; De Jorge, E.G.; De Cordoba, S.R.; Rivas, G.; Mangione, P.; Pepys, M.B.; Morgan, B.P. Complement Factor H Binds to Denatured Rather than to Native Pentameric C-Reactive Protein. J. Biol. Chem. 2008, 283, 30451–30460. [Google Scholar] [CrossRef] [PubMed]
- Losse, J.; Zipfel, P.F.; Józsi, M. Factor H and Factor H-Related Protein 1 Bind to Human Neutrophils via Complement Receptor 3, Mediate Attachment to Candida Albicans, and Enhance Neutrophil Antimicrobial Activity. J. Immunol. 2010, 184, 912–921. [Google Scholar] [CrossRef]
- Leffler, J.; Herbert, A.P.; Norström, E.; Schmidt, C.Q.; Barlow, P.N.; Blom, A.M.; Martin, M. Annexin-II, DNA, and Histones Serve as Factor H Ligands on the Surface of Apoptotic Cells. J. Biol. Chem. 2010, 285, 3766–3776. [Google Scholar] [CrossRef] [PubMed]
- Haleem, K.S.; Ali, Y.M.; Yesilkaya, H.; Kohler, T.; Hammerschmidt, S.; Andrew, P.W.; Schwaeble, W.J.; Lynch, N.J. The Pneumococcal Surface Proteins PspA and PspC Sequester Host C4-Binding Protein to Inactivate Complement C4B on the Bacterial Surface. Infect. Immun. 2019, 87, e00742-18. [Google Scholar] [CrossRef]
- Hochgrebe, T.T.; Humphreys, D.; Wilson, M.R.; Easterbrook-Smith, S.B. A Reexamination of the Role of Clusterin as a Complement Regulator. Exp. Cell Res. 1999, 249, 13–21. [Google Scholar] [CrossRef]
- Doudevski, I.; Rostagno, A.; Cowman, M.; Liebmann, J.; Ritch, R.; Ghiso, J. Clusterin and Complement Activation in Exfoliation Glaucoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2491–2499. [Google Scholar] [CrossRef]
- Milis, L.; Morris, C.A.; Sheehan, M.C.; Charlesworth, J.A.; Pussell, B.A. Vitronectin-Mediated Inhibition of Complement: Evidence for Different Binding Sites for C5b-7 and C9. Clin. Exp. Immunol. 1993, 92, 114–119. [Google Scholar] [CrossRef]
- Conde, J.N.; da Silva, E.M.; Allonso, D.; Coelho, D.R.; Andrade, I.d.S.; de Medeiros, L.N.; Menezes, J.L.; Barbosa, A.S.; Mohana-Borges, R. Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins. J. Virol. 2016, 90, 9570–9581. [Google Scholar] [CrossRef] [PubMed]
- Wouters, D.; Wagenaar-Bos, I.; Van Ham, M.; Zeerleder, S. C1 Inhibitor: Just a Serine Protease Inhibitor? New and Old Considerations on Therapeutic Applications of C1 Inhibitor. Expert. Opin. Biol. Ther. 2008, 8, 1225–1240. [Google Scholar] [CrossRef]
- Maurer, M.; Magerl, M.; Ansotegui, I.; Aygören-Pürsün, E.; Betschel, S.; Bork, K.; Bowen, T.; Balle Boysen, H.; Farkas, H.; Grumach, A.S.; et al. The International WAO/EAACI Guideline for the Management of Hereditary Angioedema—The 2017 Revision and Update. Allergy 2018, 73, 1575–1596. [Google Scholar] [CrossRef] [PubMed]
- Kinders, R.; Jones, T.; Root, R.; Bruce, C.; Murchison, H.; Corey, M.; Williams, L.; Enfield, D.; Hass, M.G. Complement Factor H or a Related Protein Is a Marker for Transitional Cell Cancer of the Bladder. Clin. Cancer Res. 1998, 4, 2511–2520. [Google Scholar] [PubMed]
- Papp, A.; Papp, K.; Uzonyi, B.; Cserhalmi, M.; Csincsi, Á.I.; Szabó, Z.; Bánlaki, Z.; Ermert, D.; Prohászka, Z.; Erdei, A.; et al. Complement Factor H-Related Proteins FHR1 and FHR5 Interact With Extracellular Matrix Ligands, Reduce Factor H Regulatory Activity and Enhance Complement Activation. Front. Immunol. 2022, 13, 845953. [Google Scholar] [CrossRef] [PubMed]
- Erdei, A.; Kovács, K.G.; Nagy-Baló, Z.; Lukácsi, S.; Mácsik-Valent, B.; Kurucz, I.; Bajtay, Z. New Aspects in the Regulation of Human B Cell Functions by Complement Receptors CR1, CR2, CR3 and CR4. Immunol. Lett. 2021, 237, 42–57. [Google Scholar] [CrossRef]
- Ort, M.; Dingemanse, J.; van den Anker, J.; Kaufmann, P. Treatment of Rare Inflammatory Kidney Diseases: Drugs Targeting the Terminal Complement Pathway. Front. Immunol. 2020, 11, 599417. [Google Scholar] [CrossRef]
- Harboe, M.; Thorgersen, E.B.; Mollnes, T.E. Advances in Assay of Complement Function and Activation. Adv. Drug. Deliv. Rev. 2011, 63, 976–987. [Google Scholar] [CrossRef]
- de Jorge, E.G.; Yebenes, H.; Serna, M.; Tortajada, A.; Llorca, O.; de Córdoba, S.R. How Novel Structures Inform Understanding of Complement Function. Semin. Immunopathol. 2018, 40, 3–14. [Google Scholar] [CrossRef]
- Pouw, R.B.; Ricklin, D. Tipping the Balance: Intricate Roles of the Complement System in Disease and Therapy. Semin. Immunopathol. 2021, 43, 757–771. [Google Scholar] [CrossRef]
- Santos-López, J.; de la Paz, K.; Fernández, F.J.; Vega, M.C. Structural Biology of Complement Receptors. Front. Immunol. 2023, 14, 1239146. [Google Scholar] [CrossRef] [PubMed]
- Audemard-Verger, A.; Descloux, E.; Ponard, D.; Deroux, A.; Fantin, B.; Fieschi, C.; John, M.; Bouldouyre, A.; Karkowsi, L.; Moulis, G.; et al. Infections Revealing Complement Deficiency in Adults: A French Nationwide Study Enrolling 41 Patients. Medicine 2016, 95, e3548. [Google Scholar] [CrossRef] [PubMed]
- Michels, M.A.H.M.; Volokhina, E.B.; van de Kar, N.C.A.J.; van den Heuvel, L.P.W.J. The Role of Properdin in Complement-Mediated Renal Diseases: A New Player in Complement-Inhibiting Therapy? Pediatr. Nephrol. 2018, 34, 1349–1367. [Google Scholar] [CrossRef] [PubMed]
- Gell, P.G.H.; Coombs, R.R.A. Clinical Aspects of Immunology, 2nd ed.; Davis: Philadelphia, PA, USA, 1963. [Google Scholar]
- Kavai, M. Immune Complex Clearance by Complement Receptor Type 1 in SLE. Autoimmun. Rev. 2008, 8, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Drouin, S.M.; Kildsgaard, J.; Haviland, J.; Zabner, J.; Jia, H.P.; McCray, P.B.; Tack, B.F.; Wetsel, R.A. Expression of the Complement Anaphylatoxin C3a and C5a Receptors on Bronchial Epithelial and Smooth Muscle Cells in Models of Sepsis and Asthma. J. Immunol. 2001, 166, 2025–2032. [Google Scholar] [CrossRef]
- Hair, P.S.; Sass, L.A.; Vazifedan, T.; Shah, T.A.; Krishna, N.K.; Cunnion, K.M. Complement Effectors, C5a and C3a, in Cystic Fibrosis Lung Fluid Correlate with Disease Severity. PLoS ONE 2017, 12, e0173257. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Kim, K.; Smith, M.D.; Aston, S.A.; Fioravante, N.; Rothman, A.M.; Krieger, S.; Cofield, S.S.; Kimbrough, D.J.; Bhargava, P.; et al. Early Complement Genes Are Associated with Visual System Degeneration in Multiple Sclerosis. Brain 2019, 142, 2722–2736. [Google Scholar] [CrossRef]
- Karasu, E.; Nilsson, B.; Köhl, J.; Lambris, J.D.; Huber-Lang, M. Targeting Complement Pathways in Polytrauma- And Sepsis-Induced Multiple-Organ Dysfunction. Front. Immunol. 2019, 10, 447715. [Google Scholar] [CrossRef]
- Kou, W.; Li, B.; Shi, Y.; Zhao, Y.; Yu, Q.; Zhuang, J.; Xu, Y.; Peng, W. High Complement Protein C1q Levels in Pulmonary Fibrosis and Non-Small Cell Lung Cancer Associated with Poor Prognosis. BMC Cancer 2022, 22, 110. [Google Scholar] [CrossRef]
- van der Ende, E.L.; Heller, C.; Sogorb-Esteve, A.; Swift, I.J.; McFall, D.; Peakman, G.; Bouzigues, A.; Poos, J.M.; Jiskoot, L.C.; Panman, J.L.; et al. Elevated CSF and Plasma Complement Proteins in Genetic Frontotemporal Dementia: Results from the GENFI Study. J. Neuroinflamm. 2022, 19, 217. [Google Scholar] [CrossRef]
- Cairns, S.P. Lactic Acid and Exercise Performance: Culprit or Friend? Sports Med. 2006, 36, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Emeis, M.; Sonntag, J.; Carsten Willam, C.; Strauss, E.; Walka, M.M.; Obladen, M. Acidosis Activates Complement System in Vitro. Mediators Inflamm. 1998, 7, 417. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, J.; Emeis, M.; Strauss, E.; Obladen, M. In Vitro Activation of Complement and Contact System by Lactic Acidosis. Mediators Inflamm. 1998, 7, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Hecke, F.; Hoehn, T.; Strauss, E.; Obladen, M.; Sonntag, J. In-Vitro Activation of Complement System by Lactic Acidosis in Newborn and Adults. Mediators Inflamm. 2001, 10, 27–31. [Google Scholar] [CrossRef]
- Navarro-Sanz, A.; Barruecos Francioni, J.E.; Godoy Sánchez, L.; de Linares, A.N.; Galeas López, J.L.; Robles Rodríguez, A.; Fernandez-Ortega, J.F. Effect of Exhaustive Exercise on the Immune System, Measured through Complement Activation and C-Reactive Protein. Arch. Med. Deporte 2013, 30, 348–353. [Google Scholar]
- Schaefer, L. Complexity of Danger: The Diverse Nature of Damage-Associated Molecular Patterns. J. Biol. Chem. 2014, 289, 35237–35245. [Google Scholar] [CrossRef]
- Tu, H.; Li, Y.L. Inflammation Balance in Skeletal Muscle Damage and Repair. Front. Immunol. 2023, 14, 1133355. [Google Scholar] [CrossRef]
- Clarke, M.S.F.; Feerack, D.L. Mechanical Load Induces Sarcoplasmic Wounding and FGF Release in Differentiated Human Skeletal Muscle Cultures. FASEB J. 1996, 10, 502–509. [Google Scholar] [CrossRef]
- Linder, E.; Lehto, V.P.; Stenman, S. Activation of Complement by Cytoskeletal Intermediate Filaments. Nature 1979, 278, 176–178. [Google Scholar] [CrossRef]
- Li, Z.; Paulin, D. High Level Desmin Expression Depends on a Muscle-Specific Enhancer. J. Biol. Chem. 1991, 266, 6562–6570. [Google Scholar] [CrossRef]
- Lieber, R.L.; Schmitz, M.C.; Mishra, D.K.; Friden, J. Contractile and Cellular Remodeling in Rabbit Skeletal Muscle after Cyclic Eccentric Contractions. J. Appl. Physiol. (1985) 1994, 77, 1926–1934. [Google Scholar] [CrossRef]
- Mendell, J.R.; Garcha, T.S.; Kissel, J.T. The Immunopathogenic Role of Complement in Human Muscle Disease. Curr. Opin. Neurol. 1996, 9, 226–234. [Google Scholar] [CrossRef]
- Cong, L.; Pu, C.Q.; Shi, Q.; Wang, Q.; Lu, X.H. Complement Membrane Attack Complex Is Related with Immune-Mediated Necrotizing Myopathy. Int. J. Clin. Exp. Pathol. 2014, 7, 4143. [Google Scholar] [PubMed]
- Frenette, J.; Cai, B.; Tidball, J.G. Complement Activation Promotes Muscle Inflammation during Modified Muscle Use. Am. J. Pathol. 2000, 156, 2103–2110. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Li, Y.; Miwa, T.; Liu, C.; Cui, W.; Song, W.C.; Du, J. Complement C3a Signaling Facilitates Skeletal Muscle Regeneration by Regulating Monocyte Function and Trafficking. Nat. Commun. 2017, 8, 2078. [Google Scholar] [CrossRef]
- Castell, L.M.; Poortmans, J.R.; Leclercq, R.; Brasseur, M.; Duchateau, J.; Newsholme, E.A. Some Aspects of the Acute Phase Response after a Marathon Race, and the Effects of Glutamine Supplementation. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 75, 47–53. [Google Scholar] [CrossRef]
- Rouaud, T.; Siami, N.; Dupas, T.; Gervier, P.; Gardahaut, M.F.; Auda-Boucher, G.; Thiriet, C. Complement C3 of the Innate Immune System Secreted by Muscle Adipogenic Cells Promotes Myogenic Differentiation. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Clevers, H. Wnt/β-Catenin Signaling in Development and Disease. Cell 2006, 127, 469–480. [Google Scholar] [CrossRef]
- Muhl, L.; Genové, G.; Leptidis, S.; Liu, J.; He, L.; Mocci, G.; Sun, Y.; Gustafsson, S.; Buyandelger, B.; Chivukula, I.V.; et al. Single-Cell Analysis Uncovers Fibroblast Heterogeneity and Criteria for Fibroblast and Mural Cell Identification and Discrimination. Nat. Commun. 2020, 11, 3953. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Hart, D.A.; Zhou, Z.; Ackermann, P.W.; Ahmed, A.S. Complement Factor D Regulates Collagen Type I Expression and Fibroblast Migration to Enhance Human Tendon Repair and Healing Outcomes. Front. Immunol. 2023, 14, 1225957. [Google Scholar] [CrossRef]
- Sanchez-Gurmaches, J.; Guertin, D.A. Adipocyte Lineages: Tracing Back the Origins of Fat. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2014, 1842, 340–351. [Google Scholar] [CrossRef]
- Deshmukh, A.S.; Peijs, L.; Beaudry, J.L.; Jespersen, N.Z.; Nielsen, C.H.; Ma, T.; Brunner, A.D.; Larsen, T.J.; Bayarri-Olmos, R.; Prabhakar, B.S.; et al. Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine. Cell Metab. 2019, 30, 963–975.e7. [Google Scholar] [CrossRef]
- Lundgren, P.; Sharma, P.V.; Dohnalová, L.; Coleman, K.; Uhr, G.T.; Kircher, S.; Litichevskiy, L.; Bahnsen, K.; Descamps, H.C.; Demetriadou, C.; et al. A Subpopulation of Lipogenic Brown Adipocytes Drives Thermogenic Memory. Nat. Metab. 2023, 5, 1691–1705. [Google Scholar] [CrossRef]
- Cypess, A.M.; White, A.P.; Vernochet, C.; Schulz, T.J.; Xue, R.; Sass, C.A.; Huang, T.L.; Roberts-Toler, C.; Weiner, L.S.; Sze, C.; et al. Anatomical Localization, Gene Expression Profiling and Functional Characterization of Adult Human Neck Brown Fat. Nat. Med. 2013, 19, 635–639. [Google Scholar] [CrossRef]
- Lidell, M.E.; Betz, M.J.; Leinhard, O.D.; Heglind, M.; Elander, L.; Slawik, M.; Mussack, T.; Nilsson, D.; Romu, T.; Nuutila, P.; et al. Evidence for Two Types of Brown Adipose Tissue in Humans. Nat. Med. 2013, 19, 631–634. [Google Scholar] [CrossRef]
- Heaton, J.M. The Distribution of Brown Adipose Tissue in the Human. J. Anat. 1972, 112, 35. [Google Scholar]
- Pattrick, M.; Luckett, J.; Yue, L.; Stover, C. Dual Role of Complement in Adipose Tissue. Mol. Immunol. 2009, 46, 755–760. [Google Scholar] [CrossRef]
- Matsunaga, H.; Iwashita, M.; Shinjo, T.; Yamashita, A.; Tsuruta, M.; Nagasaka, S.; Taniguchi, A.; Fukushima, M.; Watanabe, N.; Nishimura, F. Adipose Tissue Complement Factor B Promotes Adipocyte Maturation. Biochem. Biophys. Res. Commun. 2018, 495, 740–748. [Google Scholar] [CrossRef]
- Coan, P.M.; Barrier, M.; Alfazema, N.; Carter, R.N.; Marion De Procé, S.; Dopico, X.C.; Garcia Diaz, A.; Thomson, A.; Jackson-Jones, L.H.; Moyon, B.; et al. Complement Factor B Is a Determinant of Both Metabolic and Cardiovascular Features of Metabolic Syndrome. Hypertension 2017, 70, 624–633. [Google Scholar] [CrossRef]
- Antonio-Villa, N.E.; Juárez-Rojas, J.G.; Posadas-Sánchez, R.; Reyes-Barrera, J.; Medina-Urrutia, A. Visceral Adipose Tissue Is an Independent Predictor and Mediator of the Progression of Coronary Calcification: A Prospective Sub-Analysis of the GEA Study. Cardiovasc. Diabetol. 2023, 22, 81. [Google Scholar] [CrossRef]
- Tao, M.; Zhou, G.; Liu, J.; He, M.; Wang, C.; Luo, X.; Zhang, L. Visceral Adipose Tissue and Risk of Nonalcoholic Fatty Liver Disease: A Mendelian Randomization Study. Clin. Endocrinol. 2023, 99, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Navarrete, J.M.; Martínez-Barricarte, R.; Catalán, V.; Sabater, M.; Gómez-Ambrosi, J.; Ortega, F.J.; Ricart, W.; Blüher, M.; Frühbeck, G.; De Cordoba, S.R.; et al. Complement Factor H Is Expressed in Adipose Tissue in Association With Insulin Resistance. Diabetes 2010, 59, 200–209. [Google Scholar] [CrossRef]
- Song, N.J.; Kim, S.; Jang, B.H.; Chang, S.H.; Yun, U.J.; Park, K.M.; Waki, H.; Li, D.Y.; Tontonoz, P.; Park, K.W. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation. PLoS ONE 2016, 11, e0162228. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsson, B.G.; Johansson, J.M.; Lönn, M.; Jernås, M.; Olbers, T.; Peltonen, M.; Larsson, I.; Lönn, L.; Sjöström, L.; Carlsson, B.; et al. High Expression of Complement Components in Omental Adipose Tissue in Obese Men. Obes. Res. 2003, 11, 699–708. [Google Scholar] [CrossRef]
- Yasruel, Z.; Cianflone, K.; Sniderman, A.D.; Rosenbloom, M.; Walsh, M.; Rodriguez, M.A. Effect of Acylation Stimulating Protein on the Triacylglycerol Synthetic Pathway of Human Adipose Tissue. Lipids 1991, 26, 495–499. [Google Scholar] [CrossRef]
- Maslowska, M.; Sniderman, A.D.; Germinario, R.; Cianflone, K. ASP Stimulates Glucose Transport in Cultured Human Adipocytes. Int. J. Obes. 1997, 21, 261–266. [Google Scholar] [CrossRef]
- Kalant, D.; MacLaren, R.; Cui, W.; Samanta, R.; Monk, P.N.; Laporte, S.A.; Cianflone, K. C5L2 Is a Functional Receptor for Acylation-Stimulating Protein. J. Biol. Chem. 2005, 280, 23936–23944. [Google Scholar] [CrossRef]
- Cui, W.; Lapointe, M.; Gauvreau, D.; Kalant, D.; Cianflone, K. Recombinant C3adesArg/Acylation Stimulating Protein (ASP) Is Highly Bioactive: A Critical Evaluation of C5L2 Binding and 3T3-L1 Adipocyte Activation. Mol. Immunol. 2009, 46, 3207–3217. [Google Scholar] [CrossRef]
- Gauvreau, D.; Gupta, A.; Fisette, A.; Tom, F.Q.; Cianflone, K. Deficiency of C5L2 Increases Macrophage Infiltration and Alters Adipose Tissue Function in Mice. PLoS ONE 2013, 8, e60795. [Google Scholar] [CrossRef]
- Lim, J.; Iyer, A.; Suen, J.Y.; Seow, V.; Reid, R.C.; Brown, L.; Fairlie, D.P. C5aR and C3aR Antagonists Each Inhibit Diet-Induced Obesity, Metabolic Dysfunction, and Adipocyte and Macrophage Signaling. FASEB J. 2013, 27, 822–831. [Google Scholar] [CrossRef]
- Lazarov, T.; Juarez-Carreño, S.; Cox, N.; Geissmann, F. Physiology and Diseases of Tissue-Resident Macrophages. Nature 2023, 618, 698–707. [Google Scholar] [CrossRef]
Regulator of Complement Activation | Ligands and Action |
---|---|
Factor H | Negative regulator; preferential binding to denatured CRP (in vitro) [54]; CR3 [55]; C3b; heparin, extracellular matrix components; microbial virulence factors; annexin-II; DNA; DNA-devoid histones [56] |
C4-binding protein | Negative regulator; C4b and cofactor for the FI-mediated conversion of C4b into inactive fragments [57] |
Clusterin | Negative regulator; blocking of the binding of nascent C5bC7 to cell membranes [58]; possibly inhibition of the C5bC7 complex assembly; constituent of the “sC5bC9 complex” [58], binding to sites within C7, C8, and C9 [59] |
Vitronectin | Negative regulator; a constituent of the sC5bC7 complex and, to a lesser extent, inhibition of C9 polymerization [60] through the occupation of the metastable membrane-binding site of the C5bC7 complex and hindrance of its insertion into the cell membrane [61] |
C1-inhibitor | Negative regulator; suicide inhibition by means of complex formation with C1r, C1s, and MASP1 and MASP2 [62,63] |
Factor I | Negative regulator; C4b inactivation by conversion to inactive split products with C4BP as a cofactor [57]; proteolysis of C3b in the presence of FH [64] |
CFHR1 | Positive and negative regulator; extracellular matrix components; competitive inhibition of FH and LP/CP C5 convertase [65] |
Complement Fragments | Function |
---|---|
C1 complex (C1q, C1s, C1r) | pattern recognition molecule, CP- and LP-initiating protein |
C1-complex and smaller subunits of C3 and C4 | initiation of complement cascade through C3 and C4 activation |
C3b, iC3b, C4b | opsonins |
C3a, C4a, C5a | chemoattraction and leukocyte activation |
C3b, C4b together with antigen–antibody complexes bound to CR2 on B lymphocytes | B-cell activation and antibody production stimulation |
C3b, C4b together with antigen–antibody complexes bound to CR2 and CR3 on dendritic cells in lymphoid follicles | immune cell activation |
C5b-polyC9 (MAC) | cell lysis |
Receptor | Ligands | Function |
---|---|---|
CR1 | C3b/C4b AP/CP C3 convertase C5 convertase Other ligands: C1q, MBL, and iC3b/C3d(g) with low affinity | regulation of complement activation; CR1 gene encodes for the antigens of the Knops blood group system; presentation of foreign antigens to immunocompetent cells; inhibitory B-cell receptor; soluble CR1 (sCR1) has anti-inflammatory properties |
CR2 | iC3b C3d(g) Other ligands: IFNa, Low-affinity IgE receptor CD23 | reduction in the threshold for immune activation; regulation of complement activation; entry receptor for EBV, HIV-1; facilitation of Cryptococcus neoformans internalization; complement-opsonized antigen presentation |
CR3 | iC3b C3d(g) C3(H2O) Other ligands: ICAMs, Fibrinogen, Plasminogen, LPS (many others) | immune mediated adhesion and phagocytosis; outside–inside signaling; mediation of B-cell cytotoxicity towards cancer cells; “scavenger” receptor; binding of coagulation system proteins |
CR4 | iC3b Other ligands: ICAM-1, VCAM-1, Fibrinogen, LPS, Heparin (others) | immune mediated adhesion and phagocytosis; mediation of NK-cell complement-dependent cytotoxicity; “scavenger” receptor |
CRIg | C3b iC3b | inhibition of the C3 convertase of the AP; facilitation of phagocytosis |
C3aR | C3a Other ligands: C5a | binding of anaphylatoxins |
C5aR1 | C5a C5a-desArg Other ligands: C3a, ribosomal protein S19 | intracellular signaling mechanism dependent on cell type and ligand |
C5aR2 | C5a, C5a-desArg | intracellular signaling (role secondary to C5aR1); internalization, retaining, and degradation of C5a; regulation of complex cellular responses. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciuk, B.; Frulenko, I.; Brodkiewicz, A.; Kita, D.; Baluta, M.; Jędrzejczyk, F.; Budkowska, M.; Turkiewicz, K.; Proia, P.; Ciechanowicz, A.; et al. The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue. Int. J. Mol. Sci. 2024, 25, 11608. https://doi.org/10.3390/ijms252111608
Wojciuk B, Frulenko I, Brodkiewicz A, Kita D, Baluta M, Jędrzejczyk F, Budkowska M, Turkiewicz K, Proia P, Ciechanowicz A, et al. The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue. International Journal of Molecular Sciences. 2024; 25(21):11608. https://doi.org/10.3390/ijms252111608
Chicago/Turabian StyleWojciuk, Bartosz, Ignacy Frulenko, Andrzej Brodkiewicz, Dagmara Kita, Monica Baluta, Filip Jędrzejczyk, Marta Budkowska, Karolina Turkiewicz, Patrizia Proia, Andrzej Ciechanowicz, and et al. 2024. "The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue" International Journal of Molecular Sciences 25, no. 21: 11608. https://doi.org/10.3390/ijms252111608
APA StyleWojciuk, B., Frulenko, I., Brodkiewicz, A., Kita, D., Baluta, M., Jędrzejczyk, F., Budkowska, M., Turkiewicz, K., Proia, P., Ciechanowicz, A., Kostrzewa-Nowak, D., & Nowak, R. (2024). The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue. International Journal of Molecular Sciences, 25(21), 11608. https://doi.org/10.3390/ijms252111608